


Chapter 2

Miscellaneous Topics

This chapter contains four independent: topics: Polynomial Long Division, Completing the Square,
The Binomial Theorem, and Sigma Notation and Operations. These topics do not have to be covered
at this time in the course. The section on Sigma Notation and Operations can be done at any time.
The other three should be covered before the chapter “Polynomials.”

2.1 Polynomial Long Division

In this section we review the algebra for dividing polynomials. It is very similar to the process for
dividing integers. Let's look at an arithmetic problem first, and identify all of the steps involved.

64,207

‘We will rewrite by performing the division 23 )64207

Working from the left, we decide that 23 will go into 64 twice, so 2 is the first digit in our quotient.

6 multiply 2 times 23 and put 46 here
1 8 2 subtract the 46 to get 18, and bring down the 2

Now we decide that 23 goes into 182 seven times, so 7 is the next value in our quotient.

2 7
237y 6 4 2 0 7
46
1 8 2
1 6 1 multiply 7 times 23 and put 161 here
2 1 0 subtract the 161 to get 21, and bring down the 0

‘We repeat this process twice more to finish with:

38
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2 7.9 1
237) 6 4 2 0 7
4 6
1 8 2
1 6 1
2 1 0
2 0 7 multiply 9 times 23 and put 207 here
3 7 sublract the 207 to get 3, and bring down the 7
2 3  multiply 1 times 23 and put 23 here
1 4 subtract the 23 to get 14. This is the remainder.

We can interpret this result two ways:

64,207
23

14
=2,7915;  or, 64,207 = (23)(2,791) + 14.

Keep this process of arithmetic long division in mind as you look at the examples below for
polynomial long division. The methods are the same.

Example 2.1.1.

x—3) da* —42® 252 +z+6

Check to make sure that the divisor and dividend are both written so that their terms are in order
of declining powers of the variable. We are OK here.

Now look at the first term in the dividend and the first term in the divisor. What term do we
need to multiply times the first term in the divisor to get exactly the first lerm in the dividend? We
need 423, This then is our first term in the quotient.

4:1:3
r—3) da? —42% 252 +246

Now we multiply the quotient term 4> times each term in the divisor, getting 423 — 122% and
place that expression in the appropriate place under the dividend. We will want to subtract this entire
expression from the dividend. The subtraction step is one where many errors are made. It can be a
good idea to negate (change the sign of) all of the terms in the expression beneath the dividend and
then add them instead of subtract. This is done here.

4
®—3) dz* —4a°-2522 4246
— 4zt 4 128

We perform the sublraction (here adding the negation) and then bring down the next term.
48

x—3) dz* —da®-2522 4246
— 4zt + 122°

8ad — 2522

We now look at the first term in the difference expression, (8x° — 2522), and the first term in the
divisor. What term do we need to multiply times x to get exvactly 82°? The answer, 82, becomes
the second term in the quotient.
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dz® 4 822
x—3) da! — 423 -252° +246
— dagt + 19228
8zt — 2542

As before, we multiply the quotient term 832 times cach term in the divisor, place the new terms
under the previous difference expression, and then negale the terms as the first part of the subtraction
process. :
42° 4 8a?

z—3) d4da* —dz®-252% +x+6
—dgt 41228
8a® — 2522
— 8x® + 24z

We add (to complete the subtraction process) and bring down the next ferm.
da® 4 8x?
x—3) dat —da 2522 +x46
— dat + 1223
8a% — 2522
— 823 4 2422

—a? +ax

We now repeat the division step, getting —x as our newt quotient lerm.
4a® 4+ 82% —=x
r—3) 4at —42%—-252% 4246
—dat + 1223
8a? — 252
— 8% + 24g?
—x% 4

We repeat the mulliplication and negation step.
e +8x? —a
T — 3) 4rt —d4x® - 2522 4+ a2+ 6
— 4zt 4+ 122
8 — 2542
— 8a® + 2a®
—a? 4
z? - 3a

Then we add and bring down the next term.
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423 4822 —x
x—3) dz® —42®—252% 4246
— 4ad 4 124%

8z® — 252
— 8z 4 2422
—z2 4z
a? — 3z

—2x 46

One more division, mulliplication, negation ...
dr® 4822 —x -2
z—3) dat —42?—2527 +a2+6
— 4 41208
8x® — 2512
— 8u® 4 24x?
-z2 4z
2% — 3z
—2z 46

One more subtraction, and . ..
4z® 4822 —~ax -2
x—3) da' —4a2® - 2522 4246
~A4zt 412
8z% — 252%
— 8z% + 24x?

=z ¥z

z? — 3z
—2z4-6
22— 06

0

... we are finished. There is no remainder this time. We con interpret our resull two ways:
dat — 423 — 2522 2 46
z-—3

or 4zt — 4z — 2522 -1 + 6 = (z — 3)(42% +82% — 2 — 2)

= Aa® - 822 —z — 2 when x # 3

When doing polynomial long division it is easy to make a mistake in the subtraction step. It
should be stressed again that you need to be sure to correctly subtract the eniire expression by
distributing the negative sign through the entire expression before adding. If you find that you are
getting incorrect answers (this is a hypothetical situation of course) check the subtraction steps.

