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Abstract

The first part of this dissertation is devoted to the systematic exposition of the
fundamentals of free probability theory.

The second part studies various aspects of the free Central Limit Theorem. The
particular contributions of this part are as follows: (a) The free Central Limit Theo-
rem holds for non-commutative random variables which satisfy a condition weaker
than freeness. (b) The speed of convergence in the free Central Limit Theorem is
the same as in the classical case, which is shown by an analogue of the Berry-Esseen
inequality. (¢) An estimate on the support of free additive convolutions is established.

The third part investigates products of free operators. In particular, it studies the
growth in norm of products of free operators and gives an infinite-dimensional ana-
logue of the Furstenberg-Kesten theorem about products of random matrices. This
part also introduces the Lyapunov exponents of products of free operators and ex-
presses them in terms of Voiculescu’s S-transform. Finally, it gives the necessary and
sufficient conditions for products of free unitary operators to converge in distribution
to the uniform law on the unit disc.

The fourth part of the dissertation introduces the concept of the free point process
and proves a theorem about the convergence of this process to the free Poisson mea-
sure. The free point processes are used to define free extremes, which extend the
concept of the free maximum introduced earlier by Ben Arous and Voiculescu. A
theorem about the convergence of free extremes is proven, which is similar to the
corresponding theorem in the classical theory but results in a different set of limit
laws.
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1 Introduction

Free probability theory arose from the study of the following problems:

A) Consider the free group with &k generators, F' (k) , and the corresponding group
algebra with complex coefficients. The left action of this group algebra on L? (F (k))
(i.e., the Hilbert space of square-summable functions on F' (k)) makes this algebra an
algebra of operators. The closure of this algebra in the weak operator topology is a
von Neumann algebra of type 11, which we will denote as A/ (F (k)) . Many natural
operators in this algebra are non-compact. Since they cannot be approximated in
norm by finite-dimensional operators, it is hard to study their spectral properties by
the usual approximation techniques. Can we find an efficient algorithm to compute
the spectral properties of these operators?

B) Suppose we approximate a self-adjoint operator A in N (F (k)) by finite ma-
trices M,, where by approximation we mean that the spectral distributions of M,
approach the spectral distribution of A as n — oo. Can we measure how the quality
of approximation improves as n — 00?

C) Von Neumann algebras of type I/; can be thought of as generalizations of
finite mass measure spaces. In the classical case, we can upgrade measure theory
with the concept of independence and in this way obtain probability theory. Is there
an independence concept suitable for von Neumann algebras? Recall that all measure
spaces without atoms are isomorphic to each other. On the other hand, there is a
rich theory of how to classify measure-preserving transformations in measure spaces.
Consider two von Neumann algebras: N'(F(k)) and N (F (1)), with k # [. They can
be thought of as two non-commutative measure spaces. Are they isomorphic? What
about transformations in a non-commutative measure space? What are conditions
under which they are isomorphic?

D) Let G, be a homogeneous tree of degree g, that is, a tree in which every vertex
is an end point of exactly ¢ edges. Assume that these edges are labeled by integers
from 1 to ¢, and let p; be non-negative real numbers such that ¢, p; = 1. Then
we can define a random walk on the tree by the rule that a particle at a given vertex
travels along the edge ¢ with probability p;. The transition matrix of this random
walk defines an operator on [? (G,) , which can be thought of as a non-homogeneous
Laplace operator. What is the spectral measure of this operator?

The tree GG, is the Cayley graph of the free product Z; x Z; x ... ¥ Zy with ¢
elements in the product. Similar questions can also be asked for random walks on
Cayley graphs of more general free product groups.



E) Suppose {X,,} is a sequence of random n-by-n Hermitian matrices. Suppose
that their probability distributions are invariant under unitary transformations and that
the empirical distribution of the eigenvalues of X, converges to a probability measure
1 as n grows to infinity. Let {Y},} be a similar sequence of independent matrices with
the empirical distribution of eigenvalues converging to a probability measure v. Is it
true that the empirical distribution of eigenvalues of X, + Y,, converges to a limit?
How can we compute the limit using only p and v?

From this list of problems it appears that there is a need to study infinite-dimensional
objects that are, in a sense, limits of independent random matrices of growing dimen-
sion.

As a response to this need, a new field emerged on the border between opera-
tor algebra and probability theories. The field was christened free probability theory
by its creator, Dan Voiculescu. It developed into a complex theory, which in many
respects parallels the usual probability theory. Sums and products of freely inde-
pendent operators correspond to certain convolutions of their spectral measures, and
free probability studies the properties of these convolutions. The theory includes
analogues of characteristic functions, the Central Limit Theorem, the Law of Large
Numbers, and many other concepts from classical probability theory. However, the
limiting laws are different and their proofs proceed along quite different lines.

This theory has interesting connections with the theory of random matrices and
is used by engineers because it significantly simplifies many calculations associated
with random matrices. See Edelman and Rao (2005) for a review of applications
of random matrices and free probability in numerical analysis. Free probability is
also useful in statistics; see, for example, Rao et al. (2008). In another direction, an
interesting application of this theory to the theory of representations was discovered
by Biane (1998).

Another beautiful part of free probability theory is the theory of free entropy. In
free probability, infinite-dimensional operators can be approximated by finite dimen-
sional matrices where approximation is meant in the sense of convergence of their
spectral distributions. In many respects this is similar to a theory of approximation
of continuous probability measures by measures supported on finite sets. In both
classical and free cases, there is a natural quantity that measures the quality of ap-
proximation and which is called entropy. What is especially surprising is that free
entropy is closely related to the concept of free independence. For example, free en-
tropy is addititive with respect to joining several freely independent variables in one
vector.



The theory of free entropy is useful in the study of free operator algebras because
it provides a new way to approximate infinite-dimensional operators and study the
quality of these approximations. These methods have led to breakthrough results in
operator theory (see Voiculescu (1990) and Haagerup and Thorbjornsen (2005)).

This text will be devoted mostly to an account of free probability theory from the
point of view of its similarity to classical probability theory. Almost no attention will
be paid to the theory of free entropy. Instead, the focus is on limit theorems for sums
and products of free random operators. The text will present some new results and
also give quantitative versions of some of the known limit theorems (that is, versions
that provide quantitative bounds on the speed of convergence).

Another focal point of this dissertation is the study of free point processes and
free extremes. These concepts are new and have a potential to explain why many
results in free probability theory are strikingly similar to the corresponding results in
classical probability theory.

In the following subsections of the introduction we briefly outline the history of
the subject and indicate which results in this dissertation are new.

1.1 Historical remarks

Free probability theory was invented by Dan Voiculescu in the early 1980s when he
researched von Neumann algebras of type //;. The main motivation was to study the
properties of free products of these algebras. Voiculescu formulated an axiomatic
definition of what it means for two operators to be free. He pointed out the analogy
to the concept of independence in classical probability theory and suggested calling
free operators free random variables.

Even in the earliest of his papers, Voiculescu (1983), some fundamental results
were established. In particular, it was proved that the sums of free random variables
converge in distribution to the semicircle random law. As a next step, Voiculescu de-
veloped an analytic method for computation of moments of the sum and of the prod-
uct of two free random variables (1986 and 1987)!'. An application of these methods
to questions in operator algebra theory was given in Voiculescu (1990). Extremely
fruitful for further progress of the theory was the realization that free probability is
connected with random matrix theory. In Voiculescu (1991) it was proved that the

At about the same time similar formulas for additive free convolutions were independently de-
veloped by researchers who studied random walks on free products of discrete groups; see, e.g.,
McLaughlin (1986).



Wigner random matrices of increasing dimension become asymptotically free and
this can be interpreted as the proper explanation for why the Wigner semicircle law
holds for the spectral distribution of large random matrices. An offspring of this real-
ization was a definition of free entropy in Voiculescu (1993) and Voiculescu (1994),
which explains how well infinite-dimensional operators in type /[, algebras can be
approximated by finite matrices. This was followed by a series of breakthrough re-
sults for von Neumann algebras (Voiculescu (1996a)).

Addition of free self-adjoint random variables induces a convolution of probabil-
ity measures which is quite different from the standard convolution. This new convo-
lution, named the free additive convolution, became an object of study by Bercovici,
Biane, Maassen, Pata, Speicher, Voiculescu himself, and others. It was found that
this concept is analogous in many respects to the usual convolution of probability
measures and closely related to certain classical problems of complex analysis. In
particular, the concept of free additive convolution was extended to unbounded prob-
ability measures, and many properties of this convolution were investigated. (see
Maassen (1992), Bercovici and Voiculescu (1992), Bercovici and Voiculescu (1993),
Bercovici and Pata (1996), Bercovici et al. (1999), Belinschi and Bercovici (2004),
Barndorff-Nielsen and Thorbjornsen (2005), and Ben Arous and Voiculescu (2006)).

These problems were also investigated for the free multiplicative convolution that
arises from products of free random variables. In particular, Bercovici and Voiculescu
(1992) classified the free infinitely-divisible laws for the measures on the real half-
line and on the unit circle. The progress here, however, has been less significant than
for free additive convolution.

In another development, Speicher (1990) investigated the relation of free addi-
tive and multiplicative convolutions with combinatorics. He introduced a concept of
free cumulants and related this concept to a theory of non-crossing partitions. One
of the successes of this method was a proof of a certain free analogue of the multi-
variate CLT. Using Speicher’s techniques and following some early contributions by
Voiculescu, Biane developed a theory of free stochastic processes.

The relationship between free probability theory and random matrices was also
actively investigated. For example, Ben Arous and Guionnet (1997) related free en-
tropy to the large deviation property for random matrices.



1.2 Summary of original contributions

Free multiplicative convolutions

While sums of free random variables and the corresponding limit theorems have
been thoroughly studied, the multiplication of free random variables has been less re-
searched. Let X1, ..., X, be free and identically distributed operators in a von Neu-
mann algebra with trace (expectation) £/. What are the properties of [I,, = X, ... X,
for large n?

First, I have proved that

. _ 1 .
Jlim n~"log [, || = 7 log (B (X]X1)).

This result is in agreement with a previous result by Cohen and Newman on the norm
of products of i.i.d. N x N random matrices, in the situation when N — oo.
Next, assume that £/ (X;X;) = 1. In this case, I have proved that

1
T}ngosup% L] < v/,

where v = E ((X7X1)?) — Land cis a constant.

In order to understand the behavior of the singular values of the product I1,, in the
bulk, I have defined the Lyapunov exponents for products of free self-adjoint random
variables. To understand why this concept is helpful, consider the finite-dimensional
situation. The sum of the logarithms of the & largest singular values of an operator A
can be computed as follows:

log A1 +log As + ... +1log A\, = log sup wvol (Avy, Av,y, ... Avy) ,
V1yeeny Uk
where vy, ..., v; are orthonormal and vol (Avy, Avs, ... Avy) denote the volume of the
parallelepiped spanned by vectors Avy, ..., Avy. This suggests that we consider the
following limit:

lim 1 log sup wol (IL,vq, [T, v, .11, v) .
n—oo 1 V1 4oy U
In the theory of products of random matrices, it is proved that this limit exists
under a certain assumption on the distribution of matrix entries. Moreover the supre-
mum can be removed: under a mild assumption, the limit is the same for arbitrary
choice of the orthonormal vectors vy, ..., v with probability 1.

5



In the infinite-dimensional case, we can define an analogous expression:

lim 1 log sup det (11, P,) , (1)
n—oo 7 P
where P, is a t-dimensional subspace. Here det denotes a modification (Liick’s de-
terminant) of the infinite-dimensional Fuglede-Kadison determinant and it allows
us to compute how a given operator changes the “volume element” of an infinite-
dimensional subspace. This limit, if it exists, contains all the information about the
asymptotic behavior of the singular values of I1,,.

By analogy to the finite-dimensional situation, I have studied the case when the
sup is removed and instead P; is assumed to be free of all of X;. So, I have defined
the integrated Lyapunov exponent function as follows:

1
F(t) = lim —logdet (IL,P;) . (2)
n—oo N,
I have proved that this is a consistent definition and that the integrated Lyapunov
exponent exists for bounded free X;. In addition, I have derived an explicit formula
which relates Lyapunov exponents to Voiculescu’s S-transform:

F (1) = — o (Sxex (~1)). G

where Sy« x is the S-transform of X*X.

This formula allows me to infer a number of results about the Lyapunov expo-
nents, in particular, a formula for the largest Lyapunov exponent and the additivity
property of the Lyapunov exponents with respect to the operator product.

An example with a particular choice of X; recovers the “triangle law” discov-
ered earlier by C. M. Newman in his work on Lyapunov exponents of large random
matrices.

The next natural step would be to prove that the limit in (1) exists and coincides
with the limit in (2). This would follow from a free probability version of the Os-
eledec theorem.

These results about Lyapunov exponents of infinite-dimensional operators can be
considered a generalization of some of the results of Furstenberg, Kesten, and Os-
eledec regarding products of random matrices. The usual technique based on King-
man’s sub-additive ergodic theorem does not work here because free operators do not
form an ergodic stochastic process. Instead, we have to use directly the definition of
freeness of operators.



In a somewhat different project, I have studied products of free unitary opera-
tors. For this problem, I have derived a necessary and sufficient condition for the
convergence of the spectral probability distribution of the product to the uniform dis-
tribution on the circle. The necessary condition for convergence is that the product
of expectations converges to zero. This condition fails to be sufficient only if all of
the following statements hold: (i) exactly one of the operators has zero expectation,
(i1) this operator is not uniformly distributed, (iii) the product of the expectations of
the remaining operators does not converge to zero.

Free additive convolutions

Recently, there has been great progress in the theory of free additive convolu-
tions. (See, for example, papers by Bercovici, Biane, Maasen, Pata, Speicher, and
Voiculescu.) In particular, a theory of free infinitely-divisible and stable laws has
been developed. Also, free versions of the Law of Large Numbers (“LLN”) and the
Central Limit Theorem (“CLT”) have been derived.

I have extended the free CLT to the situation when the operators are not free,
but “almost” free. In particular, I have devised an example of the situation when
operators are not free but the free CLT is still valid for their sequence. This example
takes a free group with an infinite number of generators and adds certain relations.
Then it uses the method of short cancellations from combinatorial group theory to
infer a weakened version of freeness. Finally, the proof uses the Lindeberg approach
to the classic CLT to infer the free CLT from this weakened version of freeness.

My other work in this area is focused mostly on making the available results more
quantitative. In particular, it was known that the support of normalized free additive
convolutions converges to the interval (—2,2). I have shown that for large n, the
support of the n-time free convolution is in (—2 — cn='/2,2 + cn~'/?) and that this
rate is optimal.

I have also derived a free version of the Berry-Esseen estimate for the speed of
convergence in the CLT. The rate obtained in this result is n /2, the same as in the
classical case. An example shows that this rate cannot be improved without further
conditions.This result has been obtained independently and by a different method
than a similar result in Chistyakov and Gotze (2006), that also derived a free version
of the Berry-Esseen inequality.

Free point processes and free extremes
This part of the dissertation is joint work with Gerard Ben Arous, which was
inspired by the previous work of Ben Arous and Voiculescu (2006).



Let X; be a sequence of identically distributed free variables with the spectral
measure y. Ben Arous and Voiculescu introduced an operation of maximum which
takes any n-tuple of self-adjoint operators to another operator (possibly different
from each of the original operators). If X ™ = max;<;<, (X;), then a natural ques-
tion is whether the sequence of the spectral distributions of (X (n) — an) /by, con-
verges for a certain choice of constants a,, and b,,. Ben Arous and Voiculescu proved
that there are only three possible limit laws, which are different from the classical
limit laws. Surprisingly, the domains of attraction for these free limit laws are the
same as the domains of attraction for the three classical laws. In our work, we have
explained this puzzling fact.

In the classical case the convergence of extremes is closely related to the conver-
gence of point processes

Nn = Z 5(Xi—an)/bn

to a Poisson random measure. We have introduced a free probability analogue to the
concept of a point process. Namely, a free point process M, is a linear functional on
the space of bounded measurable functions, defined by the formula:

(M, f) = Z F(Xin),

where X ,, is an array of free random variables. In application to the theory of free
extremes, we use the array X, ,, = (X; — a,) /b,, where X, is a sequence of free,
identically distributed variables with the spectral probability measure .

We have also introduced a concept of weak convergence of a free point process
and proved that the free point process corresponding to the measure . converges if
and only if the classical free point process converges. Moreover, we have proved that
it converges to an object which was discovered by Voiculescu (1998) and extensively
studied by Barndorft-Nielsen and Thorbjornsen (2005), who called it the free Poisson
random measure.

Both the condition that ensures the convergence of a free point process and the
intensity of the resulting free Poisson measure are exactly the same as in the classical
case. It is this fact that is at the root of the phenomenon that the domains of con-
vergence for free and classical extremal convolutions are the same but the limit laws
are different. Indeed, while the classical and free point processes associated with a
measure [ converge to similar objects under similar conditions, the limiting extremal
laws are built in a different way from the classical and free limit Poisson measures.



We have also applied free point processes to further develop the theory of free
extremes. In the classical case the k-th order extremal distribution F*) () can be
defined as the probability that the corresponding random point process has no more
than & points in the interval [t, c0) . This can be codified as the following formula:

) (x)=F {1[0,k] (<Nm 1[t,m)>)} ’

where <Nn7 1[t7oo)> = Z:‘L:l 1[,5700) (Xz',n> .
This definition has a straightforward generalization to the free case:

F () = E {Lpu ((Ma, Lpoe)) } -

We call these distribution functions the k-th order free extremal convolution. More-
over, it turns out that it is possible to define in a natural way an operator that has
F ;k) (x) as its spectral probability distribution. We call this operator the k-th order
free extreme. In particular, the 0-th order free extreme convolution corresponds to the
free extremal convolution of Ben Arous and Voiculescu.

Using the limit theorem for free point processes, it is possible to prove a limit
theorem for k-th order free extremal convolutions. We derive the explicit formulas
for the limit laws. The particular case of the 0-th order convolutions corresponds to
the limit law derived in Ben Arous and Voiculescu.

The rest of the dissertation is organized as follows. Part I explains the fundamen-
tals of free probability theory. In Sections 2 — 5 we give the basic definitions and
examples. In particular, we define non-commutative probability spaces, free inde-
pendence, and free additive and multiplicative convolutions of probability measures.
One of the main tasks of free probability theory is the study of the properties of these
convolutions. As an initial step in this direction, we prove Voiculescu’s addition and
multiplication theorems in Section 6.

Our main tools in the study of free convolutions are analytical properties of the
Cauchy transform and related functions. We collect them in Section 7 of Part I and
show applications in Section 8. This section discusses measures that are infinitely-
divisible with respect to free convolution.

Part II is devoted to the free Central Limit Theorem for additive free convolutions.
We give the original proof by Voiculescu in Section 10 and certain extensions in
Sections 11, 12, and 13.

