You may use your book and notes to work on this, but do not work with another student or with a tutor or other mentor. Do not use a calculator.

Find the indicated limits:

1. $\lim _{x \rightarrow-1} 2 x^{3}-4 x+7=\quad \lim _{x \rightarrow-4} \frac{x+4}{x^{2}-16}=$

$$
\lim _{x \rightarrow 7^{-}} \frac{3}{x-7} \quad \lim _{x \rightarrow 7^{+}} \frac{3}{x-7}
$$

2. \quad Given $f(x)=\left\{\begin{aligned} 1, & \text { if } x \text { is an integer } \\ -1, & \text { otherwise }\end{aligned}\right.$

$$
\lim _{x \rightarrow 1 / 2} f(x)=\quad \lim _{x \rightarrow 0} f(x)=
$$

3. Given $g(x)=\left\{\begin{array}{lll}1-x^{2}, & \text { if } x \leq 0 \\ x+2, & \text { if } 0<x \leq 4 \\ 10-x, & \text { if } x>4\end{array}\right.$

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} g(x)= & \lim _{x \rightarrow 0^{+}} g(x)= & \lim _{x \rightarrow 0} f(x)= \\
\lim _{x \rightarrow 2^{-}} g(x)= & \lim _{x \rightarrow 2^{+}} g(x)= & \lim _{x \rightarrow 2} g(x)=
\end{array}
$$

4. Find the break-even production amount for a manufacturing operation whose cost function is $C(x)=20 x+320$ when the goods are to be sold for $\$ 15$ each.
5. Show all steps to find the value of the slope of the tangent to the curve of the function $f(x)=\frac{2}{x}$ at $x=1$.

What is the function that gives the slope of the tangent for an x on this curve? (that is, the general expression for the difference quotient).

