$\qquad$
Directions: Answer each question as completely as possible. Show all work for credit. Good luck.

1. Suppose $f(x)=\frac{\left(x^{2}-5 x+4\right)(x+1)}{x^{2}-2 x-3}$
a) Find the domain of $f$.
b) Determine any "holes" in the graph of $f$, if any exist. If none exist, write NONE.
c) Determine the equation of any vertical asymptotes to the graph of $f$.
d) Determine the $y$-intercept of the graph of $f$.
e) Determine any $x$-intercepts on the graph of $f$, if any exist.
f) Find any other asymptotes (horizontal/slant) to the graph of $f$.
g) Use the information found above to draw a rough sketch of the graph of $f$.

|  |  |
| :--- | :--- |

2. Suppose $g(x)=\frac{-2 x^{3}+12 x^{2}-18 x}{x^{3}-3 x-2}$
a) Find the domain of $g$.
b) Determine any "holes" in the graph of $g$, if any exist. If none exist, write NONE.
c) Determine the equation of any vertical asymptotes to the graph of $g$.
d) Determine the $y$-intercept of the graph of $g$.
e) Determine any $x$-intercepts on the graph of $g$, if any exist.
f) Find any other asymptotes (horizontal/slant) to the graph of $g$.
g) Use the information found above to draw a rough sketch of the graph of $g$.
3. In each part, find the equation of a non-polynomial rational function $f$ (in other words, the denominator should have a variable) having the following characteristics:
a) no vertical asymptotes and a slant asymptote
$f(x)=$
b) exactly one x -intercept, exactly two vertical asymptotes, and a horizontal asymptote of $y=2$.
$f(x)=$
