Worksheet #13

View <u>Vertical line test for function</u> and then do these:

The key to deciding if an equation represents a function is to solve it for y and if that entails taking a +/- square root, then it is *not* a function. Hence, it would fail the vertical line test (VLT).

e) $y = 3x - 7$	f) $y^2 - x^2 = 1$
g) $\sqrt{y} + x = 2$	h) $x^2 + y^2 = 1$

GO TO THE NEXT PAGE

Now view Evaluation functions and evaluate each function (odd exercises) below.

11) $g(x) = 4x - 4$; Find $g(0)$	12) $g(n) = -3 \cdot 5^{-n}$; Find $g(2)$
13) $f(x) = 3x + 1 + 1$; Find $f(0)$	14) $f(x) = x^2 + 4$; Find $f(-9)$
15) $f(n) = -2 -n-2 +1$; Find $f(-6)$	16) $f(n) = n - 3$; Find $f(10)$
17) $f(t) = 3^t - 2$; Find $f(-2)$	18) $f(a) - 3^{a-1} - 3$; Find $f(2)$
19) $f(t) = t+3 $; Find $f(10)$	20) $w(x) = x^2 + 4x$; Find $w(-5)$
21) $w(n) = 4n + 3$; Find $w(2)$	22) $w(x) = -4x + 3$; Find $w(6)$
23) $w(n) = 2^{n+2}$; Find $w(-2)$	24) $p(x) = - x + 1$; Find $p(5)$
25) $p(n) = -3 n $; Find $p(7)$	26) $k(a) = a + 3$; Find $k(-1)$
27) $p(t) = -t^3 + t$; Find $p(4)$	28) $k(x) = -2 \cdot 4^{2x-2}$; Find $k(2)$
29) $k(n) = n-1 $; Find $k(3)$	30) $p(t) = -2 \cdot 4^{2t+1} + 1$; Find $p(-2)$
31) $h(x) = x^3 + 2$; Find $h(-4x)$	32) $h(n) = 4n + 2$; Find $h(n + 2)$
33) $h(x) = 3x + 2$; Find $h(-1+x)$	34) $h(a) = -3 \cdot 2^{a+3}$; Find $h(\frac{a}{4})$
35) $h(t) = 2 -3t-1 + 2$; Find $h(n^2)$	36) $h(x) = x^2 + 1$; Find $h(\frac{x}{4})$
37) $g(x) = x + 1$; Find $g(3x)$	38) $h(t) = t^2 + t$; Find $h(t^2)$
39) $g(x) = 5^x$; Find $g(-3-x)$	40) $h(n) = 5^{n-1} + 1$; Find $h(\frac{n}{2})$

The *domain* of a function is the set of real numbers for which the function is defined. That is, when you substitute a number from the domain into the function, you get a real number back. So any value that would make a denominator equal zero of make a radicand negative is *not* in the domain of that function.

View <u>Finding the domain of a function</u> and <u>Finding domain from a graph</u>. Then specify the domain of each.

2) $f(x) = -5x + 1$	3) $f(x) = \sqrt{5 - 4x}$
4) $s(t) = \frac{1}{t^2}$	5) $f(x) = x^2 - 3x - 4$
6) $s(t) = \frac{1}{t^2 + 1}$	$7) \ f(x) = \sqrt{x - 16}$
8) $f(x) = \frac{-2}{x^2 - 3x - 4}$	9) $h(x) = \frac{\sqrt{3x-12}}{x^2-25}$
10 $y(x) = \frac{x}{x^2 - 25}$	