In the example above the dividend contained a term for each power of z from 4 to 0 (the constant
term). In Example 2.1.2 the dividend is 2® +z — 5. There is no written z-squared term. When you
do long division it is a good idea to include “missing” terms, using zero as the coefficient. We can
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explicity write “+-0z®" or we can just leave a blank space where the missing term should go.

Example 2.1.2. Divide: * %~
z+3
x? —3z+ 10
z+3) = +z =35
— 2% — 322

—3z2 +z
322 + 9z

10 —5

— 10z — 30

— 35

a ;
So, 3_;:‘:7_5 =22 -3z + 10+ 1_:5

or T¥+x—5=(22-3x+10)(z+3)—35

In Example 2.1.2 the division did nol “come out evenly.” We can stop dividing as soon as the
power of the divisor is greater than the power of a difference expression. The rest is the remainder.
There are two ways to think of this result, as written in the example.

Y )

Here we have one more example. This time the divisor is “missing” a term. Observe how the
terms must be aligned.

Example 2.1.3. Divide: (52* — d2® 4+ 2% — T2 4+ 2) + (222 + 1)

2% —2r -3
202 +1) B2t —da® +2%-Tx 42
— bt - 5’1,2
— 4gd — %.1:2 — Tx
473 + 2%
- %;1:2 —dx +2
2—3:1:2 + é
— 8z 4+ L
Sl —Aw® 422 — Tz +2 . . —br+ it
So, 2 v 42— =52 -2 -3 ——32
222 +1 22241

or 5z~ 4zt 4+ 2% —Tw+2= (222 + 1)(§2% - 22— &) + (=Bw + 1)

2.2 Completing the Square

In this section we deal with expressions in the form ax? + bz + ¢ where a, b, and ¢ are in R. We will
rewrite them so that az® + bz + ¢ == a(x — )% + k where h and & are also in R.

In Chapter 1 we learned to recognize perfect squares for factoring,
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Perfect Square Equation: 22 4 2¢x + ¢® = (z + ¢)?

Study the equation above. Look at the paltern. On the left, the coefficient of the x term (2¢)
is twice the valuc of some constant ¢ whose square (c?) is the final term of that expression. On the
right, that same ¢ is part of a squared sum,

Suppose we have x? + 6z. What constant could we add to this expression so that it would be a
perfect square expression? The coefficient of the x term is 6. Six is twice three. So 3% = 9 is the
constant, we need. 2% + 6z +9 = (x + 3)%

Oooly, thal was fun. Let’s try another one. Suppose we have 2% — 8z. What constant would
we need (o add so thal we create a perfect square? Half of —8 is —4. (—4)% = 16, so we add 16.

— 8z 4+ 16 = (z —4)>

Look back at the Perfect Square Equation. What is the value of ¢ that we found in each of the
two examples?

Suppose we have % + 5z. We still work the same way. This time ¢ = 2.
512 ' 5 5yY
So, (8)” = % is the constant we need. 22 + 5z + 2 = (2 + 2)2

Be careful. We are not saying that 2? + 62 = (z + 3)% or that 2% — 8z = (z — 4)? or that
a? + 5z = (z + )% These statements are all false. In every instance above we added a constant.
In order to maintain an equation we would have to subtract off the same constant. If we wanted (o
wrile slatements equivaleni to the originals, they would look like:
2 s e — 8 — 2
+0z=2"4+62+9—-0=(2"+6z+9)—-9=(z+3)*—
22— 8r=2%2-82+16—16= (22 — 82+ 16) — 16 = (x —4)2 — 16
5 5 2
z? 4 bz = z? -I-5:17+2 2’—(3;2+5m+242)_% (z + )2 5
Each of the above expressions could be written as the sum of a perfect square and a constant.

The process of finding the square term is referred to as “Completing the Square.” Let’s look at some
variations. First we will do two examples where a constant term is in the original expression.

Example 2.2.1.
Write 22 + 10z — 1 as the sum of a perfect square and o constant.

2410z -1 = (2% 4 10z) — 1
= (22 + 102 +25)—25—1
= (z+ 5)% — 26

Example 2.2.2.
Write 2% — 3z + 4 as the sum of a perfect square and a constant.

2 — 3z 4 4= (2* —3z) +4

9
( 3L+4):1‘

Nt T
(.Lwi) +Z
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We will not always have the pleasure of having a 1 as the coefficient of the 22 term. We can
still complete the square. We do this by first factoring the coefficient out of the 22 and the z terms.
Then we complete the square as done above, except that we have to be very careful when we add
our compensating constant. Look at the following example.

Example 2.2.3.
Write 20 — 122 + 1 as the sum of a perfect square and a constant.
2% — 122+ 1 = 2(z® — 62) + 1
=2(z® -6z +9)—18+1
=2(z-3)*-17
Why did we add —18 in the second line instead of —97 We needed the 9 to complete the perfoct
square. But that 9 was placed inside parentheses, and everything in that parentheses gets multiplied

by the outside 2, So, we were really adding 2-9 = 18 to our original expression. So, we needed to
subtract 18 to compensate.

Example 2.2.4.
Write —z% — 22 + 6 as the sum of a perfect square and a constant.