Part III is devoted to limits of products of free random variables and multiplicative
convolutions. In Section 14, we find the growth rate of the norm of the products.

9



The results from this section are made more precise in Section 15. In Section 16
we introduce and study the properties of Lyapunov exponents of a sequence of free
random variables. And in Section 17 we prove a limit theorem for products of free
unitary operators.
Part IV is devoted to the convergence of free point processes and free extremes.
The original contributions are in Sections 11 — 19.

10



Part I
Fundamentals of Free Probability

What is a probability space? Formally, it is a collection of random variables with an
expected value functional. However, the most important block in building a proba-
bility theory is an appropriate concept of independence of random variables. In the
following sections we will introduce the definitions of these basic concepts for free
probability theory. Here is a brief and informal overview.

We will define non-commutative random variables as linear operators on a Hilbert
space and the expected value functional as a linear functional on these operators
which is similar to the trace functional on matrices.

What should be our notion of non-commutative independence? Consider oper-
ators given by two different generators in a representation of an (algebraically) free
group. These operators are our model of non-commutative independence. We will
say that two operators are freely independent if expectations of their products be-
have similarly to expectation of products in this model situation. The most important
result here is that it is possible to compute the distribution of a sum and a product of
two freely independent self-adjoint random variables. This can be done with the help
of certain analytic transforms similar to the Fourier transform in the classical case.

2 Non-Commutative Probability Space

Space and Expectation

A non-commutative probability space (A, E) is a C*-algebra A and a linear func-
tional £ defined on this algebra. An algebra A is a C*-algebra if 1) it is an algebra
over complex numbers; 2) it is closed under an involution x; that is, if X € A,
then X* € A and (X*)" = X; 3) it has a norm with the following properties:
IXY] < [|IX[ Y]l and || X*X|| = || X||*, and 4) it is closed relative to convergence
in norm. The algebra A is unital if it contains the identity element /. If the algebra is
closed in the weak topology, then it is called a W *- or a von Neumann algebra.

Intuitively, C* algebras are non-commutative generalizations of the algebra of
bounded continuous functions on a compact topological space. And von Neumann
algebras are generalizations of the algebra of measurable functions.

11



The linear functional E is called an expectation’. We will use the notation £

to emphasize the analogy with the expectation in classical probability theory. An
expectation is assumed to have the following properties:

1. E (I) = 1 (Ifthe algebra is not unital, then we require that lim,, ., F (I,) = 1,
where [, is any approximate identity.)

2. E(X*)=FE(X),and
3. X > 0 implies that £ (X) > 0.

If an additional property is satisfied that says that X > 0 and F (X) = 0 imply
X = 0, then the expectation is called faithful. If E is continuous with respect to
weak convergence of operators than it is called normal. (A theorem from operator
algebra theory says that the expectation is always continuous with respect to norm
convergence.) Finally, if £ (XY) = E (Y X), then the expectation is called tracial,
or simply a trace. Many of the results of non-commutative probability theory hold
without assuming any of these additional properties of the expectation.

Let us give some simple examples of non-commutative probability spaces.

Example 1

A usual probability space (€2, ,u) can be considered as a non-commutative prob-
ability space. Let A be the algebra of all measurable functions on 2, and let F be the
usual integral with respect to the measure y:

E(f)z/ﬂf(w)du(w)-

Then (A, F) is a non-commutative probability space, although the adjective non-
commutative is not very appropriate, since .4 is a commutative algebra.

Example 2

Consider an algebra of n by n matrices: A = M, (C). Define £ as the usual
trace normalized by n!:
E(X)=n"'Tr(X).

Then (A, E) is a finite-dimensional non-commutative probability space.

2In operator algebra theory it is usually called a state. It is curious that Segal introduced the term
“state” with the following comment: “[W]e use the term ‘state’ to mean ... — more commonly, this is
called an expectation value in a state...” (See Segal (1947).)
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Example 3

Consider all trace-class operators acting on a complex separable Hilbert space
H. (An operator X is trace-class if eigenvalues of | X | form a summable sequence.)
These operators form an algebra .4 and we can take the trace as the functional F.
Then (A, F) is almost a non-commutative probability space. Unfortunately A is
not norm closed, so this algebra is not a C*-algebra and does not qualify under our
definition as a non-commutative probability space.

Example 4

Now let us consider the algebra of all bounded linear operators acting on H. Fix
a trace-class operator I" and define the expectation as F (X) =: tr (I'’X) . Then this
algebra is a non-commutative probability space. However, the expectation is not
tracial.

Example S

Let A be a von Neumann algebra of type /1; and E be the trace of this algebra.
Then (A, E) is a non-commutative probability space. In this example, the expec-
tation is tracial, and the algebra is closed not only in norm but also in the weak
topology.

One useful technique to obtain a new non-commutative probability space is by
building a matrix from the elements of another non-commutative probability space.
So if A is a non-commutative probability space with the expectation £ then we can
construct M, (A) as A @ M, (C) and take F ® tr,, as the expectation in this new
non-commutative probability space. If F is tracial then £/ ® tr,, is also tracial.

Variables, Moments, and Measures

We will call elements from an algebra .A (non-commutative) random variables.
In the usual probability theory, a random variable can be characterized by its distri-
bution function, moments, or characteristic function. In non-commutative probabil-
ity theory, the easiest and the most general way to characterize random variables is
through their moments. The joint moment map of random variables Ay, ..., A,, is the
linear map from non-commutative polynomials with complex coefficients to complex
numbers, induced by taking the expectation:

mAl,“An(P) =F (P (Al, ey An)) .

13



The joint moments of degree k are expectations of the monomials that have degree k.
Two collections of variables, say (X1, ..., X,,) and (Y7, ..., Y,,) , are called equiva-
lent if they have the same joint moment maps. In this case we will write (X7, ..., X;,) ~

(Y1, ..., Y,)) . These variables are star-equivalent if (X1, X7, ..., X,,, X*)and (Y1, Y"..., Y, V"

are equivalent. Then we will write (X1, ..., X,,) = (Y3, ..., Y,) . For self-adjoint ran-
dom variables X; and Y; these concepts coincide.

Note that equivalent random variables can come from essentially different oper-
ator algebras. If random variables are from the same algebra we can calculate their
sum and product. The equivalence relation is invariant relative to these operations.

Proposition 6 If X1,Y, € Aand X5,Ys € B and (X1,Y1) ~ (X3,Y3), then i)
X1+ Y1 ~ Xy + Yy, and ii) X1V, ~ XpY5.

Proof: Both claims follow from expansion of the expressions for the moments.
For example,

E((X+0)) = 3B (XX
= Y E(X3Y5 XYY
- E((X2+Y2)k>.

QED.
Clearly, this result can be generalized to a larger number of variables.
We also want to define convergence in distribution of vectors of random variables.

Suppose we have a sequence of vectors of random variables: X () = (X 1(i), oy Xﬁf)) ,

where X ,ff) € (A;, E;) . Suppose also that we have a vector of variables x = (x4, ..., z,,) ,
where 75, € (A, E) . Then we will say that X® converges in distribution to x if for
every k > 0 the joint moments of X of degree less than k converge to the corre-
sponding joint moments of = of degree less than k.

For some applications it is important to generalize the concept of freeness to
operator-valued random variables. We give here a sketch of the generalization. A
non-commutative B-valued probability space (A, B, E) is a C*-algebra A, its C*-
subalgebra I3, and a linear functional £, which is defined on the algebra .4 and takes
values in the sub-algebra . It is assumed that F is a conditional expectation. That is,
E maps positive definite operators to positive definite operators, and if B € B then
E (B) = B.

14
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Here is a typical example. Suppose that (.4, ') is a usual non-commutative prob-
ability space. Then we can define a non-commutative probability space with values
in the algebra of n-by-n matrices M,, We will denote this algebra as (M,, ® A,E,,).
These are matrices with elements of the algebra 4 as matrix entries. We define the
M,,-valued expectation F,, component-wize. That is, the ij element of £, (A) is

Now let us consider the question whether we can define a distribution function
for a non-commutative random variable. Let X be a self-adjoint random variable
(i.e., a self-adjoint operator from an algebra A). We can write X as an integral over
a resolution of identity:

X:/ APy (A,

where Py () is an increasing family of commuting projections. Then we can define
the spectral probability measure of an interval (a, b] as follows:

px {(a,b]} = E[Px (b) — Px (a)].

Then we can extend this measure to all measurable subsets. We will call py the
spectral probability measure of operator X, or simply its spectral measure.
Alternatively we can define fx (¢) as £ (exp (i¢.X')) and then prove by the Bochner
theorem that f is a characteristic function of a probability measure.
For Example 1, the spectral measure of a real-valued random variable f coincides
with the usual distribution measure of this random variable:

pp{(a, b} = pfw: f(w) € (a,b]}-

For Example 2, the spectral measure of an n-by-n Hermitian matrix X is supported
on the set of its eigenvalues. Each eigenvalue \; has the mass m/n, where m is the
multiplicity of this eigenvalue.

This concept can be generalized to the case of unitary operators, in which case we
will have measures defined on the unit circle. We can write a spectral representation
for every unitary operator:

X = / edPx (0).
Then if (a,b] C (—m, 7], we define the measure 11y by the same formula as before:
px {(a,b]} = E[Px (b) — Px (a)].
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In this case it is natural to interpret this measure as a measure on the unit circle instead
of a measure on the interval (—7, 7] .

3 Free Independence

3.1 Definition and properties

A natural requirement for independence of random variables A and B is that
E(P(A)Q(B)) = E(P(A)E(Q(B))

for arbitrary polynomials P and (). But what about £ (ABAB) , for example? Should
it be F (A?%) E (B?) as in the case when A and B are commutative? Or perhaps it
should be F (A4)* E (B)?, as if the first and the second occurence of variables A and
B were completely independent each from the other?

Inspired by examples that arise in the theory of free group algebras, Dan Voiculescu
suggested a particular concept of independence, which proved to be especially fruit-
ful. He called this concept freeness. We define it for subalgebras of a given algebra
A.

Let A; ..., A, be sub-algebras of algebra A, and let A; denote an arbitrary element
of algebra A,;.

Definition 7 Sub-algebras A, ..., A,, (and their elements) are said to be free, if the
following condition holds:
For every sequence A;, ... A; ,if E (ZZ) = 0andisy 1 # is for every s, then

E(A,..A,) =0,

Variables X and Y are called free if the sub-algebras generated by {I, X, X*}
and {I, Y, Y*} are free.

Remark: The definition of freeness can be generalized to the case of B-valued
probability spaces in a straightforward way, if by £ we understand the conditional
expectation £/ : A — B. In this case we typically assume that B C A; C A, and in
this case the definition is literally the same.

An important property of the concept of freeness is that it allows to compute
all the joint moments of a set of free random variables in terms of the moments of
individual variables.

16



Theorem 8 Let A, ..., A,, be free sub-algebras of A, and let Ay, ..., A, be a se-
quence of random variables, Ay, € Ay, such that i(k) # i(k + 1). Then

E(Al...An):i 3 (—1)’“—1E(Ak1)...E(AkT)E(Al..ﬁkl..ﬁkr...An),

r=1 1<ki<..<kr<n
4)

where " denotes terms that are omitted.
Conversely, if this equality holds for every sequence of elements Ai...A,, from the
sub-algebras Ay, ..., A, then these sub-algebras are free.

Remark: Note that on the right-hand side the expectations are taken from prod-
ucts that have no more than n — 1 terms. So a recursive application of this formula
reduces computation of a joint moment to computation of a polynomial in the mo-
ments of the individual variables.

Proof: This formula is simply an expansion of the following relation:

El(Ay—E(A)I)...(A,—E(A,) )] =0, Q)

which holds by the definition of the free relation. Conversely, if formula (5) holds
for any Ay, ..., A, then the algebras A, ..., A,, are by definition free. QED.
So, for the example that started this section, it is easy to calculate:

B(ABAB) = B (4) B (B?) - (B (B*) ~ E(B)") (B (4) ~ E(4)").

So if we use a§( to denote the variance, i.e., the centered second moment, a§( =
E(X?)— E(X)?, then we can write:

E (ABAB) ook

E(A2B2)  ~  E(A%)E(B?)

Since this ratio is a measure of how non-commutativity affects calculation of mo-
ments, we can see that the effect of non-commutativity is larger if both variables
have large relative variance, that is, if 0 / E (A?) and 0%/ E (B?) are both close to 1.

For B-valued expectations the formula in the previous theorem does not hold
because the scalars from B do not commute with operators from .A. However what
is true is that we still can compute the joint moments from individual moments. To
convince the reader, we show this calculation for the expectation F (A; A2 A1 As),
where A; € A; and A, € A,, and it is assumed that A; and A, are free. Let
E (A;) = By and E (Ay) = Bs. Then

E((A1 = By) (A — By) (A1 — By) (A3 — By)) =0

17



by definition of freeness. On the other hand, we can write the expression on the
left-hand side as

FE (AlAQAlAQ) - F (BlAQAlAQ) - F (AlBQAlAQ) — ...
= E(A1AsA1As) — E(AyA1Ay) — B (ATA) — ...,

where A, = B1Ay € Ay and A] = A1 By Ay € A;. From this expression it is clear

that ¥ (A; A3 Ay As) can be expressed in terms of a sum of expectations of monomials

that have a length of no more than three. Then it is clear that we can apply induction.
We collect here some basic facts about freeness.

Proposition 9 If A, A,, ..., A, are free, then A,, ..., A, are free.
Proof: Evident from definition. QED
Proposition 10 If A, As, ..., A,, are free and B C Ay, then B, As, ..., A,, are free.

Proof: Any variable from B is also a variable from A; and consequently the
relation in the definition of free independence holds. QED.

Proposition 11 Let Ay, As, ..., A,, be free and BB be an algebra generated by Ay, ..., Ay_1.
Then B, Ay, ..., A, are free.

Proof: Any element from B is a polynomial of elements from Ay, ..., A;_;. With-
out loss of generality we can choose these elements to have zero expectation. Write,
for example,

B= Y oA, A, A,
I=(i1,..s0n)
where A;, belongs to one of Ay, ..., Ax_1, iy # 11, and all of A;, have zero expecta-
tions. Since A, ..., A;_; are free, the fact that £(B) = 0 implies that the constant in
this sum is zero. Therefore, each product like BAy Ay, 1B...A,, such that operators
Apg, ... , A are taken from the algebras Ay, ..., A, and all of A, ... , A, have zero
expectation, can be expanded to a sum that has the following form:

> AL A A

where consecutive 4;, are from different algebras and where all of them have zero
expectations. Since the algebras A;, As, ..., A,, are assumed to be free, the expecta-
tion of this sum is zero and consequently we can conclude that 5 and Ay, ..., A,, are
free. QED.

We have the following analogue of Proposition 6 for free random variables:
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Proposition 12 Suppose that A1, As € A, and By, B € B, where A and B are
free sub-algebras. If Ay ~ As and By ~ Bs, then i) (A1, By) ~ (A, Bs); ii)
Al + Bl ~ A2 + BQ, and lll) AlBl ~ AQBQ.

Proof:

i) By Theorem 8 each joint moment of A; and B; can be reduced to a polyno-
mial in moments of A; and moments of B;. Let [/, J] denote a sequence of indices
(41,71, -y in, jn) With elements which are non-negative integers, and let my, g, [, J]
denote the joint moment that corresponds to this sequence. That is, let

ma, g [I,J] = E (A} B]*.. A B{").
Let also mx (k) =: E (Xk) . Then we can write

mA1,Bl []; J] - P[[,J](mAl (kl)amB1 (k;Q)v "'7mA1(kn—1)7mBl (kn))
= P[LJ] (mA2<k1)7 mp, (k2>7 sy A (kn*1>7 mBz(kn»
= MAa, B, [[a J] )

where Pj; ;; denotes the polynomial that computes this joint moment of free A and
B in terms of their individual moments and where the second line holds by the as-
sumption that A; ~ A and B; ~ Bs.

i1) and iii) follow from 1) and Proposition 6. QED.

Let us now introduce a useful class of free variables. We will say that a unitary
operator U is Haar-distributed if its spectral distribution is the uniform distribution
on the unit circle.

Haar-distributed unitaries are very useful because we can use them to build col-
lections of free self-adjoint random variables with prescribed spectral distributions.
All we need is one self-adjoint variable, X, with a given spectral distribution and
a sequence of Haar-distributed unitaries that are free from each other and from the
variable X.

Proposition 13 Suppose that i) the expectation is tracial, ii) X, Uy, ...., U, are free,
iii) X is self-adjoint, and iv) U, ..., U, are unitary and Haar-distributed. Suppose
also that hy (x) , ..., hy, () are real-valued Borel-measurable functions of real argu-
ment. Then the variables X; = U;h; (X) U; are free.

Proof: Note that f (X) = U f (h; (X)) U;. So we need to prove that
E Uiy fr (Riqy (X)) Uiqay - Uiy fs (higs) (X)) Uigs)) = 0 (6)
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if B (Ui f1 (ki (X)) Uiy ) = 0and i (k1) i (k) for each k.
Note that £ (U;) = E (U;) = 0 by the assumption that the U; are Haar-distributed.
Also, since expectation is assumed tracial, we have

0 = E(Ujh (hig (X)) Uiwy) = E (fr (i) (X)) Uiy Uiy
= E(fi (hiw (X)))-

Therefore,
E (fi (higy (X)) =0,

and this implies (6) because X and all U; are assumed free. QED.

How can we construct free sub-algebras? Examples show that certain natural
constructions do not work. For example, let B; and B, be free sub-algebras of A.
Then we can build matrix algebras M, (A) and M, (B;) with natural inclusions
M, (B;) ¢ M, (A). However, M, (B;) and M, (Bs) are not necessarily free sub-
algebras of M,, (A) . For example,

<A11 A12)([ 0 )_<A11 —A12>
Ax Az 0 -1 ) \An —Apn )
Suppose that the expectation of the operator A on the left-hand side is 0, i.e.,
E (A1) + E (Ag) = 0. This does not imply that the trace of the operator on the
right-hand side is zero, i.e., in general £ (A1) — E (Aas) # 0.

Subalgebras M, (B;) and M,, (By) are M, (C)-free with respect to the condi-

tional expectation £/ ® [,, but sometimes we want more. The next section gives a
method to construct free subalgebras from two algebras A; and A,.

3.2 Free products of probability spaces

If we have two non-commutative probability spaces, (A;, F1) and (A, Es), then
we can define their free product (A; * Ay, Ey x E5) . The algebras A; and A, can
be identified with two free subalgebras of A; * Ay and both F; and F, are then
restrictions of F; x E5 to the corresponding subalgebra. This free product of algebras
was first defined in Avitzour (1982).