-2 -2 +6=—(a%+22)+6
=—(z?+2x4+1)+1+6
=—(z+1)2+7

This time we had to add 1 to keep our equation balanced. Do you see why?

Comprehension Check 2.1.

Write 322 + 92 — 2 as the sum of a perfect square and a constant. Justify each step. Your result

should be 32% + 9z — 2 =3 (z + %)2 -5,

At the beginuing of this section we said that we would rewrite expressions of the form az?+bz+¢
into expressions in the form a(z — h)? + k. We have done that. T'his last expression is simply the
sum of a perfect square and a constant, In Example 223 a=2,0=—-12,c=1,h=3 and k = —-17.
Notice that the coefficient for the 22 term, the a, becomes the coefficient for the perfect square sum.
What are the a, b, e, h, k values for Example 2.2.1, Example 2.2.4 and the problem in Comprehension
Check 2.17

2.3 The Binomial Theorem

In this section we develop an casy way for expanding expressions in the form (a + b)" where 7 is a
non-negative integer. First, we need some notation.
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2.3.1 Factorials

In mathematics the exclamation point (!) is used to indicate a factorial. Lo understand what the
factorial of a number is, consider the following example,

Example 2.3.1.
I=8-2.1=6
5!=5-4-3-2.1=120
100!=10-9-8.7.6-5-4.3-2.1= 3,628,800

What is 417 (yes, work it out). Did you get 24?7 Good. How about 117 (you don’t need the
trusty pencil for this one) 1! = 1.

TFactorials are defined for non-integers (you will meet them in calculus) but they are not needed
here so we will restrict our discussion to factorials of non-negative integers.

Zero is a non-negative integer. By definition, 0! =1 (yes, “one”, this is not an occassion to alert
your nstructor to a typo). We can write the following definition:

Definition 2.3.1.
For n a positive integer, we define “n factorial”, writlen n!, to be:
nl=n-(n-1)-(n—-2)-...-3-2-1

and, further, we define 0! = 1.

Since factorials come already factored il is easy to work with fractions that involve products of
factorials in the numerators and denominators.

5l 120
We saw above that 5! = 120 and 3! = G, so % =

20.

. 5l .
We could save ourselves the time of calculating the 120 and 6 and evaluale a0 from the factorial

definition.
_5_!_5-4-3-2-1__5-4-,3-/2/1_5-4_20
3 3.2.1  BpA 1

We can even shortcut our writing by using the factorial notation for the parts we know will

cancel out:.
al h.4. Bl

ETR T =5-4=20

Example 2.3.2.

9 9.8.7 pl .

R =9.8.7 =504
9  9.8.7.p6 3p.48.7
el 3.2.6 B2

=12-7=84

Combinations

One branch of mathematics where factorials are used extensively is Probability. In probability we
often have to count how many subsets there are of a particular set. This counting is called finding
“combinations.” We will not go into the probability application here, but we will use the notalion
and verbage.
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Definition 2.3.2.  Combinations of n things laken v at a time or simply “n choose 1" for short,

s denoted ,,C. or ( ? ) and is defined to be:

n nl , i
WOy = ( , ) = I(—)—I Jor non-negative integers, n and v, where n > r.
r FHa—T )

n

We will use the ( N

should be aware of it.

) notation almost exclusively, but the ,, . is very common also so you

Example 2.3.3.
TN T 7 7654 7 f.5 A
TaN(7T—3) T 34l T 3.2.41 B2 Al

=35

3
g
( ?f ) = 84, This was calculuated in the second part of Leample 2.3.2.

Let’s compar 22 nd 2
el’s compare 9 a 0 )

12! 12!
( = ) and ( 1(2] ) We don't have Lo finish the calculations to see that they

p—

2 ) ool ~ orar
are the same.

8y 8 8 [8
5/ 751307 3150\ 3 )

What value of  (besides 9) makes this true: ( 195 ) = ( 19 )?

. . - n n
We can generalize our discovery by writing: ( i ) = ( . )

nl
In our definition of ( ? ) we said that n > ». If n = r we get ( : ) =T Er Remember that O

7 nl1

nl
is defined fo be 1. So, ( " ) .

( 5 ) is also 1. (Why?)

In the following Tmportant Tdea we list our findings so far, and include (wo more. Think aboul these
items, or play with some numbers as examples, until you are convinced that they are Lruc.

Important Idea 2.3.1.

()=t
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n
s (1)1
n
4. ( 1 ) =n
3. ( 7: ), as defined above, will always be o positive integer.

Pascal’s Triangle

; n . . .
There is a shorteut way to find the values [or 5 combinations without having to calculate

[actorials. This method works for all values of n and r but it ccascs to be a shorteut when n is big,
say greater than 8. This shortcut is Pascal’s Triangle.!

Below is the beginning (top) of Pascal’s Triangle.

The triangle is made of rows of numbers. The top row contains only one number. Each sub-
sequent row contains one more number than the preceding row. Thus, we build a triangle shape,
much like the arrangement of bowling pins.

Each row starts and ends with a 1.

Each number that is not a 1 is gotten by adding the two numbers in the preceding row which
are immediately to the left and right of the position of that number. Tor example, the 2 in the third
row is gotten by adding the 1 and the 1 in the second row. The 6 in the fifth row is gotten by adding
the two 3’s in the fourth row. The first 15 in the seventh row is gotten by adding the first 5 and the
first 10 in the sixth row. We can continue to lengthen the triangle. The next row will have numbers
1,7,21,35,35,21,7, 1. Put these values on the {riangle. What will be in the row after that?

The values in Pascal’s Triangle correspond to the values for Combinations.

!Blaise Pascal (1623-1662) was a French mathematician who didn’t have a laptop.
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()(H)GE)E))E)

Look at both Pascal’s triangle and the triangle of Combinations above. Notice that the ( ?(1]" )
and ( : )terms are indeed all 1’s,

. . . T . . . n
Look at, the row symmetry in Pascal’s triangle. This is consistent with the idea that ( ” ) =

0
n—r }°
In Example 2.3.3 we saw that ( ; ) — 35. You can see that 35 in the row that you added to

; . : ; 0
the triangle. It is the first 35, Remember that when you start counting, the first row is ( 0 ) and

]

the first term in each row is the ( ?0 ) term, so the ( "; ) is the fourth term in the eighth row,

not the third term in the seventh row.

Comprehension Check 2.2.
=4
1. Find the value for ( (; ) in Pascal’s triangle. Then calculate this value using the faclorial
definition.
2. Add yet another row to your Pascal’s Triangle.

We will come back to Combinations and Pascal shortly.
Binomial Expansions
You recall that (@ + b)% = a? + 2ab + b2.

We can expand (a+ 0)* to get {a +0)® = (a+ b){a + b)? =
(a+b)(a® + 2ab+ %) = a® + 2a%b + ab® + @b+ 2ab® + b* = a® + 3a>b + 3abd® + b°.
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We can similarly use the distributive property repeatedly to get expansions for (o + b)™ for any
non-negative integer n. We list the results of these expansions below, for n < 5.

(a+0)"=1
(a+b)=a+b
(a+0)? =a? + 2ab + b?
a+ b3 = a3 + 3a2b + 3ab® + b°
(a+5b)
)
)

|

(a4 b)* = a* + 4a®b 4 6a2b> + dab® + b*
(a+b)® = a® + 5a'b + 10a%b* + 10a?b® + 5ab* + 6°

Look at the patterns evolving in these expansions. In cach expansion,

e what happens to the powers of a7 What is the highest power (;)f a?

e what happens to the powers of b7 What is the highest power of b7

e what is the sum of the powers of ¢ and b in cach term?

e what is the sequence ol coeflicients for the terms? Note the symmetry.
Can you use your obscrvations to find the expansion for (a + b)%?

e 'T'he powers of a will begin at 6 and decrease to 0.

e 'The powoers of b will begin at 0 and increase to 6.

e The coefficients for the terms arc the combinations ( S ),( (15 ),. % ,( g ), whose values we

can get from Pascal’s triangle.

So, we have (a + b)® = ab + 6a®b + 15a*h® + 20a*b® + 15ab* + 6ab® + 1°.

The Binomial Theorem

Theorem 2.3.1. The Binomial Theorem

(a+0)" = ( g’ )a-“-#(?)a"‘%%—(g)an2b2+...
n —1 n n
(o Y (1)s

n nl
tuljcone ( T ) Tl (n—r1)!

Example 2.3.4.
Exzpand (a + b)".

((a+b)7=(;)a7+(z)aﬁb+(g)a5b2+(;)a4b3+(1)a3b4
#(5) e (5 ) (7 )0

= a” + 7a%b + 21a°b? + 35046 + 3538 + 21a2b° + Tab® + 07
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If we again look at the pattern for the binomial expansion we see that ( « ) and ( e ),

which are of course equal, are the coefficients for the ™ ™ and a™ 7" terms. And, as noted before,
the exponents on a and b for any term will always sum to n. Observing these symmetries gives some
insight into the algebra of expanding (a + b)™ and can help you avoid errors.

Example 2.3.5.
What is the coefficient of a3y® in the expansion of (x + y)%?

The power of the expansion 1is 8, so n = 8. The exponents of x and y are 3 and 5. So the cocf-

. 85 8 8 8 8! 8.7-6-5!

; ¢ HraclSal par au " ; — —
ficient for the w’y® lerm is ( 5 ), or its equivalent ( 3 ) . ( 5 ) =8 BigE
B-7- 6 pl ‘

8-7 5 B = 56,

A A

Example 2.3.6.

1. What is the third term in the expansion (z + y)'??

In the expansion, the powers of © decrease, starting at 12, so the third term will have x'°, Thus

2-.11-10!
. We calculate ( 12 ) &= u = (6. So

the y factor is y* and the cocfficient is 9 TG

2
the third term in the expansion of (x+ y)'* is 66 21092,

2. What other term has coefficient G6¢

By symmetry, the other term is 66 22y'°.

Now we make il a bil more inleresting. We will have other values for a and b. The process is
exactly the same.

Example 2.3.7.
Ezxpand {(a + 2)".

(a+2)4—( : )a4+ ( | )a3(2)+( : )a.2[2}2+ ( . )a-(?)s + ( i )(2}4

=al+4a® . 246a% 4 +4a-8+16

=a* + 8a® + 24a2 + 324 + 16

Of course we do not. have obvious syminelry of the coeflicients in Lhe final answer here.