Suppose A; and A, are two unital x-algebras. The algebra A4; x A, is con-
structed as follows. Let S be the set of all sequences a;as...a,, where a;, € Ay and
i (k) #1(k+1).LetS also contain the identity element. Let L (.5) be the algebra of
all finite linear combinations of elements of S. We can easily define * operation and
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multiplication on basis elements and then extend these operations to L (.5) by linear-
ity. In particular, (a;...a,)" = ai...a} and (ay...a,) (by...b,) = R* (ay....a,b;...b,) ,
where R* is the reduction operator. It is clear how to define R*°. First we define one-
step reduction R which leaves a sequence unchanged if no two neighboring elements
are from the same algebra, or replace it with a reduced sequence if there are two
neighboring elements from the same algebra. The reduced sequence is obtained in
two steps. First, we have all two neigboring elements from the same algebra replaced
with their product, and second we remove all identity elements from the sequence
unless the sequence consists only of identity elements in which case the sequence
is replaces with identity. The repetition of the one-step reduction converges for any
initial sequence and the result is called complete reduction and denoted R (.).

Theorem 14 With the two operations defined above L (S) is an algebra, closed with
respect to x-operation.

We call this x-algebra A; x A, and define the expectation E; * E5 on elements of
A; * Ay by the following construction. Let a;...a, is a reduced representation of a
monomial element from A; x As. Clearly, it is enough to define F; * 5 on monomials
and extend it then to linear combinations of monomials by linearity. Since there is no
linear dependence relations among monomials this definition is goint to be consistent.

On monomials we define F; * Fy using formula from Theorem 8. Namely, define
Ey x Ey(I) =1 and let

EixBy(aran) =Y Y (=) E(a).E(ar,) E (ar..ag, .5, ...0n) -

r=1 1<k <..<ky<n
(7)

At this stage the only reduction that we allow on the right is that any two neighboring
elements from the same algebra are replaced with their product. This defines Fy * Fs
recursively for all sequences a;...a,, where a; are from alternating algebras (A ;) #
Ap(i+1)) provided that we have not identified the units, that is, that the sequences like
ail4,a3 with ay,a3 € A, are considered different from (aja3). To show that the
definition makes sense for algebras with identified units, it is sufficient to prove that

E1 * EQ(CLl...CLk_llAlak+1...CLn> = E1 * E2<a1... (ak_lakH) an) (8)
This is subject of the following lemma.

Lemma 15 Relation 8 is true.
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From this lemma it follows that £, * E5 is a well defined linear functional on
Ay % As. By definition F; * Es (I) = 1. The question is whether E  F is positive and
what other properties of £} and F5 are preserved under taking the free products. In
answering these questions it is useful to have the following decomposition of Ay * As.

Proposition 16 Let AY be the elements of A; that has zero expectation. Then as a
linear space Ay x As has the following representation:

Arx Ay = CH+AY+ A+ AV @AY+ AJ @ AY + ...
= O+ @nzl @kl,...,kn ®i:1 Akl

Theorem 17 Linear functional F, x E is positive on the algebra Ay x As.

This theorem implies that F; = E5 is a state. Therefore, we can define a norm
on A; x As. We just use the GNS construction to represent A; * Ay and then take
the usual operator norm as the definition of the norm in the algebra. The completion
of Ay x A, with respect to this norm is the C*-algebra A; * A5, and the expectation
E1 % E5 can be extended to the whole of the algebra .4, % A,. Further, the completion
of this algebra of linear operators with respect to weak topology gives the ¥/ *-algebra

Al * ./42.
Another interesting property of the free product is as follows:

Theorem 18 If Iy and F) are traces then Ey x Es is a trace.

3.3 Circular and semicircular systems

A special place in free probability theory belongs to so-called circular and semicircu-
lar systems. They have a role similar to the role of independent multivariate Gaussian
variables in classical probability theory. A vector of operators (X7, ..., X,,) forms a
semicircular system if the variables are free and self-adjoint, and if each of them has
the semicircle distribution, 1.e., if the distribution function for the probability spectral
measure associated with X; is given by the formula

1 t
Fe )= [ 1= Exam @

It is easy to compute the moments of this distribution. First, we can check that
the total mass is 1 by using the substitution & = sin . Then, to compute moments,

22



we can use integration by parts. The odd moment are evidently zero by symmetry.
For the even, note that

1 e e G (t2k+1)
= . 412
M2k = on / t thdt = / % + 1
1 1 2 t2k+2
= -— )
2w 2k 4+ 1 _ t2

Next, note the following identity:

Ap2k _ p2k+2

N

Let us integrate from —2 to 2 and apply (9). Then we get:

N}

4 (2/’6‘ — 1) mop—o2 — (2]{3 + 1) Mo, = Mok,

and, consequently, we have the following recursion
2(2k—1)
k+1

with the initial condition mg = 1. It is easy to check that the solution is

oL (%
1\ k)

Further, we can define the moment-generating funciton:

mop = Mmag—1

n

JR— 1
Z Znﬂ =~ ;kﬂ( )z%ﬂ. (10)

To give an analytic formula for this function we look at the function: f(u) =
V1 — 4u?. For small u, we can develop f (u) in power series:

fu) = 1—§4u +%(1—1) (4u2)2—%(%_1)(%_2) (4u2)3+

1! 2! 3!
_ 1_2u2_22’f(2—1)(2><2—]{j)...(2(1f—1)—1)u2,c

2 1(2-1)22%x2-1)2%x2)..2Kk=-1)—-1)2(k—-1)) ,
= 1-2 _QZE (k— 1) (k—1)! u

= 1—2? —2i ( > uk 2,

23



Therefore,

1—f(u>_ - 1 2k 2k+1
2u _u+zk+1<k>u '

Gy (2) = 1=

Another useful concept is that of a circular system. A vector (X7, ..., X,,) forms
a circular system if algebras generated by {X;, X/} are free, and each of the vectors
(Y, ...,Y,) and (Zy, ..., Z,) forms a semicircular system, where Y}, = = (X} + X})

V2

3.4 Asymptotic and approximate freeness

In finite-dimensional algebras the operators cannot be free, unless they are multi-
ples of identity. The reason is that the concept of free independence imposes infi-
nitely many conditions that cannot be satisfied by a finite number of entries of finite-
dimensional matrices.

Consider two real symmetric matrices of order two. Suppose that they both have
zero traces. We can choose the basis in such a way that one of them is diagonal. Then
we can write these matrices as follows:

(A0 [Ty
A_<O_>\)andB_(y_x>.

Suppose also that A # 0. Then if we impose the condition that tr AB = 0, then it
must be true that x = 0. If we further require that tr (ABAB) = 0, then we can infer
that y = 0 and therefore B = 0.

However, as a substitute of true freeness we can define concepts of asymptotic
and approximate freeness for finite-dimensional matrices.

Suppose that (A;, E;) is a sequence of non-commutative probability spaces and
X; and Y; are random variables from .4;. Suppose that X; and Y; converge in distrib-
ution to operators x and y, respectively, which belong to probability spaces (A, E.)
and (A,, E,), respectively. Consider the free product (A, * A,, E, * E,), and let x
and y be free operators in this product.

Definition 19 The sequences X; and Y; are called asymptotically free if (X;,Y;)
converge in distribution to (z,y) . In more detail, we require that for any € and any
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sequence (ny, ...,ny), there exists such iq that for i > iy, the following inequality
holds:
B (XY X[ Y™ — B (a™y" ey < e

)

Two sequences of subalgebras, AE” and AZ@), are called asymptotically free if they
are generated by asymptotically free operators X; and Y;.

At the cost of more complicated notation, this definiton can be generalized to the
case of more than two variables and to the case of subsets of variables Q"
each QY A;.

Intuitively, what this definition aims to capture is the notion that as the index of
A; grows, the joint moments of X; and Y; converge to the joint moments that these
variables would have if they were free. Typically, we will apply this definition in

where

cases when A; are algebras of random matrices of increasing dimension.

Now let us describe the concept of approximate freeness. Let X; denote finite-
dimensional operators, or in other words, k-by-k matrices. More generally, let §2;
denote sets of such finite dimensional operators and let X = (X7, ..., X;) denote an
s-component vector of operators from €;, that is, X; € €2, foreachi =1, ..., s.

Recall that for every non-commutative polynomial P in s variables and any set
of s free random variables Y7, ..., Y,,, we can calculate £ [P (Y')] as a polynomial of
individual moments of Y;. We can formally write this as

EP(Y)] = fp(mM),....,m(Y5)),
where m (V') denotes the moment sequence of variable Y.

Definition 20 Sets of operators Q; with i = 1, ..., s are called (N, )-approximately
free, if for any non-commutative polynomial P in s variables and of a degree that
does not exceed N, it is true that

B (P (X)) — fp (m(X1),om (X,)] < ¢
forevery X = (X1, ..., X;) such that X; € ;.

Approximate freeness is a tool to establish asymptotic freeness. Suppose we
can find a sequence of matrices (X;,Y;) which are (N;, ¢;)-approximately free. If
N; — oo and ¢; — 0 as 7 — o0, then we conclude that sequences of X; and Y; are
asymptotically free.
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Suppose that A is the algebra of unitary n-by-n matrices. It is intuitively clear
that if NV and ¢ are fixed, then the set of matrix pairs (X,Y) which are (IV,¢)-
approximately free becomes in some sense larger as n grows. Indeed, it becomes
easier to satisfy the fixed number of conditions in Definition 20. For example, if 1 is
the Haar measure on A x A, normalized to have the unit total mass, then we can ex-
pect that the mass of the set of (X, Y"), such that X and Y are (V, ¢)-approximately
free, approaches 1 as n grows to infinity.

3.5 Various constructions of freely independent variables

In this section we study how to construct new free random variables from already ex-
isting ones. These results are from Nica and Speicher (1996) and Voiculescu (1996b),
and we formulate them without proof.

Theorem 21 Let Py, ..., P, be a family of projections, which are orthogonal to each
other (i.e, P' = P,, P,P; = 6,;FP,). Let c be the standard circular variable and
suppose that { Py, ..., P,} and {c,c*} are free. Then (1) variables c*Pic, ..., c*P,c
are free, and (2) each of c*Pic is a free Poisson variable with the parameter \; =

E(P).

The statements of this theorem are valid if instead of the circular ¢ we use the

standard semicircular variable s, or the standard quartercircular variable b (i.e. b =
5*s).

Can we use other variables instead of ¢, b, s, for example, the standard free Pois-
son m = s*s? Or, the free Poisson with parameter A > 17 Or, more generally, any
random variable x, which does not have an atom at zero? This is not clear at this
moment.

Here is another useful result

Theorem 22 Let X, ..., X,,, P be free self-adjoint random variables in non-commutative
probability space (A, E), and suppose that P is a projection. Then PX P, ... PX,P
are free in (PAP, E (P)'E (1)

Remark: this theorem generalizes a similar results for the case when we use a

free unitary U instead of the projection P. Again, one immediate question is whether
this result holds for other classes of operators beside unitaries and projections.
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4 Example I: Group Algebras of Free Groups

Consider a countable group G with the counting measure u. Let H = [2 (G, 1) be
the Hilbert space of square-summable functions on . Define the left action of G' on
Hby (L,f)(h) = f(gh) and let A be the algebra of all finite linear combinations
of L,. We can close this algebra with respect to the operator norm topology and then
we get a C*-algebra, C* (G) , or we can close A with respect to weak topology and
then we get a von Neumann algebra, N (G). Define the expectation functional on
algebra Aas £ (L) = (0., Ld.) , where 0. is the characteristic function of the set that
consists of the unit of G. In other words, if L =, a,L,, then E (L) = a..

This expectation is faithful, continuous in both strong and weak topology, and
tracial. It can be used to define the scalar product on algebra A by the formula
(L1, Ly) =: E(LjLy) = (L10., Lad.) . If we complete A with respect to this scalar
product, then we get a Hilbert space (or “Hilbert algebra”), which we denote as
H*(G). If C*-algebras generalize algebras of continuous functions on a compact
topological space and I/ *-algebras generalize bounded measurable functions, then
Hilbert algebras generalize L?-summable functions.

The operators L, form a complete orthonormal basis in the Hilbert algebra H* (G).
In particular, we can represent each element from this Hilbert algebra as an infinite
series ) x,L, with square-summable coefficients z.

Example 23 Von Neumann algebra of a free group

Suppose F}, is a free group with k generators. Then N (F},) is a von Neumann
algebra of the free group. 1t is still an open question whether these algebras are
isomorphic for different k.

Suppose G is a free product of groups GG; and G5, and A is an algebra gener-
ated by GG. Consider subalgebras A; and A, generated by elements L,, with g from
correspondingly G'; and Gs.

Theorem 24 Subalgebras A, and A, are free.

Proof: Indeed, consider a product Z = X;Y;...X,Y,, where X; € A; and Y; €
Aj. Suppose that £ (X;) = 0 and F (Y;) = 0 for every k = 1, ..., n. The condition
E (X;) = 0 means that X; = Zxék)Lg where ¢ € G and g # e. Similarly,
E (Y}) = 0 means that Y, = > yék)Lg where g € G5 and g # e. This implies that
Z =5 zék)Lg where ¢ € G and g # e. This claim holds because the subgroups
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G1 and G, are free. Therefore, E (Z) = 0. Since this holds for any product Z =
X1Y7...X,Y,, the freeness condition is verified. QED.

In particular, let G be a free group generated by elements ¢, ..., g,, and G; be
subgroups generated by elements g;, respectively. Let A and A; be group algebras of
G and G}, respectively. Then subalgebras A; are free.

Example 25

Consider the random variable X = L,-1+ + L,. This variable is self-adjoint and
we can calculate £ (X*) as 0 if k is odd and as (k’;Q) if k is even. Indeed consider a
random walk on integers that starts at time ¢ = 0 from x = 0 and at each time step
can either go up by 1 or down by —1. Then F (X ’“) is equal to the number of paths
that at time ¢ = k end at x = 0. Clearly, the number of such paths is zero if & is odd
and it is equal to the number of ways we can choose the % time steps, at which the
random walk goes up, i.e., (k%)

If we define the moment-generating function of X is as follows:

1 & E(XF)
Gx (2) = ;+Z Skl
k=1

then it is clear that for X = L, + L,, we have

1 = /2k\ 1
ax=1+3 () mn

k=1

Can we find a probability distribution that corresponds to these moments? Con-
sider a probability measure with the following distribution function:

1 (" X229 ()
F(x)=— ———dt.
(@) =~ e
Using substitution ¢t = 2sin ¢, it is easy to check that

1 /2 dt

T J_ 94 — 12 ’

so F'(x) is a valid probability distribution function.
Next, note that

1 2 (4.[;2]672 _ tQk) 1 2
— —dt = — 224 — 24t
m /2 V4 —t? m /2

1 1 2 g2k

ht dt
7r2k—1/2\/4—t2 ’
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where, in order to get the second equality, we integrated by parts. Consequently, if

1 [* otk
my =: — dt,
g 7T/_2 V4 —t?

then m;, = 0 for odd k& and for even £ we get the following recursion:

1
1 = Admoy_
< + Qk—l)m% Mog—2,

2 (2k — 1)
K

or

mag = mag—1.

with the initial condition mg = 1.

It is easy to check that the recursion is satisfied by mg, = (2:) Therefore, this
probability distribution has the desired moments.

The distribution function can be computed explicitly as

1 T 1
F () = = arcsi <—) —.
(x) —aresin ( 5 + 5

For this reason, this distribution is called the arcsine law.
Example 26

Consider the random variable Y = L. This variable is unitary and &/ (Y’“) =0

for every integer £ > 0. Since Y is unitary, we can conclude that is ia a Haar-

distributed unitary. Its moment-generating function is simply Gy (z) = 27 L.

One difficulty with free group algebras is that it is difficult to construct a vari-
able with a given sequence of moments or with a given spectral distribution. This
difficulty is partially resolved in the example that we discuss in the next section.

5 Example II: Algebras of Creation and Annihilation
Operators in Fock Space

5.1 Operators in Fock space as non-commutative random vari-
ables

Definition 27 Let H be a separable complex Hilbert space and fix a vector & € H.
The Fock space T'(H) is the following Hilbert space:

TH)=C¢+H+HOH+HQH®H + ...
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The fixed vector ¢ is often called the vacuum vector. If e; is a basis of H then
elements ¢ and ¢;, ® ... ® e;, form a basis of T'(H). We will write the basis el-
ements as e; €;,...¢;, to lighten notation. In this basis the scalar product in 7T'(H)
is determined by linearity and the following rules: (£,&) = 1, (£, ¢e;,...e;,,) = 0,
(€iy.-€in, €5y, ) = 0if n # m, and (e;,...€;,, €j,...€;,) = i j,...0;,j,. In other
words, ¢ and e;, ...e;, form an orthonormal basis of 7' (H) .

Let us fix a basis of H. For each vector e, in this basis we define an operator ay
acting on T'(H ), namely, a,(§) = e, ag(e;, €iy---€i,) = €r€i,€4y...€;, . This operator
is called a (left) creation operator. Its adjoint is called a (left) annihilation operator:
ap(&) =0, ar(e;) = 0xi&, and aj (e €4y ...€5,) = Opi, €iy€iy...€;, forn > 2.

The terminology came from physics where the Fock space is used in quantum
models of light propagation (see, e.g. Klauder- .... (...)).

Let A be an algebra of all polynomials of the operators a;, and aj, and A is its
closure in the weak topology. Then A is a W* non-commutative probability space
with the expectation given by E(X) = (¢, X&) .

This expectation is not tracial: F (ajax) = 1 but E (axaj) = 0.

We will consider random variables of the following form:

X=3 v @)+ @),
=1 1=0

where x; denotes a summable sequence (zg, x1, ...). We will call them Toeplitz ran-
dom variables. because they have some similarities to Toeplitz matrices.

5.2 Free independence of Toeplitz random variables

Theorem 28 If k # [ then ay, and a; are free.

Proof: Without loss of generality, let £ = 1 and [ = 2. Consider polynomials of
ay and its adjoint a7, and of ay and its adjoint a}. Expanded, they have the following

form:
m

Po=> "2 (@) + 2+ ()
k=1

k=1

and

r *\ k r r k
Qr =>4y (@) + 7 + Dy (az).
k=1

k=1
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If E(P,) = 0, then z{” = 0. Similarly, if E (Q,) = 0, then 4"’ = 0. Assume that
xg) = y(()r) = 0. Then it is easy to see by induction that Q,P,Q2Ps...Q, P,€ is the
sum of terms that have the form e} f, where k > 1, and P,Q2P»...Q,, P, £ is the sum
of terms that have the form e} f, where & > 1. Indeed, suppose we have already
proved this for PiQsPs...Q),, P& and know that all terms of this product start with
eV f, where k > 1. Then the terms of (); that have the form >, _, y(_l,z (a3)" will
produce zero when they multiply terms of the form e¥ f, and the terms of (), that
have the form ;" | y,(cl) (as)" will produce the terms of the form ek f with & > 1.

Consequently, the product Q1 P, Q2 Ps...Q0,, P,& has a constant term equal to zero
and therefore:

(£, Q1 PL1Q2Ps...Q, Po6) = 0.

By a similar argument, we can write

<§’ P1Q2P2ann§> == 0

and similar identities for products that end in (),,. This implies the free independence
of X and Y. QED.

Let A, denote a subalgebra of A, generated by a;, and aj, only.

Corollary 29 If'k # I, then the subalgebras Ay, and A, are free.

5.3 Representability by Toeplitz random variables

Toeplitz random variables are useful because it is relatively easy to construct a Toeplitz
variable with a given moment sequence. We will say that operator X represents op-
erator Y if X ~ Y, that is, if X and Y have the same moment sequence: £ (X*) =
E (Y’“) for all &k > 1. We will also say that X represents the moment sequence {m,,}
if E(X") = m,, for each n.

We know that if A and B are free, then moments of A + B are determined by
moments of A and B. In this case, if Aand B represent A and B, respectively, and
A and B are free, then A + B represents A + B.

Lemma 30 For any number sequence my, ..., My, ..., there is a unique number se-
quence, x;, such that the operator X =: a + Y .o x; (a*)" represents {m,}, i.e.,
E (X™) = m,, for each n. In particular for any operator Y, there is a unique opera-
tor X =a+ Y 2x;(a*)" that represents Y.
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Proof: Let

and for consistency define x_; = 1. Consider the expansion of X"&. It consists of
terms of the form

—i1—..—lp

(i1, .y in) TiyTiy-.. T, € ,

where € (i1, .., i,,) is either 0 or 1 depending on the sequence iy, ..., i,,, and we use the
notational conventions e® =: ¢ and ¥ =: 0 if k < 0. Here x;, denotes the coefficient
before (a*)™ (or a, if i, = —1) in the first copy of X that operated on &; z; _, denotes
the coefficient before (a*)™" " in the copy of X that operated on X¢ after that, and so
on. The coefficient z;;, comes from the copy of X that operated on X" ~1¢.

If we look at the consequitive sums %1, 1 + %2, ..., 21 + 2 + ... + iy, then we
can note that ¢ (iy, ..,4,) = 0 whenever a sum from this sequence is positive. This
positivity means that more annihilation than creation operators acted till this moment
and the effect of this sequence of operators on the vacuum vector must be zero.

A particular example of this situation arises if a specific term in the expansion has
x;,, With 4 > n as one of its elements. Then —(iy + ... +4,) < 0 because i5 > —1
for all other s # k. Therefore, e~ ++n) = (0 and the scalar product of this term
and ¢ is zero.

Next consider the situation when a particular term has x;, , with ¢, = n — 1. Then
the only possibility that i; + ... + 7, < 0 is that i;, = —1 for all s # k. Moreover, in
this case ¢ (i1, .., i,,) is not zero if and only if & = 1. In other words, if i, = n — 1 for
some 7 then k& must equal 1 (that is, the coefficient x,,_; must come from the copy
of X that operated last) and then we must have i = 13 = ... = 7,, = —1. Only in this
case we have iy + ... +4, < 0 forall » < nande (i1, ..,4,) = 1. In this case, the term
that we are considering must be z,,_1x_;...x_12_1§ = z,_1£ and the scalar product
of this term with £ is x,,_;.

The remaining terms have all i, < n — 1. Therefore, they will not have z,,_; as
the element of the multiple z;, z;,...z;, . Hence, we can conclude that

EX" = (6, X") = w1 + Py (0, .-, Tn2),

where P, is a polynomial. Therefore, we can proceed inductively. Coefficient x,
is uniquely determined by the moment m; = EX. Coefficient z; is uniquely de-
termined by the moment m, = F (X?) and by the coefficient zy. Coefficient x5 is
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uniquely determined by the moment m3 = E (X?) and by a polynomial of coeffi-
cients zy and x, and so on. Coefficient x,,_; is uniquely determined by the moment
m, = E (X"™) and a polynomial of coefficients zy, 1, ..., and x,,_o. QED.
Warning: Note that an X that represents Y is not necessarily strongly equivalent
to Y. That is, in general, even if £ (X k) =F (Y’“) for all k, this does not imply that

E ((X*)k> —E ((Y*)k) .
Example 31

Consider X = a+a*. This variable is self-adjoint. To compute £/ (X k ) , note that
the constant in the expansion of (a + a*)k can be expressed in terms of the number
of paths in a certain random walk. Namely, consider the random walk of a particle
on the lattice of integers. At time ¢ = 0 the particle starts at x = 0, and at each later
time step it can either go up by 1 (if the creation operator acts), or down by 1 (if the
annihilation operator acts). We are interested in the number of such paths that end
at time t = k at x = 0. and that are always greater than or equal to zero. This is a
classical combinatorial problem and the answer can be found in Feller (...). Clearly,
if £ is odd, then the number of paths is 0, and it turns out that if £ is even, then it
equals (k/2+1)7" (k:l;Q)

For convenience of the reader we repeat here the argument. Let us consider an
equivalent problem: We are looking for a number of paths such that z (¢ = 0) = 1,
x(t=4k)=1,and that x (¢t) > 1 forall ¢t : 0 < ¢ < k. Then we first note that the
total number of paths from (t =0, x = 1) to (t = k, x = 1) is 0 if k is odd and (kI;Q)
if k& is even. On the other hand the number of paths that go from (t =0, x = 1) to
(t =k, x = 1) and touch or cross the line x = 0 equals the total number of paths
that go from (t =0, z = —1) to (¢t = k, x = 1) . This is simply reflection principle.
Therefore, we can compute this number as 0 for odd £ and ( f /5_1) for even k. Indeed
if ¢ 1s the number of down movements and p is the number of up movements, then
p—q = 2,and p+ q = k. Therefore, ¢ = k/2 — 1, and the number of ways to choose
these down movements is (k /571).

Hence if & = 2n then the number of paths that go from(t =0, z = 1)to (t =k, . = 1)

and do not drop below x = 1 equals

G0 == ()
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Therefore the moment-generating function for this example is

[e.e]

1 1 2n 1
GX(Z)_;—FZTL—I—l(n)W (11)

n=1

Note that this function is different from the moment-generating function of the ran-
dom variable in Example 25. Therefore, the variables a + a* and g + ¢g~! are not
equivalent, or in other words, a + a* does not represent g + g~ .

On the other hand, comparing (11) with formula (10) on page 23, we can conclude
that a + a* has the semicircle distibution.

Example 32

Consider Y = a. Then Y is an isometry. It is not unitary because it is not invert-
ible. Clearly F (Y’“) = 0 for every £ > 0, and the moment-generating function of
Y*is Gy (2) = z~!. Comparing this with Example 26, we note that a represents the
Haar-unitary random variable g.

5.4 Additivity of Toeplitz random variables

Let a Toeplitz variable, X, be associated with a vector z = (x4, ..., Z,, ..) and some
creation operator as:

X =as+ Zxk (a3)" .
k=0

Similarly, let Y belong to the same Fock space and be associated with a vector y and
a different creation operator as:

m

Y = as + Zyk ((Z;)k

k=0

Finally, let Z be a Toeplitz variable (possibly from a different Fock space) associated
with the vector x + y:

m

Z =a+ Z (zx + w1) (a))"

k=0

Theorem 33 7 represents X + Y, ie. Z ~ X +Y.
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Proof: Let us write:

X+Y = (az+as) +Z$i (a3)' Jrzyz‘ (a3)",
i=0 i=0
Z = a1+ Z% (a)' + Zyz (a})".
i=0 i=0

Let us consider (az + a3) as a single symbol. Then there is an evident correspondence
between elements in these sums. This correspondence is as follows

(ag +a3z) — a,
i

zi(a3)" — a;(a])’, and

i

Yi (GE)i — i (a)".

If we write an expansion of (X + Y)" in terms of (az + a3), a3, and a}, then we
can use this correspondence to write an expansion of Z" in terms of a; and aj. For
example, (ay + as) 23 (a})® (az + as) yr (a3)" corresponds to ayzs (at)® ayyr (a)” .
Therefore we need only to prove the equality of the expectations of these products,
e.g.,

<§, (ag + az) x3 (a3)” (az + az) yr (a§)7 5> = <§, s (a5)” aryr (aiky 5> :
Note that the following identities hold:

ay(ay+as) = aja; =1, and

(ag +a3) = aja; =1,

Therefore, whenever a, + as is on the right of either a or a3, we can cancel it out as
well as the corresponding pair of a; and a}. From this it follows that we need only to
prove the equality of the following expectations, where ay + a3 is on the left of all
a3 and a3, and the corresponding terms a; are on the right of all aj:

(& (az + a5)" ()" (a)"* €)= (& (@) (a])" (a)** )

However, it is evident that both are 1 if and only if &y = ky = ... = n = 0,and 0
otherwise. QED.
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6 Addition and Multiplication Theorems

6.1 Addition
6.1.1 Motivation

We know from Theorem 8 that we can calculate every joint moment of free random
variables A and B from their individual moments. Consequently, we can express
E(A+ B)k as a polynomial of EA" and E B’ for i, j < k. This method, however, is
not efficient and does not provide much insight. It is natural to seek a more efficient
algorithm for computation of E (A + B)¥ .

We are interested in F (A + B)k for several reasons. First, let G be a countable

group. Consider an operator
A= Z agLyg,

geG

where L, are right shift operators as in Section 4, and let us impose an additional
restriction that a, are non-negative and that »  a, = 1. Then we can interpret a, as
probabilities and A as a random walk on the group G. Then E (A*) has a natural
interpretation as a probability of the return to the identity element after & steps. Now,
suppose that GG is a free group with two generators, g and h, and that we have two
probability distributions, ;2 and v, which assign probabilities to powers of g and h,
respectively. That is, y (¢") = ay and v (h') = b;, where k and [ are arbitrary
integers, and ay, and by, are positive numbers such that > a;, = 1 and )b, = 1.

We define a random walk on the free group G by the following process. At each
moment of time we throw a die and decide whether we use a power of g or a power
of h. If we decide to use a power of g, then we use g* with probability a; and if
we decided to use a power of h then we use h' with probability b;. For this random
walk, what is the probability of return to the unit element after k steps? The answer
depends on our ability to calculate the following quantity:

k
E(A+B)’
2

A=Y arLy, and B= b L.

keZ ez

where

In free probability, operators A and B are prototypical free random variables and we
arrive at the calculation of the £-th moment of (A + B).
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Second, suppose that free operators A and B are self-adjoint and that 1, are pp
are their spectral distributions. Then A + B is also self-adjoint and its distribution
tayp depends only on 1, and p1p. We will call this distribution the additive free
convolution of 1, and 5 and denote it as 4By 5. It is natural to ask about properties
of this new operation on probability measures. Note that the moments of 4, H pp
are given by F (A + B)*.

For comparison, consider the case when G is the commutative free group gen-
erated by g and h. Then A =}, a; L+ is a sum of commuting unitary operators.
Therefore, the spectral measure of operator A = >, a; L, is well defined and it is
the image of the uniform measure on the unit circle under the map e — f4 (ei") ,
where f4 (z) is the symbol of operator A :

fa(z) = Zakzk.
k

Let i 4 be the resulting measure on the complex plane. Similarly, define 5 for
B =3, byLyx. Then A and B have the same set of eigenspaces, and therefore the
spectral distibution of the sum is well defined and is easy to compute. The result is
simply the additive convolution of the measures 14 and pij :

fiayp (dw) = / pig (dw — 2) pp (dz) -

zeC
In the non-commutative case we can define the free additive convolution.

Definition 34 Let ;1 and v be the spectral probability measures of free self-adjoint
random variables A and B, respectively. Then the spectral probability measure of
A+ B is called the free additive convolution of measures jw and v, and denoted j1Huv.

In the case of the non-commutative free group of two generators, even if the
operators A and B are self-adjoint they do not have the same set of eigenspaces
and it is difficult to compute the spectral distribution of the sum from the spectral
distributions of the summands. It is amazing that there exists an analytical way to
perform this computation. Let us describe this procedure.

6.1.2 Cauchy transform and K-function

Definition 35 We call the moment-generating function of a random variable X, or
the Cauchy transform of X, the expectation of the resolvent of X :

GX (Z) =F [(Z — X)il] .
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In the case that we consider most often, X is a bounded operator. Therefore,
Gx (z) is defined in the area {z : |z| > || X||} . The Cauchy transform is holomorphic
in this area and maps oo to 0. Moreover, for all sufficiently large 2, the Cauchy
transform is univalent and we can define the functional inverse of Gx () .

Definition 36 We call the K-function of X the functional inverse of the Cauchy
transform of X :
Gx (Kx (2)) = Kx (Gx (2)) = 2.

For bounded random variables, the function Kx (z) is well-defined in a neigh-
borhood of 0 and has a simple pole at 0.
It is easy to compute the expansion of the Cauchy transform at 2z = oc:

1 = E(XF)
Gx (2) = > +Z s
k=1

Here are the first terms of the Laurent series for the K -function of X:
1
Kx(2) = -+ E(X)+ (B (X?) -~ E(X)*]z+...

If Kx(2) = 271 4+ Y 77, k2, then it is easy to see that ¢; can be expressed as
polynomials of £ (X),..., F (X k“) . Later, we will give an analytic expression for
these coefficients.

Example 37 Zero and scalar operators

If a random variable X = 0, then its K-function is simply z~!. More generally,
if X = cI, where [ is the identity operator, then

1
Gc[ (2) = y

zZ—C

and )
K. (2)= ~ +c.

Example 38 Semicircle distribution

For a self-adjoint random variable X that has the semicircle distibution as its
spectral probability distribution (see definition of the semicircle distribution at page
22) it is easy to compute its K -function:

KSC (Z) = 2_1 + z.
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Example 39 Marchenko-Pastur distribution

One other distribution plays important role in free probability theory. It has the

following K -function:
1 A

Kyp (u) —54— T
This distibution is called the Marchenko-Pastur distribution because this distribution
was discovered by Marcenko and Pastur (1967). They discovered this distribution as
a limit eigenvalue distribution for a so-called Wishart matrices. Consider a rectangu-
lar n-by—m matrix X with independent Gaussian entries that have zero expectation
and variance equal to 1/n. Consider matrix Y = X’X. This matrix is called the
Wishart matrix with parameters (n, m). Suppose that n and m grow to infinity but in
such a way that n/m approaches a limit A > 0. Marchenko and Pastur discovered that
the distibutions of eigenvalues of this matrix converges to a distribution that depends
on the parameter A. This distribution is called the Marchenko-Pastur distribution.

Let us compute the shape of this distribution. Inverting the /K -function we get:

1—)\+z—\/(1—)\+z)2—4z
2z '

It follows that the continous part of this distribution is concentrated on the interval

{(1 - \/X)Z, (1 +\/X)2}

GMP (Z) =

and the density is

\/4:c— (1—A+x)°
Jarr (@) = 2nx '
In addition, if A < 1, then there is also an atom at zero with the probability weight
11—\

This distribution is also called the free Poisson distribution because it can be
obtained as a limit of free additive convolutions of Bernoulli distributions, and in
the classical case a similar sequence of convolutions would converge to the Poisson

random variable.
There are two other functions directly related to the /K -function, which appear
often in the literature.

Definition 40 The function Ry (z) = Kx (2) — 27! is called the R-transform of the
random variable X.
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The funciton Ry (z) is holomorphic around z = 0. Its usefulness stems from the
fact that Rxy (2) = Rx (2) + Ry (2) . We will prove this fact in the next section.

Definition 41 Let Fy () = 1/Gx (2) and Fx (2) is the functional inverse of
Fx (2) in an open set of the upper half-plane, which includes infinity. Then ¢ (2) =
Fx (2)Y = 2 is called the Voiculescu transform of the random variable X .

The definition of Voiculescu transform is especially useful when the random vari-
able X is not bounded. In the case when X is bounded, ¢ (2) = Rx (27!) =
Kx (271) — z. Again the main property of this function is that o v,y (2) = px (2) +
ey (2).

Note that if X is self-adjoint and s is its spectral probability measure, then the
K-function, R-transform, and Voiculescu transform depend only on . We will say
that these functions are the K -function, R-transform, and Voiculescu transform of
the measure /.

6.1.3 Addition formula

Theorem 42 (Voiculescu’s Addition Formula)

Let Yy and Y, be two free bounded non-commutative random variables with the
Cauchy transforms Gy, (z) and Gy, (z), and let Ky, (z) and Ky, (z) be two cor-
responding K -functions. If Y3 =Y, + Y5 then the K -function of Y5 can be computed
as

Ky, (2) = Ky, (2) + Ky (2) = 7.

This theorem plays a central role in the theory of additive free convolutions. Ini-
tially, the theorem was proved by Voiculescu using the Helton-Howe formula for
traces of commutators of Toeplitz operators. Then it was simplified by Haagerup,
who avoided using the Helton-Howe formula. Both Voiculescu and Haagerup worked
with bounded random variables. Later, Maassen generalized the Voiculescu addition
formula to the case of unbounded operators with finite variance, and Bercovici and
Voiculescu further generalized these concepts to the general case of unbounded ran-
dom variables. This development was especially important as it allowed the transfer
of a large body of classical results about infintitely-divisible measures to the case of
additive free convolutions.

Here we will prove the theorem only for bounded random variables.
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6.1.4 Proof #1

Consider the following random variable:
X = a+Zxk (a)F,
k=0

where a and a* are the creation and annihilation operators acting on the Fock space.
Define the symbol of X as

Kx(z)=z2"+ Zxkzk.
k=0
Lemma 43 The symbol K x (z) is the K-function of X in the sense of Definition 36.
Proof: Since Gy (z) = E [(z — X)_l] , our task is to show that
E[(K(z)-X)"] ==
We start with computing how K (z) — X acts on
w, =: &+ Z 2"e®™,
n=1
(The series is well defined for |z| < 1.) Note that

awz:€+zzne®n: (wz_g)/z7
n=1

and
o
a‘w, = 2€ + 5 2e®=1) — ..
n=2

Therefore,

In other words,
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Now, recall that K (z) has a pole at z = 1. That means that for all z in a sufficiently
small circle around 0, we have |K (z)| > || X||. Consequently, operator K (z) — X
1s invertible, and we can write:

(K (2) = X)7' € = zw,.
Hence,

E[(K(z)-X)"] = (&(K(2)—X)7'¢)

= (& z2w,) = 2.

QED.

Proof of Voiculescu’s addition theorem:

Let A and B be arbitrary free random variables with the Cauchy transforms
G4 (2) and G (2) . Let the corresponding K -functions be K4 (z) and Kp (2) and
define the Toeplitz variables X and Y as the variables that have these functions as
their symbols. Then by Lemma 43, X and Y have the same K -functions as A and
B. Therefore they have the same Cauchy transforms and the same moments, and
therefore X and Y represent A and B, respectively. Consequently X + Y repre-
sents A + B. In particular, X + Y has the same K-function as A + B. But by
Theorem 33, X + Y is equivalent to the Toeplitz variable Z that has the symbol
Kz (2) = Ka(2)+ Kp (2) —271. Hence, both X +Y and A + B have a K-function
equal to Kz (2) = K4 (2) + Kp(z) — 2. QED.