In the next two examples we skip the combinalions notation and go straight to Lhe corresponding
values found in Pascal’s triangle. Tixample 2.3.8 shows that when we need (o expand a differnce of
terms, we can rewrite thal difference as a sum.

. Example 2.3.8.
Expand (x — 1)°.
(z—1)° =[a+(-1))°

5

= 2® 4 ba(—1) + 1023(—1)? + 102*(—1)3 + 5a(—1)* + (-1)

=5 — 5at 4 100° — 1022 + S — 1
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What pattern do you see with the signs in the final answer of the previous example? Do you
think that signs will always alternate when expanding a difference?

Example 2.3.9 reminds us to walch the base carelully when using exponents.

Example 2.3.9.
Brpand (2a + b)*
(2a + b)* = [(2a) + b)*

= (2a) + 3(2a)2b + 3(22)b* + b*
=8a® +3-4a%b+ 3 - 2ab® + 1®

= 80° + 12a%h + Gab® + b°
Example 2.3.10.
Find the sixth term in the expansion (3z + 4y)”.
The powers for (3z) decrease, starting al 9, so for the sizth term the (3z) factor will be (3x)?.
C |
This tells us that the power on lhe (4y) term must be 9 — 4 = 5. The coefficient is ( . ) = L

5) 7 54l
9-8-7-6-5 30 8.7.6 pl
TP 20 = ’ﬂﬁ!fgﬁ- ,8-) /;S = 126. So the sixth term in the expansion is (126)(32)%(4y)® =

126 - 34+ 452495 = 10,450, 944 2:%y°

Cerlainly this last simplification is easier when done with a calculator.
Example 2.3.11.

Ezpand: (z% + 3)1

(@? +3)1 = (28) + 4(23)% . 3+ 6(wF)2 - 32 + 4(2B) - 3% + 3¢

1

=3 + 1248 +54:c% + 10823 + 81

(53

2.4 Sigma (X) Notation and Operations

In this section we look at a notation used lo represent lengthy sums and some ways we manipulate
the sums.

2.4.1 DBasic Notation

The symbol ¥ (the Greek letter Sigma) is used {o indicate the sum of numbers, The form is:

n
E @ = m + Upt1 T FUp1 + dny
i=m
where i and n represent integers, m < n, and the a; terms represent real numbers, The “”
the index of summation. It takes on the inleger values between m and n, inclusive.

is called

This might look a little complicated the first time you see it. Think about the integer i taking
on the values of m through n, one at a time, in succession. As 7 takes on each value, a real number
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called a; is associated with it. Then, all of the ¢; numbers are added. The final result is the Sigma
value.

In Example 2.4.1 we have m = 2, n = 7 and for each i (between 2 and 7, inclusive) we simply
have a; = 4. Then we add the a; values for the final result.

Example 2.4.1.

7
D i=243+4+5+6+7=27
i=2

In Example 2.4.2 we have m = 0, n = 3 and for each 4 (between 0 and 3, inclusive) we have
a; = (i* —1).
Example 2.4.2.

3

N E-D=@-1)+12-D+@-1)+(3*-1)=10

=0

What are the values for m,n, and «; in the next example?

Example 2.4.3.

2 3 1 2 3 23
;.L 1 1+1+z+1+3+1"§ R SRT)
Example 2.4.4.
T
YD) = (1FE-3) + ()2 ) + (—1)°(2-5) + (-1)°(2- 6) + (-1)(2-7)
=3

= —6+8-104+12—14 = -10.

In Example 2.4.4 notice the use of (—1)* to obtain the alternating signs. How do you suppose
yvou would write the sigma expression if you wanted to change the signs to get 6 — 8 + 10 — 12+ 147

Example 2.4.5. (If you have studied the Trigonometry chapter)

Z cos(mi)i = cos(2r) - 2+ cos(3m) « 3+ cos(dr) -4 + cos(57) - 5

(1)-24(=1) 34 (1) -4+ (-1)-5=2-3+4—5= -2,

Using cosine values is another way to generate an alternating sign. However, this method is
obnoxious.
Comprehension Check 2.3.

6
1. Ezpand the following sum and sinplify: Z(ﬁ — 1)
i=1



—
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2. Write the sum 10 4+ 9 + 8 + 7 + 6 in sigma notation. Compare your result with that of a
classmate.

If you compare your answer in Part 2 of Comprehension Check 2.3 with the answers of a few
classmates you will likely find that there are several correct ways to write a sum nsing sigma notation.
Probably there was variation in the choices for m and n, the lower and upper bounds of the index
of surnmation.

Changing Bounds on the Index of Summation

A sum can be written in more than one way, by changing the bounds on the index of summation
and making the corresponding change in the form of cach term.

Example 2.4.6.
The sum in lzample 2.4.8 could have been written

2, 4 25 .

i+1 i—1 - 22
E 5 ores ——  or even as E %
o ¢ T i—a ! i—23 (i-21)

Verify these sums by expanding them. Look at the pattern. Notice that when we increase (or
decrease) the lower bound on the index of summation, m we do the same thing with the upper
bound n, thus always keeping the same number of terms in our sum. Each of the sums above still
contains three terms. Also, when we increase (or decrease) the bounds on the index of summation
we have to decrease (or increase) the corresponding a; expression. We do this by changing the value
of i down (or up) to compensate for the change in the m and n. What would the summation look
like if you started with lower bound m = 77

When writing an equivalent sum by changing the bounds for the index of summation you should
always check your new sum to make sure that its terms match those of original sum. With a long
sum (more than five terms) it is probably sufficient to just check the first two and then the last term
in the new sum.

Example 2.4.7.
Change the lower index of summotion of the sum in Exzample 2.4.4 from o 3 to a 0.
7

We want to write a sum thet begins with i = 0 and that is equivalent lo Z(fl)""(%) . We are

i=3
decreasing the lower bound of the index of summation by three, so the the upper bound must be
decreased from 7 to 4. Our new sigma ezpression will then have five terms, which is consistent with
the original. Next we have to change the a; terms. Since we decreased the walue of © by three, we
need to increase by three the input to the a; terms lo compensate. So, we will replace each i in the

4
a; term with (i + 3). This gives us a resulting sum of Z(—l)ﬁﬂ)@(i +3)). Check the terms of
i=0
this new sum to make sure thal they match those of the original sum.

We were careful to use parentheses when we wrote our new sumn in Example 2.4.7. Without the
4

parentheses, our sum would have been: Z(—I)H-S(?i +3). How would this have been different?
i=0

Be sure that when you make the adjustment in the i's of the a; terms that you use any nececssary

parentheses.

We can generalize this idea with the following Important Idea.
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Some Special Sums

Below are some “Special Sums”. Notice that the following sums all have bottom index m = 1.

I Zc =ne (established in Example 2.4.8)

. wn -+ 1)(2n+ 1)
9. i2 = “(L_._

4. g;.,-s _ [ﬂl;_l)r

Sums 3 and 4 are offered without explanation. Sum 2 is quite useful for many applications. Tt is
more appreciated when you see why it works, so we take a few minutes here to explain,
T
Consider Zz =14+243+---+(n-2)+(n-1) +n
i=1
If n is an even number, we rewrite the sum (you recall that we can add numbers in any order)
above by pairing the lerms that add up to (n + 1). That is, we match the first and last terms, then
the sccond and second-last terms, and so forth. This is written:

14243+ 4+ (n—-2)+(n—-1)+n

=[tnl+ 2+ =D+ B+ m-2)+ 4[5+ (3 +1)].

1
There are 2 sums of (n + 1), for a total, then, of n(n + ).

n n—1
If n is an odd number we rewrite E i= ( E ?) +n. Since (n — 1) must be even, we follow the
i=1 i=1

n—1
. , n—
same procedure as above, getting E # equal to (

) sums of n, for a total of (izl—)” We then

i=1
add the final n. Algebraically expressed all of (his is:

5 n-t  (n—1)m _n-n+2n  nl+n nlnf1)

&

i=1 i=1
n n(n+1)
So, regardless of whether n was even or odd we got the result that Zz R —n

i—1

We can use these “Special Sums” and the rules from Important Idea 2.4.2 to evaluate more
complex sums:

Example 2.4.11.
100

> 40 = 40 - 100 = 4,000,
i=1
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Example 4.12.

Zg 20124 1)(2-1241) _12-13.25
6 6

= 650.

Example 2.4.13.

50 #
51+524034.-+73= Zz E 75)2(71) (d0)2(51) = 1,426.
i=1

Example 2.4.13 — Alternate Solution

514524534 +73= Z:_Z i+ 50)

i=51
23

= Zz + an = 2?)(24) + (50)(23) = 1,426

Example 2.4.14.
T

S+ +2) = 2(1 +3i42) = Z +32¢+Zz
1_1_ n(n+1)(2n —1 1) In(n+1)
- 6 T

In Example 2.4.14 we do not specify the value of the upper bound for the index. We use the
general n. So, our answer is expressed in terms of n. In calculus you will work with many such sums,

+ 2n.

Telescoping Sums

In Example 2.4.13 we saw a use for changing the bounds on the index of summation so that we
could use the “special sums” formulas. Below is another example of a problem where it is useful to
rewrite the index. Follow each step carefully (you still have that pencil, right?). Watch for changes
in the indicies and be able to justify cach sum rewrite.

100,y 1
Example 2.4.15. FEualuale: Z (— - )

i:li 341
100 .. 100 100 100 99
1 1 1 1 1 1
> (1) 2t Y- (4 2) - (S )

99 . 99 "
1 11 1100
_‘1 = — :1——-—:-——'
+Zm?:+' D T T TRk T

The sum in Example 2.4.15 is one of a particular type ol suin, called a telescoping sum. A tele-
scoping sum is characterized by some of its terms canceling with others, and doing so repetitively.
This can be seen through another approach to Example 2.4.15:
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Example 2.4.15 — Another View
Y U I VI U T € S UAVE SO A T
oxd i) AL 2 2 3 3 4
c(i_1y, (11
99 100/ "\ 100 101/

1 100
Notice that the only terms that do not cancel are 1 and TR Thus, the total is o1

2.5 Exercises

Problems for Section 2.1

Problem 1. Divide. Write your answer two ways, as done in the text examples:

lividend . remainde
dividend = (divisor)(quotient) + remainder  and A, (quotient) -+ Al
divisor divisor
at £ 28— — 2
(a) (223 +522 4+ T2 +3) = (x+1) ') %L—
28 +32° — 2l 422 42
(©) (5+42* — 32) + (20— 3) (@) T T T
2t 22% 4+ 622 - 1

(c) (f) Ba*+7)+ (20342 —u+5)

322 + Gz

Problems for Section 2.2

Problem 1. [or each of the following, what constant term is needed to form a perfect square?