Alternatively, we could avoid using Theorem 33 and prove the following lemma
directly.

Lemma 44 Let X = ay + Y o0 2% (a})* and Y = ag + 300, yx (a3)". Then

Groy (K () + Ky (- 1) ==

Proof: We need to prove that

E

= Z.
z

(Kﬂ@+Kﬂ@—1—X—Y)1

First, we investigate how Kx (z) + Ky (z) — 27! — X — Y acts on
p. =1+ 2" (e1+e)",
n=1
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where (e; + e3)" is a short notation for the sum of tensor products of e; and e,
obtained from expansion of the tensor product (e; 4 e5)®™ . (The series for p, is
well-defined for |z| < 1/2.)

First, note that

(a1 +a2) p Zz (e b et =228

and N
(ai)k P, = (a’;)kpz = Zkf + Z ZnJrk (61 + €2>n = kaz‘
n=1
This implies that
— 1 1

z

and therefore that
1 3

If 2 is sufficiently small, such that | Ky (2) + Ky (z) — 27! > || X|| + [|[Y||, we can
invert the operator on the left of the previous equality and get:

(KX(Z)—I—KY(,Z)—%—X—Y)_lfzzpz.

Therefore,

E(KX(Z)—FKy(Z)—%—X—Y)l = <f,(Kx(Z)+KY(Z)_%_X_Y>1€>
= (§zp,) =2

QED.

6.1.5 Proof #2

This proof was found by researchers who studied random walks on free products of
discrete groups (see: Figa-Talamanca and Steger (1994)). It was found at about the
same time as Voiculescu’s proof but is less well known. Recently this proof was
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revived by Lehner (1999) The advantage of this proof is that it does not require the
machinery of the operators acting on Fock space.

Let X and Y are two free operators. Let Rx (z) = (z — X) ' and Ry (2) =
(z—Y)™' ie, Rx () and Ry (=) are resolvents of operators X and Y, respectively.
The the Cauchy transforms are simply expectations of these resolvents: Gx (z) =
E(Rx (2)) and Gy (2) = E(Ry (z)). We are interested in computing Gx .y (2),
so we start with a calculation of Rx .,y (z), thatis, of (z — (X +Y)) " . It is based
on the following Proposition:

Proposition 45 Let (I — X) " = I+Sx, (I = Y) " = I+Sy,and (I — (X +Y)) " =
I+ Sxiy. Then

Sxev =3 D . SuSuSi (12)
n=1
where 1, take values X orY.

Proof: First, we claim that

00 SX SY -1
1 Si Sy Si, = (1 — — : 13
Indeed, we can split the epxreission on the left-hand side of (13) into 4 parts:

(1) = I+ SxSy+ SxSySxSy + ...
[ .
I — SxSy’
(2) = Sx+SxSySx + SxSySxSySx + ...
T I-SxSy
(3) = SySx + SySxSySx + SySxSySxSySx + ...
= SyﬁSX, and
(4) = Sy + SySxSy + SySxSySxSy + ...
— VI SxSy
In words, (1) are those terms that start with Sx and end with Sy (and also I), (2) are
those that start with Sx and end with Sy, (3) are those that start with Sy and end

with Sy, and (4) are those that start with Sy and end with Sy
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Now we can compute:

I
I
<3> + <4> = Sym (I + Sx) , and
I
H+R+)+M = ([+5) 77— I+5%). (14)
I — SxSy
On the other hand, we can compute
S _ _
P Y = (T4 Sx) (I +Sx)(I+Sy)(I+Sy)™

I+Sx I+Sy
—(I4Sx) " Sx (I +Sy)(I+Sy)"
—(I+Sx) " (I + Sx) Sy (I + Sy) ™"
= (I+8x)" (I = SxSy)(I+Sy)™".

Consequently,
Sx Sy \ 7
I— — =UI+Sy) ————
( I+ Sx I+SY> I+ Y)]_SXSY

Comparing (14) and (15), we conclude that (13) holds.
Note that by assumption Sx (I + SX)71 = X and Sy (I + Sy)il =Y. There-
fore,

(I + Sx) (15)

Sx Sy \ L
I — — =(I—-(X+Y =/+S .
( I+ Sy I—i—Sy) (I - (X+Y)) + Sx+v
Hence,
XY ; Zil?’fiﬂém#in ! "
QED.

To use the property from the definition of free probabilities we would like Sy and
Sy to have zero expectation. For this purpose it is useful to reformulate the previous
proposition in a slightly different form, which is less beautiful but easier to apply in
our case

Proposition 46 Let two functions fx (z) and fy (2) are given and suppose that
fx(z)=2"1+01)and fy (z) = 271 + O (1) for small z. Suppose also that

(fx (z) = X) ' =2 (I +5x(2)),
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(fy (2) =Y) ' =2 (I + Sy (2)),

and

(2 4 fx () + fr () = (X +Y)) T =2(I+ Sxaiy (2))

for some operator-valued functions Sx (z), Sy (), and Sx iy (z) . Then

Sxav () =3 D . . Su(2) Sk (2) 8 (), (16)
n=1

where 1;, take values X orY.

Proof: We can still apply formula (13) and write

S _ Sx (2) Sy(z) \
I+; 2ttt 51 (2) 81 (2) 5 (2) = ([ CI+Sx(z) I+Sy (2)) '

(17)
Next, we calculate Sx (2) (I + Sx (2)) ' = 1—zfx (2)+2X and Sy (2) (I + Sy (2)) ' =
1 — zfy (2) + 2Y. Therefore,

(1 - f);fzz) - fysfzz)>_l == (—% T fx (2) + fr (2) = (X + Y)) -

In combination with (17), this gives:

1 [o¢]
T hRE A - Y) ([ t 22 i, S0 (2) S ) S, <Z>> -
(18)

QED.
Now we can prove the addition formula. Indeed, take fx (z) = Kx (2), that is,
the functional inverse of the Cauchy transform, and define Sy (z) as in the previous

proposition:
I

T Ky(z) - X'
This is possible because Kx (2) = 27 + O (1) near zero. Then, taking the expecta-
tion on both sides and using the definition of the Cauchy transform, we can write:

I
Kx(Z)—X

2z (I + Sx (2))

Elz(I+Sx(2)] =E = Gx (Kx (2)) = 2.

It follows that £/ (Sx (z)) = 0 for every z, for which Sx (z) is defined. Similarly,
E (Sy (2)) = 0. Also Sx (z) and Sy (z) are free.
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Then we take expectation on both sides of (18) and use the main property of free
variables to obtain:
> 1
1+ Kx(2) + Ky (2) = (X +Y)

It follows that the functional inverse of the Cauchy transform for X + Y is equal to
—271 4+ Kx (2) + Ky (2) . That is,

Kx.y (Z) =21 + Kx (Z) + Ky (Z) .

QED.

6.2 Multiplication

If X and Y are free, we can consider their product XY. The moments of XY are
determined uniquely by moments of X and Y. Below we will see that there is an
efficient way to calculate them. Before this we want to address a question if we
can define a concept of free multiplicative convolution similar to the concept of free
additive convolution. Let X and Y be two free self-adjoint random variables with
the spectral probability measures p and v. The difficulty is that even though X and
Y are self-adjoint their product is in general not self-adjoint and so we can define
its spectral probability measure. Moreover, apparently there is no guarantee that the
moments of the product XY correspond to moments of a probability measure on the
real line.

However, at least in the case of non-commutative probability space with tracial
expectation, the following results holds.

Theorem 47 Let X and Y be positive self-adjoint variables in a non-commutative
probability space with tracial expectation. Then the k-th moments of random vari-
ables XY, Y X, X2V X2 Y2XYV? are the same:

2(xv)) = 2 (X)) = B ((x2yx)) = B ((v7exy))
for any integer k > 0.
The proof is obvious from the definition of the tracial expectation. Note that for

this result we do not even need freeness of variables X and Y.
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Since X'/2Y X'/2 is self-adjoint, this theorem shows that in non-commutative
probability spaces with tracial expectation, moments of the product XY equals mo-
ments of a probability distribution on the real line. This probability distribution
equals the spectral probability distribution of both X/2Y X2 and Y/2XY'/2. In
view of this we introduce the following definition.

Definition 48 Let ;1 and v be the spectral probability measures of free positive self-
adjoint random variables A and B, respectively. Then the spectral probability mea-
sure of AY2BAY? is called the free additive convolution of measures 1 and v, and
denoted X v.

For calculation of moments of the product XY, we introduce the S-transform. .
It was also invented by Voiculescu. Here is how it is defined.
Let A be bounded operator in a non-commutative probability space. Define

Uy (2) :E(l_le) —1=) E(A%)" (19)
k=1

If £ (A) # 0, then in a sufficiently small neigborhood of 0, an inverse of 1 4 (2) is
defined, which we denote as ¢/ ;" (2) . The S-transform is defined as

5061 = (141) 03t ), 20)

In other words, from (19) and (20) the defining functional relation for S (2) is as
follows:

1
E(l_ _ SA(z)A>:1+Z‘ 21)

142

Now, let us write out several first terms in the power expansions for 1 (z),
Y7 (2),and S (2) . Assume for simplicity that £ (4) = 1.

VY (2) = z+me2® +ms® 4.,
Vv (z) = z—mp2® — (my—2md) 2 + ..,

S(z) = 14 (1—ma)z+ (2mj —mo —ms) 2° + ...

The main theorem regarding the multiplication of free random variables was
proved by Voiculescu. The original proof by Voiculescu (1987) was very compli-
cated. We give here Haagerup’s simplified version (1997).
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Theorem 49 (Voiculescu’s multiplication formula) Suppose X andY are bounded
[free random variables. Suppose also that E (X) # 0 and E (Y') # 0. Then

SXY (Z) = SX (Z) Sy (Z) .

Proof: Consider the following random variables: X = (1 +a4) f (a}) and Y =
(14 az) g (a3), where a; and ay are two creation operators, a; and aj are corre-
sponding annihilation operators, and f (z) and g(z) are two functions analytical near
z = 0 and such that f(0) # 0 and ¢ (0) # 0. The variables X and Y are clearly free.
The claim is that:

1. Every variable A with £/ (A) # 0 can be represented as (1 + a) f (a*), where
f (a*) is an appropriate function; and

1 1 1
[ R TE Mk TS PTE

For the first claim, recall that by Lemma 30, p. 31, every bounded random vari-
able A can be represented by a Toeplitz random variable of the following form:
a + g (a*), where g (z) is a function analytic in a neighborhood of z = 0. Then

Sx =

we can define . )
1+ zg(2
/(2= 1+2z
Note that this implies that: 1) f (z)is analytic in a neigborhood of z = 0 and the
constant term in its Taylor expansion equals 1, and 2)

(1+z)f(z)—1‘

z

9(z) =

Then we can write:

fz) -1

(1+a)f(a*) = f(a*)+a+ .

- zf(2)+1f(2) =1

z=a*

= a+g(a").

Therefore, every random variable A can be represented by a Toeplitz random variable
of the form (1 + a) f (a*).
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Now let us turn to the second claim. To calculate Sy (z) (and prove that Sy (z) =
1/f (2)), we will aim to find such a state w, that for some function & (z) , the operator
h (z) — X annihilates w., i.e., (h (z) — X)w, = r (z) £, where ¢ is the vacuum vector
and 7 (z) is some other function. Then w./r (z) = (h(z) — X) "¢ and we can
calculate £ ((h (z) — X)_l) as (&, w,) /r (z) . This clearly will allow us to compute
Sx (z).

Thus, we are looking for a quasi-eigenstate w, that has the following defining
property:

Xw,=h(Z)w, —1(2)¢.
It turns out that w, = £+ Y | 2"e] is exactly what we need. (We can also write
w,=(1- zal)_l ¢.) First, it is easy to see that the following two formulas hold:

1
W, = Z (wz - S) > and
Gw, = 2w,.

The second formula implies that f (a}) w, = f (z) w,. Therefore,

Xw, = (14+a)f(2)w,

= 1) (et - 0)
- f<z)(1izwz—§§>, (22)

which has the desired form.

Therefore,
<f(z) 1—:,2 —X)wzz f(Z)g'

Since f (0) # 0, the operator on the right-hand side is invertible for all sufficiently
small z and we have

w, = (f(z)

ljz_X>_1f(z)

z

- ()

§

Therefore,

z

E(l—mX) =1 +2)w,)=1+2z.

50



Comparison with (21) shows that Sx (z) = 1/f(z). The proof for Sy (z) is
similar.

A harder problem is to find a quasi-eigenstate for XY = (1+ay) f (a) (1 + a2) g (a}) .
It turns out that an appropriate state is

0. = (1—z(ay+as+ara)) '€

— §+Zz"(el+eg+eleg)”.

n=1

First, we have

oo
n—1
ayo, = E 2" (e1 4+ ex+ejer) " = zo,,

n=1

and therefore

and
(1+a2)g(az)o.=g(z)(1+az)o0..
Next, we note that

aio, = (1+e) Z 2" (e1 +ex + eleg)"fl

This implies that
and therefore

Altogether we get

XYo. = (14a)f(a))(1+a)f(a3)o
= f(2)g(z)(1+a)(+as)o,.

However,

(I1+a)(1+ax)o, = o, + Z 2" (e1 + ey + 6162)n+1

n=1
_ O'z‘i‘o-z_g
z
+1 1
= z O—z__g'
y4 y4
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Therefore,

XYo.= (o) (- 1)

This equation has exactly the same form as equation (22). Therefore we can re-
peat the arguments that we made after equation (22) and conclude that Sxy =
1/(f (2) g (z)) . This implies that Sxy = SxSy. QED.

Here is an application of the multiplication formula. For a probability distribution
on the real line, 11, we intoduce the following notation:

E(p) = /tdu (t), and
Var () = [ £dule) - (Bn).
Theorem 50 Suppose that ji; are probability distributions such that E (u;) = 1. Let
p = W R,
Then Var (u™) = Y7 Var (y,) .

Proof: Let X; be self-adjoint variables with distributions y,. Then EX? =
my > 1. We can write

Sx, (2) =1+ (1 —=mz+ ...
Then
S, (=) =[] Sx () =1+ (1 - m;”) P
From this we can conclude that £ (II2) = 1 — >_" | (1 - méi)> yor BE(I2) — 1 =

S (mg) — 1) . In other words, Var (™) = """ | Var (). QED.
This interesting observation does not have an analogue in the case of multiplica-
tion of classical random variables.

7 Analytical Properties of Cauchy’s Transforms and
Their Functional Inverses

The main tools for investigating free convolutions of probability measures are Cauchy
transforms and their functional inverses. It is important to know answers to the fol-
lowing questions:
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1) Are Cauchy transforms in one-to-one correspondence with probability mea-
sures?

2) How can we compute a probability measure from its Cauchy transform?

3) How are properties of Cauchy transforms related to properties of correspond-
ing probability measures?

4) How is the convergence of Cauchy transforms related to the convergence of
probability measures?

3) Which analytical properties distinguish Cauchy transforms among all other
analytic functions?

We can ask similar questions about functional inverses of Cauchy transforms. In
addition, we have a very important question about the relation of properties of the
Cauchy transform to properties of its functional inverse. In this section we compile
answers to these questions.

We will call a function holomorphic at a point z if it can be represented by a
convergent power series in a sufficiently small disc with the center at z. We call the
function holomorphic in an open domain, D, if it is holomorphic at every point of
the domain. Here D may include {co}, in which case it is a part of the extended
complex plane C U {oco} with the topology induced by the stereographic projection
of the Riemann sphere on the extended complex plane.

The integral representation of the Cauchy transform shows that the Cauchy trans-
form of every probability measure, G (z) , is a holomorphic function in

Ct={z€C|Imz > 0}

and
C ={z€C|Imz < 0}.

If in addition the measure is assumed to be supported on interval [—L, L], then the
Cauchy transform is holomorphic in the area 2 : |z| > L, where it can be represented
by a convergent power series of 27! :

Giz) ==+ —+—+... (23)

Here m;, denote the moments of the measure y:

mk:/oo thp (dt) .

e}

In particular, G (z) is holomorphic at {oco} .
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In general, for an unbounded probability measure, series (23) is not convergent.
In this case, the main tool for the study of properties of the Cauchy transform is the
so-called Nevanlinna representation. We repeat the statement and refer for a proof to
the book by Akhieser (1961).

7.1 Properties of Cauchy transforms

Representation formulas and characterization

The basis for the analysis of the Cauchy transform of a non-necessarily bounded
probability measure is the Nevanlinna representation theorem. The theorem charac-
terizes the analytic functions that map the upper half-plane to itself. The formula is
the natural outgrowth of the remarkable Schwarz formula that represents a function
analytic in a neighborhood of a disc through the values of its real part on the boundary
of the disc.

Theorem 51 (Schwarz’ formula) Suppose f (z) is a function analytic in the disc
|z| < 1. Then there exists a real C such that for any z in the disc |z| < R < 1, the
following formula holds:

1 [T Re? + 2

f(Z) =1C + % B mU(R,Q) do,

where u (R, 0) = Re f (Re').

The proof is very ingenious. First, the Cauchy formula is adjusted by adding a
(non-analytic) function so that the kernel in this formula is real on the circle with
radius R. By taking the real part, it follows that the real part of f (z) inside this circle
equals to the integral of the real part.of f (z) on the circle against the kernel. Then
we find an analytic function that has this kernel as its real part on the circle. If we
substitute this function as the new kernel we obtain the representation of f (z) as the
integral of Re f (z) against this new kernel. We wil skip the details.

From the Schwarz formula it is easy to get the following theorem:

Theorem 52 (Herglotz’ Representation) Let f (z) be a function, analytic inside
the unit disc and taking values in the upper half-plane. Then f (z) has a unique
representation of the form

i [T e+ 2

f()=C+ —

2 | e — 2

do (). (24)
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where o (0) is a non-decreasing real-valued function of finite variation and C'is a
real constant. Conversely, if (24) holds then f (z) is an analytic map of the unit disc
to the upper half-plane.

And next a change of variables gives the characterization of functions that are
analytic in the upper half-plane and map the upper half-plane to itself. Akhieser calls
these functions the Nevanlinna class.

Theorem 53 (Nevanlinna’s Representation) Function f (z) is an analytic map of
the upper half-plane to itself if and only if it has a unique representation of the form

dr (u). (25)

where T (u) is a non-decreasing function of finite variation, | and v are real and
p = 0.

An important property of the Cauchy transforms that follows from the Nevanlinna
representation is as follows.

Theorem 54 The following statements are equivalent.
i) A function, G(z), is the Cauchy transform of a probability measure on R;
ii) G (z) is a holomorphic function mapping C* (the open upper half-plane) to C~
(the open lower half-plane) and
lim G (iy) = 1, (26)

y—00
iii) G (2) is a holomorphic function mapping C* to C~ and

lim  2G(z) =1, (27)

z—00, 2Ny

whereT',, = {z € CT"|Rez < almz}.

Remark: The notation 2 — oo, z € I', means that z approaches oo along any
sequence of values of z that belong to I',. We will say that z approaches oo in the
setT',,.

For proof, see Proposition 5.1 in Bercovici and Voiculescu (1993).

The Perron-Stieltjes inversion formula
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Theorem 55 Measure 11 (B) can be recovered from its Cauchy transform G (z) by
the formula

1
p(B)=——lim [ ImG (z + ie) dx,
v Elo B

which is valid for all Borel B such that 1. (0B) = 0.

For proof of this theorem, see Akhieser (1961). A simple concequence of the
Perron-Stieltjes inversion formula is the following result, which we will need later.

Lemma 56 Suppose that

1) G (z) is the Cauchy transform of a compactly supported probability distribution,
1, and

2) G (z) is holomorphic at every z € R, |z| > L.

Then the support of y lies entirely in the interval [—L, L] .

Proof: From assumption 1) we infer that in some neighborhood of infinity G (z)
can be represented by the convergent power series (23) and that G/( z) is also holomor-
phic everywhere in C* and C~. Therefore, using assumption 2) we can conclude that
G (z) is holomorphic everywhere in the area |z| > L, including the point at infinity.
It follows that the power series (23) converges everywhere in the area |z| > L. Since
this power series has real coefficients we can conclude that G(z) is real for z € R,
|z| > L. Also, since G(z) is holomorphic and therefore continuous in |z| > L, we
can conclude that lim. o Im G/(z + ic) = 0. Then the Stieltjes inversion formula im-
plies that y ([a, b)) = 0 for each pair of @ and b which belong to || > L and such that
i (a) = 0and p(b) = 0. It remains to prove that this impies that p {|z| > L} = 0.

For this purpose, note that the set of points € R, for which u(x) > 0 is at most
countable. Indeed, let S be the set of all « for which p(x) > 0. We can divide this set
into a countable collection of disjoint subsets Si, where k are all positive integers and
S = {z|k™ > p{z} > (k+ 1)71} . Clearly, every Sy, is either empty or contains
a finite number of points x. Otherwise, we could take an infinite countable sequence
of z;, € Sk, and we would get (by countable additivity and monotonicity of 1)
that 11 (S;) > >, p(xix) = +oo. By the monotonicity of p we would further get
i (R) = 400, which would contradict the assumption that 1 is a probability measure.
Therefore, S is a countable union of finite subsets .S), and hence countable.

From the countability of S we conclude that the set of points x, for which p (x) =
0 (i.e., S°), is dense in the set |x| > L. Indeed, take an arbitrary non-empty interval
(a, 8) . Then («r, 8) NS¢ # (), since otherwise («, 3) C S and therefore S would
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be uncountable. Hence S° is countable. This fact and the countable additivity of
w implies that p ({|z| > L}) = 0. Indeed, using the denseness of S¢ we can cover
the set {|z| > L} by a countable union of disjoint intervals [a, b], where i (a) = 0
and p(b) = 0. For each of these intervals, y ([a,b]) = 0, and therefore countable
additivity implies that p ({|z| > L}) = 0. Consequently, 1 is supported on a set that
lies entirely in [—L, L] . QED.

Convergence of Cauchy transforms and weak convergence of probability
measures

Theorem 57 If j1, — 1 weakly, then G, (z) — G, (2) uniformly on compact sub-
sets.

Proof Write

G2 G| = | [ a0~ [ Lduto)]

z—1 z—1

Since (z — t) " is bounded and continuous in ¢ for every z € C*, we can conclude
that this difference converges to zero for every z € C*. Moreover, the family f, (t) =
(z — t)_l is equicontinuous for z in a compact subset of C*. This implies that the
convergence of the difference to zero is uniform in z in a compact subset of C*.
QED.

Usually we are interested in the opposite direction. For this, we cite the following
theorems that relate the closeness of two Cauchy transforms with the closeness of the
corresponding probability distributions. These theorems were proved by Bai (1993).
The first is for arbitrary probability distributions on R, and the second is for the
distributions on R that have compact support.

Theorem 58 ((Bai (1993))) Consider probability measures with distribution func-
tions F and G and let their Cauchy transforms be Gx (z) and Gg (z2) , respectively.
Let z = x + 1y. Then

1 * . .
wl#(0) - 6@ <~ | [ (6o (ot i) = Golo+in)lds

—I—lsup/ G (z+u) —G(z)|dul| ,
Y = |ul<2yc

where c and vy are related by the following equality

1/ 1 dr > 1
7 s |x\<c1+x2 2
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Theorem 59 (Bai (1993)) Let probability measures with distribution functions F
and G be supported on a finite interval |—B, B| and let their Cauchy transforms
be G (z) and Gg (2) , respectively. Let z = u + iv. Then

1 A
|7 (0) -G <~ | [ 16 - Go (@9

1
L / G +y) _g<x>|d4 |
ly|<2vc

UV =z

4B
w(A—B)(2y-1)

1 / 1
v =— 5 du.
m ‘u|<cl—|—u

7.2 Lagrange’s formulas for the functional inverse

where A > B, k =
following equality

< 1,v > 1/2, and c and ~ are related by the

Here we list and prove very useful results about functional inverses of holomor-
phic functions. By function holomorphic in a domain D we mean function which
is bounded and differentiable in D. These formulas are originally due to Lagrange
(see “Nouvelle Methode pour Resoudre les Equations Litterales par le Moyen des Se-
ries” (1770) on pp. 5-73 in Lagrange (1869)) and the most typical inversion formula
is as follows:

Lemma 60 (Lagrange’s inversion formula)
Suppose f is a function of a complex variable, which is holomorphic in a neighbor-
hood of zy = 0 and has the Taylor expansion

f(z) =a12+ Z ap?”,
k=2

with ay # 0 and converging for all sufficiently small z. Then the functional inverse
of f (z) is well defined in a neighborhood of 0 and the Taylor series of the inverse is
given by the following formula:

o0

) = a—ul + Z E res ﬁ} u”,

k=2

where res,—,, denotes the Cauchy residual at point z,. Alternatively, we can write:

ST LS ol B S B
/ <u>—a1+k§;{m7{ﬂz)k} |
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where vy is such a circle around 0, where [ has only one zero.

For the modern proof see Markushevich (1977), Theorems I1.3.2 and 11.3.3, or
Whittaker and Watson (1927), Section 7.32. We also need the following modification
of the Lagrange formula, which says how to invert a function in a neigborhood of
infinity.

Lemma 61 Suppose G is a function of a complex variable, which is holomorphic in
a neighborhood of zy = oo and has the expansion

a; a
G(z):a0+—1+—§+...,
z oz

converging for all sufficiently large z, where a; # 0. Define g(z) = G(1/z). Then
the functional inverse of G (z2) is well defined for large z. The inverse is meromorphic
in a neighborhood of 0 and Laurent’s series of the inverse is given by the following
formula:

1 - ai % _ > lif dz . n
G (w) = w — ag * aq Z [n 2mi Jo, 22 (g(2) — ag)" (w=ao)”,

n=1

where 7y is a closed disc around 0 in which g(z) has only one zero.

Proof: Let -y be a disc around 0 in which g(z) has only one zero. This disk exists
because ¢ (0) = 0, and g (2) is analytical in a neighborhood of 0 and has a non-zero

derivative at 0. Let )

w = = inf .

r =75 inf Ig(2)

Then r,, > 0 by our assumption on . We can apply Rouche’s theorem and conclude
that the equation g () — w = 0 has only one solution inside v if |w — ag| < r,,. Let

us fix such a w that |w — ag| < r,,. Inside , the function
g'(2)
z(9(2) —w)

has a pole at z = 1/G~!(w) with the residual G~!(w) and a pole at = = 0 with the
residual a;/ (ap — w). Consequently, we can write:

G—l (w) _ 1 f; g,(Z)dZ + ay

2w Ja, 2 (9(2) —w) | w—ag

59



The integral can be re-written as follows:

g'(2)dz B q(2) 1 .
]{972(9(2)_@0—(711—@0)) B jévz(g(z — 1_Md

g(z)—ao

- i]{% 2 ( )dz)n—‘rl (w —ag)" .

For n = 0 we calculate

1 f gd(z)dz  ay
2mi Jo 2 (9(2) —ao) a1’

Indeed, the only pole of the integrand is at z = 0 and it has order two. The corre-
sponding residual can be computed from the series expansion for g(z):

YO iRt
reszzom o @z(aw—i-agz?—l—..) 2=0
o d 1+ (2a2/ay) z + ... _ap
T Bt ()it |y @

For n > 0 we integrate by parts:
1 7{ g'(2)dz 11 7{ dz
2mi oy % (g(Z) — ao)n+1 2min By 22 (g(Z) — ao)n '
QED.

Most often we will use this Lemma to invert the Cauchy transform of a probability
distribution and so we formulate a Corollary:

Corollary 62 Suppose G is a function of a complex variable, which is holomorphic
in a neighborhood of zy = oo and has the expansion

converging for all sufficiently large z. Define g(z) = G(1/z). Then the functional
inverse of G (z) is well defined in a neighborhood of 0 and Laurent’s series of the
inverse is given by the following formula:

1 . [1 1 dz
—1 _ - - o n
G (’U)) - w + ax 7;:1: |:n27TZ é 2 n:| w,

, 229(2)

where 7y is a closed disc around 0 in which g(z) has only one zero.
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Here is another modification of the Lagrange inversion formula. This time it says
how to invert a function near the point where it has a simple pole.

Lemma 63 Suppose f is a function of a complex variable, which is meromorphic in
a neighborhood of zy = a and has the expansion

f(z) = z_a+co+cl(z a)+ ...,

converging for all z sufficiently close to a.. Then the functional inverse of f (z) is
well defined in a neighborhood of oo and Laurent’s series of the inverse is given by
the following formula:

where 7y is a closed disc around a in which 1/ f(z) has only one zero (at z = a).

Proof: The proof is similar to the proof of the previous Lagrange formulas. First,
letg(z) =1/f(2) and w = 1/u. Then g (z) maps z = a to w = 0. Note that for all
sufficiently small w

29 (2)
g9(z) —w
has the only pole at 2 = ¢~ ! (w) and the residual is g~! (w) . Then we can write:
1 /
7w = o [ 22
2mi Jo, 9(2) —w
1 E 29’ (2) &
= w” | dz
21 J o,y _% g (Z)kH

|1 1/ dz ,
= a-+ —— — | w",
; _277'2 k' oy g (Z)k]

where we used integration by parts.

Therefore,
- 1
k
Z [27?2]{:/ (2) dz} ub”
QED.

The Lagrange inversion formula can be illustrated by the following application,
in which we estimate the power series coefficients of a K -function.
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Lemma 64 Suppose that the measure i is supported on interval [—L, L] , and K (z)
denotes the functional inverse of its Cauchy transform G (z) . Then the Laurent series
of K (z) converge in the area 2 = {z : 0 < |z| < (4L)_1} . Write these series as

K (z2)= ——i—Zbkzk
k=0
Then or
ol < 2% (ar)*

Proof: Let us apply Lemma 61 to G (z) with circle v having radius (2L) " . We
need to check that g(z) =: G (1/z) has only one zero inside this circle. It holds
because

9(z) =z (1+ a2 +as2’ + ...)

and inside |z| < (2L)”" we can estimate:

2 3
‘CLQZQ + a3z + | < I? . + L? L + ... = ! (29)
- 2L 2L 2’

and an application of Rouche’s theorem shows that g () has only one zero inside this
circle.
Another consequence of the estimate (29) is that on the circle |z| = (2L) "

9 (2)| = [2] /2 =1/ (4L).

By Lemma 61 the coefficients in the series for the inverse of G (z) are

b — 1 j{ dz
" omik o0y 229(2)F

and we can estimate them as
2L
bl < 5 (4L)". (30)

This implies that the radius of convergence of power series for K (z) is at least
(4L)"". QED.

Corollary 65 Suppose that the measure | is supported on interval [—L, L| and by
and by denote its first and second moments. Then for all z, such that |z| < (2L) ",
the following inequality holds:

1
K (2)— ~—bo—biz| < 8L2>.
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Finally, we can also invert a fiunction at a neighbourhood of a critical point. In
this case the inverse will be multivalued.

Lemma 66 (Lagrange’s inversion formula) Suppose f is a function of a complex
variable, which is holomorphic in a neighborhood of zy and has the Taylor expansion

o0

F(z)=wo+ax(z—20) + Y an(z—2)",

n=k+1

with ay, # 0 and converging for all sufficiently small z. Then the functional inverse of
f (2) is a multi-valued analytic function in a neighborhood of wy that has a branch
point at wy and it can be represented by the following series:

fH(w) =2+ Z l% Zr:ezso zp(z)n} (w— wo)n/k 7

where res,_, denotes the Cauchy residual at point zy, and 1) (z) denote any single-
valued branch of the function 1/ [f (z) — wo]l/k :

For the proof see Theorem I1.3.6 in Markushevich (1977).

8 Free Infinitely Divisible Distributions

8.1 Additive infinitely divisible distributions
8.1.1 Characterization

The measure p is infinitely-divisible if for any n it can be represented as

= pryyn BBy,

where B denotes free additive convolution and there are n terms in the sum.

Analytically, this property means that the Voiculescu transform of the measure
is n-divisible for every n. (See page 41 for the definition of the Voiculescu transform).
That is, if ¢, (2) denotes the Voiculescu transform of measure y, then ¢, (2) /n
must be the Voiculescu transform of a probability measure for every n. Here are two
examples:

Example 67 Semicircle distribution
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The Voiculescu transform of the semicircle distribution is

gosc<z>=f<sc(1) Lot

z z

This function is clearly n-divisible because 1/ (zn) can be obtained simply by rescal-
ing of the original measure.

Example 68 Marchenko-Pastur distribution

The Voiculescu transform of the Marchenko-Pastur distribution is:

orir(2) = Kup <1) .

Az
z—1

Again, it is evident that this function is n-divisible: ¢,,p (z) /n is simply the Voiculescu
transform of another Marchenko-Pastur distribution with parameter \/n.

Example 69 Compound Marchenko-Pastur distribution

It is easy to check that ¢,y (2) = apy (z/a) . Therefore, the Marchenko-Pastur
distribution with parameter \ and scaled by a, has the following Voiculescu transform

alz

ple)=——

This distribution is also evidently infinitely-divisible, as well as the sum of a finite
number of such distributions, which has the Voiculescu transform:

pl)=Y 2 31)

Z—a;
i=1 v

If the following integral is well defined and corresponds to a Voiculescu transform of
a probability distribution, then this distribution is also infinitely-divisible:

()= [ o). (2)

where o (s) is an non-decreasing function of s. We can call this probability distri-
bution a compound Marchenko-Pastur distribution. Intuitively, we can think about
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this distribution as the superposition of the Marchenko-Pastur distributions that have
size a = s and intensity A = s. The amplitude (density) assigned to each of these
distributions is given by do (s) . For example, if we write (31) in this formula then
o (s) has jumps at a; and the size of the jump is b;/a;.

This example motivates the following theorem:

Theorem 70 (Bercovici-Voiculescu (1993)) (1) A probability measure is infinitely
divisible if and only if it has an analytic coninuation defined everywhere on Ct with
values in C~ U R.
(2) An analytic function ¢ : C* — C~ is a continuation of v, for infinitely divisible
W if and only if

lim  ¢(2)/2=0

|z]—00,2€T
for some o > 0.

(3) The following representation holds for ¢, when (i is an infinitely divisible proba-
bility measure:

0
¢#=a+/ 5% o (s), (33)

where o is real and do is a finite measure

Remark: Note that

Y

z—8 142 52

1+ zs sz s 1+ s2
z2—5

so what we did in passing from the compound Marchenko-Pastur distribution (32) to
representation (33) is introducing certain normalization that handle the convergence
in the case of very small jumps s.

A similar formula in the classical case is the famous Levy-Khintchine-Kolmogorov
formula (see Section 18 on page 75 in Gnedenko and Kolmogorov (1959)). If f ()
is the characteristic funtion of a (classically) infinitely-divisible representation, then

o0

log f (t) = iat + / do (u),

— 00

it 1 2
(exp(itu)—l— Zu) T u

1+ u? u?

where do is a finite measure.
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8.1.2 Stable laws

Consider sums of identically distributed free random variables that have the following
form:
S =X + L+ X

In other words we consider sums of rows in an object which is called a triangular
array. A triangular array is a table of random variables that consists of infinite number
of rows that have a finite but variable length. We assume that the length of the rows,
k., increases as we go down the table, that is, as n grows. The question is when the
distributions of sums converge a particular probability distribution. We will assume
that the variables are self-adjoint and ask when the spectral distributions of sums S
weakly converge to a particular distribution.

We can write a problem in a different form. Let variables X Z-(n) all have the spec-
tral distribution p,,. We write k,, o p,, for the free convolution of k,, distributions y,,,
1.e.

kpoup, =, B...Bu,,
e -times
where we have k,, summands in the sum and H sign denotes free convolution.

The question is when k,, o p1,, — v for a fixed distribution v. In this case we say
that a sequence (k,,, j,,) belongs to the domain attraction of the infinitely divisble v.
Slightly adjusting the arguments in the section about infinitely divisible distributions
we can show that » must be an infinitely divisible distribution. Essentially we need
only to use division by k,, instead of division by n and use the assumption that £,, —
00.

Therefore we can write the p-function of v as

gol,(z)—oz—i—/oo Lt o).

oo 21

It turns out that the conditions for a probability distribution to be in the domain of
attaction of an infinitely divisible law has exactly the same form in the free probability
case as in the classical case. In particular, that means that if a sequence of k,, classical
convolutions of measure j,, with itself converges to the normal law as n — oo, then
the sequence of k,, free additive convlutions of p,, converges to the semicircle law.
Similarly, if the sequence of £, classical convolutions of measure p,, converges to
the point measure, then the sequence of %, free additive convolutions of f,, also
converges to the point measure. This means that at least for identically distributed
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summands the conditions for the Cental Limit Theorem and the Weak Law of Large
Numbers are essentially the same in free probability case as in the classical case.

This correspondence of the free and the classical cases is puzzling and we will
give an explanation in Section 18.

Theorem 71 (Bercovici-Pata (1999)) £, o u,, — v if and only if the following two
conditions are satisfied:

(1)

t2
knmdﬂn (t) — do (1),

where the convergence is in the sense of weak convergence, and

2 .
b | (0 — o

Note that the conditions in this theorem are exactly the same as the conditions in
the classical case.