(a) «* +8x4+_ (h) «? —20z+__ (¢) a* +7To+___
Problem 2. Tor each of the following, what = term is needed to form a perlect square?
1
(a) 22+ +16 (b) a2 —__ +16 (e) 24+ _ _ + 3

Problem 3. Write cach of the following as the sum of a perfect square and a constant.

(a) a* +4z—7 (b) 2% —3z+2 (c) — 2%+ 30z — 100
(d) —a?—z+1 (e) 42?4242 3 (f) —5z® - 10z +1
(g) —322412z—5 (h) f2®+a+2 (i) 9x2 + 12 + 4

Problem 4. In Problem 3 above you took expressions in the form az? + bz + ¢ and rewrote them
into the form a(xz— h)?+ k. For problems (a), (d), (g) and (i), identify the numbers that correspond

to a, b, ¢, h, and k.

—b

Problem 5. Rewrite the general expression ax? 4+ ba + ¢ into a(x — h)? + &k form. Show that i = 72

2a.

and ik = (ﬁ,%z— - c)
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Problems for Section 2.3

Problem 1. Evaluate:

10! 315l 8! n!

(a) O (b) 11 (¢) 6! (d) ST & g () 5 (8) =2

Problem 2. Evaluate:

4 8 12 20 100 53
@(3) () ©(7) o) o(Ww) o(F)
Problem 3. Without copying from the book, construct Pascal’s Triangle through nine rows.

1. Circle the number in the triangle that is the coefficient for the a®b* term in (a + b)°.

2. Put a box around the number in the triangle that is represented by ( g )

3. Check your answer to part (b) by evaluating ( ';

) using factorials.
4. In the expansion of (a + b)®, which two terms have coefficient 287

Problem 4. Usc the Binomial Theorem and Pascal’s Triangle to expand and simplify:

(8) (a+b)! (b) (a+0)° (© (a—8° () (a+2)
(& (x—11 (1) Be+y)?® (&) (w—2y)"

Problem 5. Find the following terms. Simplily.

(a) Eighth term in (a + b)'° (b) Fourth term in (z —y)7
(¢) Second term in (2z + 5)* (d) Third term in (22 + ¢*)®
(e) Twelfth term in (5z 4 1)13 (f) Tast term in (43z%y*z — 1)19°

Problem 6. Find the coefficient for the following terms:

(a) @2b" term in (a + b)° (b) 2* term in (z + 1)7
(€) 2% term in (24 2)7 (d) a3b® term in (2a + b)®

Problem 7. Add: (a +1)® + (a + 1)

Problems for Section 2.4

Problem 1. Write each sum in expanded form. You do not have to simplify.

LA 4 ogt~1 ° 5
(a) > Vi (b) > 5 — (c) i
i=1 i=0"" i=d

n—1 n+3 [

(@ > (-1 (&) 28 (f) > V8

i=3
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Problem 2. Write in sigma (E) notation:

1 2 3 19
(a) 2+34+4+5+6 (h) §+§+Z+"'+% (¢) 2—4+6-8+...—56
|1 1 1 1 2 3 71
(d)1T4+g+16+"'+100 (e) 1+az+a*+a°+...+2

Problem 3. Write an equivalent sum that has m = 0 for the lower bound on the index of summation.
Then do the same problem with m = 5.

7 5 . 10
(a) (32 +2) ) S a2 (@ S (~4i+10)?
i=1 i=3"" i=6

Problem 4. Find the numeric value for each sum. Skip problem (d) if you have not done the
Binomial Theorem section.

8

@ Y@-2 o > (© (@ +i2) (d) Z( ° )
: 1=0 =0 i=0

ie=

10 5 15 75
() D7 & > (&) > (h) i
i=1 =1 i=1 =20
15 3 20
(i) > 3 I GED) () Y (E+1)(E-1)
wiom, vigex] i=1 i=1
n
Problem 5. Find the value of n such that Zz =78
i=1
4 4 4
Problem 6. Show that (Zz) (Ziz) # Zz'?‘
e i=1 i=1 i=1

Tt n n
Is it true for all n that (Zz) (Zzg) > Zis? Justify your claim,
i=1 i=1

i=1
Problem 7. Rewrite as an expression in terms of n. Simplify. Be carceful to notice the bounds on
the index of summation for each problem.

T

.‘(a} ZQ?& ' (b) > 6 (c) D (2—5i)
=1 i=1

i=1

T i n

@ > (GE+1)(i+2) (@) ) (1+1)(i+2) (F) > (*—i+3)

i=1 i=0 i=4

-

Problem 8. Evaluate the following telescoping sums. You do not have to simplify.