Example 72 Convergence to Semicircle (Wigner) Law

Let w be the semicircle distribution. When does %, o 1,, — w? For the semicircle
distribution we have o = ¢dy. Therefore, the conditions are that

t2
nmﬂn — o,
and that .
t
k,——d t 0.

Example 73 Convergence to free Poisson (Marchenko-Pastur) Law

Consider a sequence of free random variables with the Bernoulli distribution,
i.e. with the distribution that puts weight pon 1 and ¢ = 1 — p on 0. Let in our
triangular array the distribution of XZ-(”) changes from raw to raw. Namely, let we
have n summands in the n-th row and let the distribution for Xi(n) is Bernoulli with
parameter p,, = A\/n. Do the sums of these random variables converge to a limiting

distribution?

67



Let us write the relevant functions for the Bernoulli distribution. First, the Cauchy
transform is

1 p p
 lz—g
ozz2-1

From this, we can calculate the K -transform:

1—|—u+\/(1—u)2+4up

K (u) 2u

If we take convolution of n Bernoulli variables with parameter p,, we get the follow-
ing K -function:

2—n(1—u)+n\/(1—u)2+4upn

Ko (u) = 2u

If p, = A\/n, then
1
K, = —
(u) U + 1—u

+o0(1),

where o (1) is with respect to n — 0o. Therefore, the sums converge to the distribu-

tion with the K -function ) )
K = — .
mp () U + 1—u

We can recognize this distribution as the Marchenko-Pastur distribution, which
we defined at page 39. This distibution is a free analogue of the Poisson distribution
because in the classical case the sums of a similar sequence of independent Bernoulli
random variables converge to the Poisson random variable.

8.2 Multiplicative infinitely divisible distributions
8.2.1 Measures on the unit circle

Recall that the main tool in the analysis of free multiplicative convolution is the S-
transform as it was defined in (20), p. 48. It is also convenient to define a related

function (X-function):
u
¥ (u) _S(l—u)'
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Let us use M7 to denote the set of probability distributions on the unit circle, and
M7 to denote those of them that have non-zero expectation: ;1 € M7 if and only if
pw € Mypand [ zdu(z) #0.

An element p of My is called infinitely divisble if for any n it can be represented
as a free convolution of n identical measures fi,,:

po=p, M. N,
—_———

n-times

where Xl denotes free multiplicative convolution and there are n terms in the prod-
uct. We want to characterise the infinitely-divisible measures in terms of their S-
transforms.

One other useful way to characterize measures on the unit circle is through their
Poisson transforms. Recall that the Poisson transform of a measure p supported on
the unit circle is defined as

Ua) = [ Pl —0)du).

—T

where z = re™ and P (r,0) is the Poisson kernel:

1 1—1?
P(r.0) = — )
(r,0) 21 — 2rcosf + r?

(Here we have identified measures on the unit circle and on the interval [—7, 7):

1 (d8) = p{€ : 16| = L and arg € db}).

Theorem 74 The Poisson transforms Uy, (2) of measures p,; converge to the Poisson
transform U, () of measure 1 uniformly on compact subsets of the unit disc if and
only if pu; weakly converges to p.

Proof: Indeed, if y1; — p, then by the second theorem in Section I.D.1 of Koosis
(1998), Uy, (2) — U, (2), where convergence is uniform on compact subsets of
the unit disc. To make the reverse implication, note that the family of probability
measures on the circle is tight, i.e., compact. Therefore, the only way in which { Mj}
can fail to converge is when there are two subsequences of { ,uj} that converge to
different limits. Suppose that i/ and p” are those two different limits. Then by the
first part of the proof and by assumption about U, (z), they must have the same
Poisson integral: U, (2) = U, (). In other words, there exists a signed measure
of finite variation (x' — i), which does not vanish identically and whose Poisson
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transform equals 0. This is impossible. (For instance, the impossibility follows from
the last theorem in Section 1.D.2 of Koosis (1998).) QED.
Note in particular that a particular consequence of this Theorem is that the mea-
sures on the unit disc are in one-to-one correspondence with their Poisson transforms.
It turns out that ¢)-functions are closely related to the Poisson transform. Indeed,
for the measures on the unit circlel, we can re-write the definition of the /-function
as follows:

B du(§)
0, (2) = /m:l -
Since
1 1 —7rcos(w—10)

R

el—fz: 1 —2rcos(w—0)+1r2

where ¢ = e and z = re™ therefore,

Hence,

U,(z) = %Rew“ (z)—f—%. (34)

This implies in particular, (1) that ¢ -functions are in one to one correspondence with
the measures on the unit circle, and (2) that the uniform convergence of ¢)-functions
on subsets of the unit disc is equivalent to the convergence of the corresponding
measures. In turn, this implies also that the analogous properties hold for the S-
transforms.

Theorem 75 If S, (u) converges to a function S (u) uniformly inside the unit disc
then p; weakly converges to a measure v and S (u) is the S-transform of this measure.

Now let us turn to the question of infinitely divisible measures in M.

Theorem 76 If the expectation of infinitely divisible measure is zero than it must be
the uniform measure on the unit circle.

Proof: In this case, ;1 = v X v and v must have zero expectation. But in this case
it is easy to check that the definition of freeness implies that all moments of ;1 equals
zero, and this implies that the measure is uniform. QED.

It is useful to give examples of infinitely divisible measures from M 7.
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Example 77 For every A > 0, the function

so=en(3(-+1))

is the S-transform of an infinitely divisible measure from M.

Indeed, we only need to check that for every A > 0, the function exp (A (z + 1/2))
is an S-transform of a measure from M7. Let ¢ = A/n and define p1, = (6 + 67) /2,
where ( = /1 — ¢ + iy/e. The we can compute that the S-transform of p_ is as
follows:

Ss(z):1+€)\<z+%>+0(€2).

Then it is easy to see that i denote the measure p. convolved n-times with itself,
then the S-transform of 11” converges to S (z) = exp (A (z + 3)). By Proposition 75
we can conclude that the limit is S-transform of a probability distribution from My
and it is easy to see that its expectation is not zero.

Example 78 For every A > 0 and t € R, the function

A
§(2) = exp (ﬁ)

is the S-transform of an infinitely divisible measure from M.

We proceed as in the previous example. Lete = A/n and define ., = (1 — ¢) 61+
€d¢, where
T —it

S
§—|—Zt

C pu—
(Note that |¢|* = 1.) The S-transform of this measure is
O (52) )

Then the S-transform of the n-time convolution of 1 with itself converges to

S.(2)=14+e—F—
=) +€z+§+z‘t+
exp (A(z+1/2+it)"").

Therefore this convolution converges to a probability measure from M} with the
desired S-transform.
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It can be seen that in terms of the >-function, this examples can be represented in
a uniform way. Namely, in both cases the X-function can be represented as

S (2) = exp ()\1 i Z) (35)

forsome A >0and( € T' = {z: |z| = 1}.

Theorem 79 A measure ;1 € M. is infinitely divisible if and only if ¥ (2) = exp (u (2))
where u (2) is a function, which is analytic in the unit disc and such that Reu (z) > 0
ifze{z:|z| <1}.

For proof, see Bercovici and Voiculescu (1992).

8.2.2 Measures on R

The infinitely-divisible measures on R" are defined similarly to infinitely-divisible
measures on the unit circle. A measure on R™ is infinitely-divisible if and only if for
any positive integer n we can find a measure p,, on R, such that

po=p, M. Ny,
—_—

n-times

where X denotes free multiplicative convolution and there are n terms in the product.
We restrict our attention here to compactly-supported measures. As in the previ-

2#(2)—Sﬂ<1iz>'

The basic example of infinitely divisible distribution on the unit circle is given in
the following Lemma:

ous section define

Lemma 80 For every A\ > 0 and every t € R, the function

S (2) = exp (f_A;)

is the Y-transform of some probability measure i compactly supported on R .

The main theorem about multiplicatively infinitely-divisible measures is as fol-
lows.
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Theorem 81 A measure i is infinitely-divisible if and only if ¥, () = exp (u(z))
where u (2) has the following representation in the area R\R™*

u(z):a—/_oo o (1),

o0

where « is real and o is a finite measure.

For proof, see Bercovici and Voiculescu (1992).

9 Notes

For basic facts of operator algebra theory the reader can consult Bratteli and Robin-
son (1987). An introduction to quantum probability, which includes discussion of
non-commutative probability spaces can be found in Parthasarathy (1992). The free
probability came into the existence in Voiculescu (1983). Its first systematic descrip-
tion can be found in Voiculescu et al. (1992). An updated treatment of free probabil-
ity theory that emphasizes its relation to random matrices is in Hiai and Petz (2000).
Another textbook treatment of free probability that emphasize combinatorical aspect
is in Nica and Speicher (2006)

The results about additive and multiplicative infinitely-divisible distributions are
from Bercovici and Voiculescu (1993) and Bercovici and Voiculescu (1992), respec-
tively. The domains of attractions and stable laws are studied in Bercovici et al.
(1999).
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Part 11
Limit Theorems for Sums of Free
Operators

10 CLT for Bounded Variables

In classical probability theory, one the most important theorem is the Central Limit
Theorem (CLT). It has an analogue in non-commutative probability theory. First we
formulate it for bounded random variables.

Theorem 82 Let self-adjoint r.v. X;, i = 1,2, ..., be free. Assume that E(X;) = 0,
| X:]| < L andlim,_. [E (X?) + ... + E(X?)] /n = 1. Then measures associated
with rv. n~=1/2 > Xi converge in distribution to an absolutely continuous measure
with the following density:

1
¢(x) = Y Va4 — x2X[—2,2} (2)
This result was proven in Voiculescu (1983) and later generalized in Maassen
(1992) to unbounded identically distributed variables that have a finite second mo-

ment. Another generalization can be found in Voiculescu (1998) and Pata (1996).
Proof of Theorem 82: We know that

Z KX TL - 1)
Consequently,

K, (2 \/_ZKX (%) —(n—1)z""

z

Note that by Lemma 64, p.62, the power series for Ky, <\/—ﬁ> converges in |z| <
v/n/ (4L) . Moreover, using Corollary 65 and the condition that £(X;) = 0 we can

o K, ym(2) = (ZE X2)z+—z ( )
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where for |z| < /n/ (2L) we can estimate |v; (z/1/n)| < 8Lz*/n. Therefore

Ko,y ()= - (% >E (X;)) :

for all z, such that |z| < \/n/ (2L).
Therefore,

<

1
Ksn/\/ﬁ(z)—;az, asn — oo,

and the convergence is uniform on the compact subsets of C. This implies that
G,y (2) = Go (2), asn— oo,

with the uniform convergence on the compact subsets. and this in term implies that
the spectral distribution of S,, /1/n converges to the semicircle distribution. QED.

11 CLT, Proof by Lindeberg’s Method

Freeness is a very strong condition imposed on operators and it is of interest to find
out whether the Central Limit Theorem continues to hold if this condition is some-
what relaxed. This problems calls for a different proof of the non-commutative CLT
because the existing proofs are based either on addivity of R-transform or on vanish-
ing of mixed free cumulants, and both of these techniques are inextricably connected
with the concept of freeness.

In this paper we give a proof of free CLT that avoids using either R-transforms
or free cumulants. This allows us to give a generalization of the CLT to random
variables that are not necessarily free but satisfy a weaker assumption. An example
shows that this assumption is strictly weaker than assumption of freeness.

The proof that we use is a modification of the Lindeberg proof of the classical
CLT (Lindeberg (1922)). The main difference is that we use polynomials instead of
arbitrary functions from C? (R), and that more ingenuity is required to estimate the
residual terms in the Taylor expansion formulas.

We will say that a sequence of zero-mean random variables X1, ..., X,,, ... satisfies
Condition A if:

1. Forevery k, E (X3 X;,... X;.) = 0 provided thati; # k fors = 1,..., 7.

2. For every k > 2, F(X?X;,... X;,) = E(X}?)E(X;,... X;.) provided that
s <k fors=1,..,r.
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3. Forevery k > 2,

E (X Xy X X3 Xip 1o Xiy) = E (X)) B (Xiy . Xi,) E (Xip iy X))

provided thatis < k fors =1, ...,r.

Intuitively, if we know how to calculate every moment of the sequence X1, ..., X _1,
then using Condition A we can also calculate the expectation of any product of ran-
dom variables X1, ..., X} that involves no more than two occurences of variable X.
Part 1 of Condition A is stronger than is needed for this calculation, since it involves
variables with indices higher than k. However, we will need this additional strength
in the proof of Lemma 93 below, which is essential for the proof of the main result.

Proposition 83 Every sequence of free random variables X1, ..., X, ... satisfies
Condition A.

This proposition can be checked by direct calculation that uses Proposition 8.
We will also need the following fact.

Proposition 84 Let X...X; be zero-mean variables that satisfy Condition A(1), and
let Y11, ..., Y, be zero-mean variables which are free from each other and from the
algebra generated by variables X1, ..., X;. Then X1, ..., X}, Y1, ...Y, satisfies Con-
dition A(1).

Proof: Consider the moment £ (X, A;,...A;,), where A;, is either one of Y or
one of X; but with the exception that it can never be equal to X;. Then we can use
the fact that Y; are free and write

B (XpAiy Ai) = caB (Xk Xy (@) Xiy (@) -

where none of X, ) equals X;. Then, using the assumption that X; satisfy Condition
A(1), we conclude that £ (X A;, ... A;,) = 0. Also E (Y, A;, ... Ai,) = E(Yy) E(A;,...A;,) =
0, provided that none of A;, equals Yj. In sum, the sequence Xy, ..., X;, Yi11,...Y,
satisfies Condition A(1). QED.

While freeness of random variables X; is the same concept as freeness of the
algebras that they generate, Condition A deals only with variables X; only, and not
with algebras that they generate. For example, it is conceivable that a sequence { X;}
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satisfy condition A but {X? — F'(X?)} do not. In particular, this implies that Con-
dition A requires checking a much smaller set of moment conditions than freeness.
Below we will present an example of random variables which are not free but satisfy
Condition A.

Recall that the standard semicircle law j g is the probability distribution on R
with the density 7~1v/4 — 22 for z € [—2; 2], and 0 otherwise. We are going to prove
the following Theorem.

Theorem 85 Suppose {&,} is a sequence of self-adjoint random variables that sat-
isfies Condition A, and such that every &, has the moments of all orders, E{, = 0,
E€? = o2, and that for every k > 0, the k'™ absolute moments of &, are uniformly
bounded, i.e. E|&,|* < p, for all i. Suppose also that sy = (02 + ...+ a?\,)l/2
are such that sy/VN — s > 0as N — oo. Then the spectral measure of
Sy = (& + ... + &n) /sn converges in distribution to the semicircle law pig.

The contribution of this theorem is twofold. First, it shows that the semicircle
central limit holds for a certain class of non-free variables. Second, it gives a proof
of the free CLT which is different from the usual proof through R-transforms. It
does not give improvement in conditions over a version of the free CLT which is
formulated in Section 2.5 in Voiculescu (1998). (Note that the condition Y ¢ (a?) —
1 in the statement of the theorem appears to be a typo and the condition is actually

Y e(af) = 1)

11.1 Example

Let us present an example that suggest that Condition A is strictly weaker than free-
ness condition.

Let I be the free group with a countable number of generators f;, & = 1, ...
Consider the set of relations R = {fxfr—1/fkfe—1fkfe—1 =€}, where k > 2, and
define G = F/R, that is, G is the group with generators fj and relations generated
by relations from R.

Here is a couple of useful consequences of these relationships:

D) frrfifo-1fefe-1fe = e
(Indeed, e = fi " (fefro1fofi1fufi1) fr = o1 frfoo1 frfe—1fx)
) b B A = eand B AT A R = e

We are interested in the structure of the group . For this purposes we will
study the structure of R, which is a subgroup of F' generated by elements of R and
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their conjugates. We will represent elements of £’ by words, that is by sequences of
generators. We will say that a word is reduced if does not have a subsequence of the
form fi.f, ! or f ! fi. Itis cyclically reduced if it does not have the form of fj...f, *
or f ! fs. We will call a number of elements in a reduced word w its length and
denote it |w]| . A set of relations R is symmetrized if for every word r € R, the set R
also contains its inverse 7! and all cyclically reduced conjugates of both 7 and 7.

For our particular example, a symmetrized set of relations is given by the follow-
ing list:

o { Jefe—1fefe—1fefr—1, o1 Sefr1frfe—1Se, }
VPR /R PR /A [N [ P [N S Y/ P
where £ are all integers > 2.

A word b is called a piece (relative to a symmetrized set R) if there exist two
elements of R, r; and ro, such that r; = bc; and ro = bcy. In our case, each
fr and f, ' with index k& > 2 is a piece because fj is the initial part of relations
Fifi—1fufe—1fufro1 and fi fri1fifor1feferr, and f; " is the initial part of the rela-
tions f, ' fi S A S e and £t o i fe St f - There is no other pieces.

Now we introduce a condition of small cancellation for a symmetrized set R:
Condition 86 (C’ (\)) Ifr € R and r = bc where b is a piece, then |b| < \|r|.

Essentially, the condition says that if two relations are multiplied together, then a
possible cancellation must be relatively small. Note that if R satisfies C’ (\) then it
satisfies C’ (u) for all > A.

In our example R satisfies C’ (1/5) .

Another important condition is the triangle condition.

Condition 87 (1) Let 11, 13, 3 be three arbitrary elements of R such that vy # "
andrs # ry L' Then at least one of the products r1rs, rors, or r3ry is reduced without
cancellation.

In our example, Condition (7) is satisfied.

If s 1s a word in F', then s > AR means that there exists a word » € R such that
r = st and |s| > A|r|. An important result from small cancellation theory that we
will use later is the following theorem:
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Theorem 88 (Greendlinger’s Lemma) Let R satisfy C'(1/4) and T. Let w be a
non-trivial, cyclically reduced word with w € R. Then either

(1) we R,

or some cyclycally reduced conjugate w* of w contains one of the following:

(2) two disjoint subwords, each > %R, or

(4) four disjoint subwords, each > %R.

This theorem is Theorem 4.6 on p. 251 in Lyndon and Schupp (1977).

Since in our example R satisfies both C” (1/4) and T', we can infer that the con-
clusion of the theorem must hold in our case. For example, (2) means that we can
find two disjoint subwords of w, s; and s, and two elements of R, r; and 75, such
that r; = s;t; and |s;| > (3/4) |r;| = 9/2. In particular, we can conclude that in this
case |w| > 10. Similarly, in case (4), |w| > 16. One immediate application is that G
does not collapse to the trivial group. Indeed, all f; are not zero.

Let L? (G) be the functions of G that are square-summable with respect to the
counting measure. G acts on L? (G) by left translations:

(Lgx) (h) = (gh) .