50 79
@YE-s o (1)

i=1 i=4
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2.6 Answers to Exercises

61

Answers for Section 2.1 Exercises

Answer to Problem 1.
(a) 22® 4522+ Ta+3=(z+1)(22% + 3z +4) — 1
2z* + 52® + Tz + 3 ) -
— s s e T
c+ 1 =Sttt ey
(b) 2 +22% —z —2=(z +2)(a* - 1)

a4 2t -z -2
PR =’ — | where © # -2
(¢) 5+4a® —3z = (2z — 3)(222 + 3z +3) + 14

5+ 4z’ — 3z 3 14
(d) a€ 4325 - 2t + 22+ 2 = (22 — 2)(z* + 32 + 2% + 62 + 3) + (122 + 8)
%4+ 32° —zf 42242 X 120 + 8
ol o i e ol =zt + 3 + 2?4+ 62+3+ il
e —92 z? — 2

(e) a' +2¢® +62% — 1 = (32 + 6x) (322 + 2) + (—12z — 1)
al4+20%+622 -1 | , —12z — 1
= 3T 24 ———
322 + 6z - L v + 6z
(f) 8zt 4 7= (22 + 2% — .+ 5)(dz — 2) + (6% — 222 + 17)

Sel b7 o, 60t 2%
23 a2 —x 45 “ 2e3 + a2 -z +5

Answers for Section 2.2 Exercises

Answer to Problem 1.
49

Answer to Problem 2.
(a) 8w (b) 8 (c) =
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Answer to Problem 3.

(a) (=+2)2—-11 (b) (x—28)*-1 (¢) — (x—15)2 +125
(d) —(z+%)*+3 (e) d(z +3)% - 33 (f) —b(xz+1)2+6
(&) —3x-2%+7 (h) Ja+1)2+3 (i) 9z + %)

Answer to Problem 4.

(a) a=1 b=4 c¢=-7 h=-2 k=-11
(d) a=-1 b=-1 e¢=1 h=—% k=2
(e) a=-3 b=12 e¢=-5 h=2 k=7
(i) =9 b=12 ¢=4 h=-% k=0

Answer to Problem 5.
N/A

Answers for Section 2.3 Excrciscs

Answer to Problem 1.

(@1 (b)) 1 (e) 720 (d) 6 () — 6 - (8 n(n-1)
Answer to Problem 2.
(a) 6 (h) 56 () 792  (d) 1,140  (e) 100  (f) 1
Answer to Problem 3.

The first seven rows of Pascal’s Triangle can be found on page 47.

Eighth row: 1,7,21,35,35,21,7,1.  Ninth row: 1,8, 28,56, 70,56, 28, 8, 1.
(a) the second 15 in the seventh row (b) the second 21 in the cighth row
(c) 21 (d) a®h? and 6.

Answer to Problem 4.

a) a' + 46®b + 6a?b? + dab® + b

b) af + 64°b + 15a*h? + 20a30® + 1562b" + 6ab® + b°

) a® — Ga®b + 15a'h? — 20a3b® + 15ab* — Gab® + b°

) @® + 10a’ + 40a® + 80a® + 80a + 32

e} 2'® —102® + 4528 — 12027 + 2102° — 25225 + 21021 — 1202° 4 4522 — 10z + 1
£) 272% 4+ 272%y + 9xy? + 3°

g) ot — 8ady + 24x?y? — 322y + 16y*

j=F

(
(
(
(
(
(
(

Answer to Problem 5.
(a) 120%0"  (b) —36aMy®  (c) 1602®  (d) 102%°  (e) 1,9502%  (f) 1
Answer to Problem 6.

(a) 36 (b) 35  (c) 560  (d) 160
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Answer to Problem 7.

a4+ 5a3 + 9a2 4+ Ta+ 2

Answers for Section 2.4 Exercises

Answer to Problem 1.

-1 3 b 7
(8) VI+V2+v3+VEi+Vh (h)T+%+5 =tz
(c) 43 + 5% 463 (d) 1—-1+41-1+...4(-1)»1
(e) nd+ (n+1)%+ (n+2)°+ (n+3)° (f) VB+V8+ V8+ V8
Answer to Problem 2.
Answers are not unique. Some solutions are:
6 9, 28 _ 10 4 n
@ X )X @D (DTN @Y @D -
=2 =1 ¢ i=1 i=1 =0
Answer to Problem 3.
6 11 2 .
; 2 . e (i+3)—2 (-2)—2
) ;(3(2 +1)*+2) > BE-47+2) @) DD Zd(z -
c) D (—4(i+6) +10)? > (—4(i +1) + 10)?
i=0 i=5
Answer to Problem 4.
(a) 80 (b) 121 (c) 61 (d) 32 (e) 70 (f) 225
(g) 120 (h) 2,660 (i) 3,720 (j) 168 (k) 2,850
Answer to Problem 5.
12
Answer to Problem 6.
300 # 100 Yes
Answer to Problem 7.
_En? _
f8) nind1) (b) 6n ©) 5”2 n
n3 4 6n2 + 11n n® + 6n? 4 11n n® 4 8n — 51
(@) TERE g pe RN mEE

Answer to Problem 8.

(a) 3 3% (®) ~ 55