Let A be the group algebra of G. The action of G on L? (G) can be extended to the
action of A on L? (G) . Define the expectation on this group algebra by the following
rule:

E (h) = <5eaLh56> )

where (, ) denotes the scalar product in L? (G) . Alternatively, the expectation can be
written as follows:
E (h) = a.,

where h = geG Gg9 1s @ representation of a group algebra element £ as a linear
combination of elements ¢ € (. The expectation is clearly positive and finite by
definition. It is also tracial because g1 g2 = e if and only if gog; = e.

If L = >, agly is a linear operator corresponding to the element of group
algebra h = 3~ _ a,g, then its adjoint is (Ls)" = > @y L,-1, which correspond
to the element h* = 3 @,9".

Consider elements X; = f; + f; . They are self-adjoint and E (X;) = 0. Also
we can compute F (X?) = 2. Indeed it is enough to note that f? # e, and this holds
because insertion or deletion of an element from R changes the degree of f; by a
multiple of 3. Therefore, every word equal to zero must have the degree of every f;
equal to 0 modulo 3.
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Proposition 89 The sequence of variables { X;} is not free but it satisfies Condition
A.

Proof: The variables X}, are not free. Consider X, X; X5 X7 X5 X . Its expectation
is 2, because fofifofifofi = eand f U f7 f L f Lt = e, and all other terms
in the expansion of X5 X X5 X; X, X7 are different from e. Indeed, the only terms that
are not of the form above but still have the degree of all f; equal to zero modulo 3 are
fofT o f i fofrt and fy 7t fufy t fufy tf1, but they do not equal zero by application
of Greendlinger’s lemma. Therefore, F (X2X;X2X;X2X;) = 2. This contradicts
the definition of freeness of variables X, and X;.

Let us check Condition A. For A1, consider E (fyfi,..-f:, ), Wwhere k # iy, and
is # 1541 for every s. It is enough to check that this expectation equals 0. Indeed
frfi,---fi, # e. This can be seen from the fact that an insertion or deletion of a rela-
tion can change the degree of f; only by 3. Therefore E (fi fi,...fi,) = 0. A similar
argument works for £ ( fr L fin) = 0 and more generally for the expectation of
every element of the form f; fi*... f{'*, where ¢ = &1 and n, are integer.

Similarly, we can prove that F ( 2 pm fi’f) = 0 and this suffice to prove A2.

For A3 we have to consider elements of the form f;* f; ... fi, f2 fi,.1---fi, As-
sume that neither f;, ... f;, nor f; ., ...f;, can be reduced to e. Otherwise we can use
property A2. The claim is that £ ( o S fin £ fipin fzq) = 0. This is clear when
€1 and €2 have the same sign because of the fact that relation change the degree of
the element f; by a multiple of 3. A more difficult case is whene; = 1 and e, = —1.
(The case with opposite signs is similar.) However, in this case we can conclude
that fi.fi,...fi, fr ! fipsr---fi, # € by application of Greendlinger’s lemma. Indeed,
the only subwords that this word can contain, which would also be subwords of an
element of R, are subwords of length 1 and 2. But these subwords fail to satisfy the
requirement of either (2) or (4) in Greendlinger’s lemma. Therefore, we can con-
clude that fi.fi,...fi, fi ! fipsr---Ji, # € and A3 is also satisfied. Thus Condition A
is satisfied by random variables X7, ..., X, ... in algebra A, although these variables
are not free. QED.

11.2 Proof of the main result

Outline of Proof: Our proof of the free CLT proceeds along the familiar lines of
the Lindeberg method. We take a family of functions and evaluate an arbitrary func-
tion from this family on the sum Sy = X; + ... + Xy, The goal is to compare
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Ef (Sy) with Ef (§N> , where f are functions from a sufficiently large family,

Sy = Y1 +...4+ Yy and Y; are independent semicircle variables chosen in such a way
that Var (Sy) = Var (§N) . To estimate |Ef (Sy) — Ef <§N) ’, we substitute the
elements in Sy with the semicircle free random variables, one by one, and estimate
the corresponding change in the expected value of f (Sy). After that, we show that
the total change, as all elements in the sum are substituted with semicircle random
variables, is asymptotically small as N — oo. Finally, tightness of the selected fam-
ily of functions allows us to conclude that the distribution of S must converge to
the semicircle law as N — oo.

The usual choice of functions f are functions from C2 (R), that is, functions
with continuous third derivative and compact support. In non-commutative setting
this family of functions is not appropriate because the usual Taylor series formula is
difficult to apply. Intuitively, it is difficult to develop f (X + h) in power series of h if
variables X and h do not commute. Since the Taylor formula is crucial for estimating
the change in Ef (Sy), we will still use it but restrict the family of functions to
polynomials.

To show that the family of polynomials is sufficiently rich for our purposes, we
use the following Proposition:

Proposition 90 Suppose there is a unique d.f- F with the moments {m(r), r> 1} .
Suppose that { Fy } is a sequence of d.f., each of which has all its moments finite:

m%):/ x"dFy.

Finally, suppose that for every r > 1 :

lim m%) = m™,

n—oo

Then Fy — F vaguely.

See Theorem 4.5.5. in Chung (2001) for a proof.

Since the semicircle distribution is bounded and therefore is determined by its
moments (see Corollary to Theorem I1.12.7 Shiryaev (1995)), we only need to show
that the moments of \S,, converge to moments of the semicircle distribution.

Proof of Theorem 85: Define 7, as a sequence of random variables that are
freely independent among themselves and also from all ;. Suppose also that 7, have
semicircle distributions with Em, = 0 and En? = o2. We are going to use as known
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the fact that the sum of free semicircle random variables is semicircle, and therefore,
the spectral distribution of (1, + ... + 75) / <s VN ) converges in distribution to the
semicircle law g~ with zero expectation and unit variance. Let us define X; =
¢;/sn and Y; = n,/sy. We will proceed by proving that moments of X; + ... + Xy
converge to moments of Y; + ... + Yy and applying Proposition 90. Let

Af=FEf(Xi+..+Xy)—Ef(Vi+..+Yy),

where f (x) = x™. We want to show that this difference approaches zero as N grows.
By assumption, EY; = EX; = 0 and EY?> = EX? = 0?2 /s%,.
The first step is to write the difference A f as follows:

Af = [Ef(Xi+ ...+ Xy 1+ XN)—Ef(Xi+ ...+ Xno1 + Y]
+[Ef(Xi+ ...+ Xy +Yy)—Ef(Xi+ ...+ Yy + Yn)]
-+ [Ef (X1 +Ys...+Yn_1 +YN) — Ef (Yi +Y5..+ Yy +YN)] .

We intend to estimate every difference in this sum. Let

We are interested in
Ef(Zy+Xi) — Ef (Zr + Yz) .

We are goint to apply the Taylor expansion formula but first we define directional
derivatives. Let f, (Zy) be the derivative of f at Z; in the direction Xy, defined as

follows: (e +1X0) — F(Z2)
! . _'_ -
fie(Z) = lim == —— 23

The higher order directional derivatives can be defined recursively. For example,

' " Ze X)) — L (2
Ix, (Zy) = (fg(k)xk (Zk)zltil%qka( k tk) fx.( k)

For polynomials this definition is equivalent to the following definition:

f(Ze +tXe) — f(Z1) — tf%, (Zk)
t2

" o1
ka(Zk) = Qltllr(IJl

Example 91 Operator directional derivatives of f (z) = x*
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Let us compute f% (Z) and f% (Z) for f (x) = x*. Using definitions we get
v (2)=2PX+72?°XZ+ ZXZ* + X 7P
and

Y(2)=2(2PXP+ ZXZX + XZPX + ZX?Z + XZXZ + X*Z%).  (37)

The derivatives of f at Z; + 7.X} in the direction X}, are defined similarly, for
example:

— 6lim F A (1 +8) X3) = f(Zu + 7X0) = tfx, (Zn + 7X3) — 58215, (21 + 7X3)
o 13 '

Next, let us write the Taylor formula for f (Z; + Xj):

F (Bt X0) = 120 + £ (20 + 505, (20 + 5 [ (=1 18, (Bt mX) dr.
0

2
(38)
Formula (38) can be obtained by integration by parts from the expression

1
F 2+ X0) — 1(Z) = / Pl (Zu 47X dr.

For polynomials it is easy to write the explicit expressions for f )(;k) (Zy)or f Q (Zk + 7X%)
although they can be quite cumbersome for polynomials of high degree. Very schemat-
ically, for a function f (z) = z™, we can write

Fi (Zn) = X0 Z07 + 2k X Z0 72 + o+ 20 X, (39)
and
5 (Z1) =2(XRZ0 7 + Xu 2y X 272+ + 22X (40)

Similar formulas hold for fy. (Z;) and fy. (Z;) with the change that Y}, should be
put instead of Xj.

Using the assumptions that sequence { X} satisfies Condition A and that vari-
ables Y} are free, we can conclude that Efy. (Z,) = Efy, (Zy) = 0 and that
Efy (Z) = EfY, (Zx) . Indeed, consider, for example, (40). We can use expression
(36) for Z;, and the free independence of Y; to expand (40) as

Eff (Zk) =Y caPo (B (XXX X0) B (XXX Xa) ), (D)
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where X; denotes certain monomials in variables X1, ..., X;_1 (i.e., X; = Xy X,
with i, € {1,...,k —1}), and where « indexes certain polynomials P,. In other
words, using the free independence of Y; and X; we expand the expectations of poly-
nomial f¥ (Z) as a sum over polynomials in joint moments of variables X; and Y;
where j = 1,...,kand ¢ = k£ + 1, ..., N. By freeness, we can achieve that the mo-
ments in this expression are either joint moments of variables X or joint moments of
variables Y; but never involve both X; and Y;. Moreover, we can explictly calculate
the moments of Y; (i.e., expectations of the products of Y;) because their are mutually
free. The resulting expansion is (41).

Let us try to make this process clearer by an example. Suppose that f (z) = 2%,

N =4,k =2and Z, = Zy = X; + Y3 + Y;. We aim to compute £y (Z3) . Using
formula (37), we write:
EfY (7)) = 2B(Z3X3+..)
28 (X1 + Y3 + V)’ X2+ ...)
= 2{E (X7X3) + E (X1Y3X3) + E (X1Y4X7)
FE (VX0 X3) + B (Y2X3) + B (V;YiX3)
+E (YaX1X3) + E (YaY3X3) + E (Y2X3) + ..}

Then, using freeness of Y3 and Y, and the facts that £ (Y;) = 0 and E (Y;?) = 02, we
continue as follows:

Ef%, (Z2) = 2{E (X7 X3) + 03E (X3) + 07E (X3) + ...},

which is the expression we wanted to obtain.

It 1s important to note that the coefficients c, do not depend on variables X; but
only on Y}, j > k, and on the locations, which Y} take in the expansion of f% (Zy).
Therefore, we can substitute Y, for X, and develop a similar formula for £ f{}k (Zk):

Efy (Zk) =) caPo (E(MX1YiXa) , B (YiX3YiXy) ,...) . (42)

In the example above, we will have
Efy (Zy) = 2{E (X2Y2) + 02E (Y2) + 02E (V) + ..}

Formula (42) is exactly the same as formula (41) except that all X, is substituted
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with Y}. Finally, using Condition A we obtain that for every i:

E(XNXn) = E(R)E(X)E ()
— (X)) E(X) B (Xn)
= E(XpXiXpXit1),

and therefore Efy (7)) = Ef, (Zk) -
Consequently,

1
0

1
_%/0 (1= 72 EfY (Zy + Vi) dr.
Next, note that if f is a polynomial, then fy (Z; + 7X}) is the sum of a finite
number of terms, which are products of Z; + 7X; and X. The number of terms
in this expansion is bounded by (', which depends only on the degree m of the
polynomial f.
A typical term in the expansion looks like

E(Zy+7X)" T X3 (2 + 7X3)° X

In addition, if we expand the powers of Z; + 7.X}, we will get another expansion
that has the number of terms bounded by C5, where C; depends only on m. A typical
element of this new expansion is

E(Z]"XPZEXT) .

Every term in this expansion has a total degree of X not less than 3, and, corre-
spondingly, a total degree of Z; not more than m — 3. Our task is to show that as
n — oo, these terms approach 0.

We will use the following lemma to estimate each of the summands in the expan-
sion of f¥ (Zr + 7X).

Lemma 92 Let X and Y be self-adjoint. Then

B (X™y™, Xy
< [BEX™)] BT LB &) BT

85



Proof: For r = 1, this is the usual Cauchy-Schwartz inequality for traces:
|E(X™Yy™)? < B (X*™)E(Y*™).

See, for example, Proposition 1.9.5 on p. 37 in Takesaki (1979).

Next, we proceed by induction. We have two slightly different cases to consider.
Assume first that r is even, r = 2s. Then, by the Cauchy-Schwartz inequality, we
have:

|E(X™y™  X™mry™))?
E(XmMy™  Xmsynsyms X™ms y™xXm™)
X E (Y™ XM Y et X et X Mer 1y ekl | XMy )
= E(XPMYy™ XMy XM Y™
X B (Y20 X Y e Xy et XY

IN

Applying the inductive hypothesis, we obtain:

|E (XY™ X"y
< [BEXT™)])T B (YY)

<[] [ (o)

o (o) [ ()

[ 2r—=1p 27 2r=1m,
X E(Y sﬂﬂ [E (X )}

27r+2
We recall that by the Markov inequality, [E (Y2T71"1)] < [E(Y?m)]
and we get the desired inequality:

27'r+1

2—r+2

277‘+2

277‘+1

B (XY™ X"y ™)
< [EEEm) EEE] LB BT

Now let r be even, r = 2s + 1. Then

B (XY™ X"y

B (XY™ Y XM X ey ey X ™)

X (Y7 XM XY e Y e X a2 Xy

= B (XY™ Yy Xy e [Y™) B (Y2 X X ey e X e X

IA
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After that we can use the inductive hypothesis and the Markov inequality and obtain
that

|E(X™y™ .  X™y™)|
< [BEm)]T (B LB B

QED.

We apply Lemma 92 to estimate each of the summands in the expansion of
fX, (Zy + 7X}). Consider a summand E (Z," X;"...Z,"" X}'") . Then by Lemma
92, we have

B (20X 20 X)) 43)
< (B B L EBE] [EEE)]

Lemma 93 Let Z = (vi + ... + vy) /N2, where v; are self-adjoint and satisfy con-
dition A and for each k, the k' absolute moments of v; are uniformly bounded, i.e.,
E |vi|" < . for every i. Then, for every integer v > 0

E(|Z]")=0(1) as N — .

Proof: We will first treat the case of even r. In this case, F (|Z]") = E(Z").
Consider the expansion of (v; + ... + vy)" . Let us refer to the indices 1, ..., N as
colors of the corresponding v. If a term in the expansion includes more than r/2
distinct colors, then one of the colors must be used by this term only once. Therefore,
by the first part of condition A the expectation of such a term is 0.

Let us estimate a number of terms in the expansion that include no more than r/2
distinct colors. Consider a fixed combination of < r/2 colors. The number of terms
that use colors only from this combination is < (r/2)" . Indeed, consider the product

(v 4+ ... +on) (V1 + ... Foy) oo (V1 + ... +oN)

with 7 product terms. We can choose an element from the first product term in /2
possible ways, an element from the second product term in 7 /2 possible ways, etc.
Therefore, the number of all possible choices is (r/2)" . On the other hand, the num-
ber of possible different combinations of & < r/2 colors is

N1
. /2
v =V
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Therefore, the total number of terms that use no more than /2 colors is bounded
from above by
(r/2)" N"/2.

Now let us estimate the expectation of an individual term in the expansion. In
other words we want to estimate £ (vfll...vfj) ,where ki, > 1, k1 + ... + ks = r, and
1y # 1441. First, note that

E (vF . ks
{ ( 11 1s

< F (|Ufl1...vks

1s

).

Indeed, using Cauchy-Schwartz inequality, for any operator X we can write

EP = E(UX"X17) < B(1X]70Ux7?) B (X7 1X]7?)
= E(X|P)E(X]),

where U is a partial isometry and P = U*U is a projection. Note that from positivity
of the expectation it follows that £ (|X| P) < E (| X]|) . Therefore, we can conclude
that |E (X)| < E(|X]).

Next, we use the Holder inequality for traces of non-commutative operators (see
Fack (1982), especially Corollary 4.4(iii) on page 324, for the case of the trace in a
von Neumann algebra and Section II1.7.2 in Gohberg and Krein (1969) for the case
of compact operators and the usual operator trace). Note that

1 1
=1,
S S
—_——

s-times

therefore, the Holder inequality gives

)< [ (o) o (1o )]

Using this result and uniform boundedness of the moments (from assumption of
the lemma), we get:

FE (}Ufll...vks

1s

log ‘E (vfll...vks)

1s

1 S
< - logpuy,.
=1

Without loss of generality we can assume that bounds i, are increasing in k. Using
the fact that s < r and k; < r, we obtain the bound:

)

log ‘E (vfll...vkj

(2

< log pt,2,
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or
}E (vkl.. vks)

11 S s

< Hyp2-
Therefore,
E v+ ...+ vy) < (r/2) p,2N""?,
and
E(Z") < (r/2)" 2. (44)

Now consider the case of odd 7. In this case, we use the Lyapunov inequality to
write:

E’Z‘r < (E|Z|T+1) rll (45)

r

r + 1 r+1 r+1
< << 5 > M(r+1)2>
_ T + 1 " r:»l
- 2 (M(T+1)2> :

The important point is that bounds in (44) and (45) do not depend on n. QED.

By definition Z;, = (51 +o g gy nN) /sn and by assumption
¢, and 7, are uniformly bounded, and sy ~ /N. Moreover, &, ...,&,_, satisfy
Condition A by assumption, and 7,_, ...,y are free from each other and from

&1, &1~ Therefore, &, ..., &, 1, M1, ---, v satisfy condition A. Consequently,
we can apply Lemma 93 to Z;, and conclude that F | Z;|" is bounded by a constant
that depends only on 7 but does not depend on .

Using this fact, we can continue the estimate in (43) and write:

B (20X 20 X)) (46)
92—

< GEE™] L EE]

where the constant C'y depends only on m.
Next we note that

2~
iy 2" Pormy N2 (Harny)
BT <0(ms) =0
Next note that ny + ... + n, > 3, therefore we can write

9-

(B (7)) LB () <o

In sum, we obtain the following Lemma:
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Lemma 94
|Ef§gk (Zk + TX]C)‘ S C5N_3/2,

where Cs depends only on the degree of polynomial f and the sequence of constants
Ho:

A similar result holds for | EfY (Zx + 7Y},)| and we can conclude that
\Ef (Zy, + Xi) — Ef (Z), + Yi)| < CeN73/2.
After we sum these inequalities over all k = 1, ..., N we get
Ef (X1 + ..+ Xy) = Ef Yo+ ...+ Yn)| < C;N"V2

Clearly this approaches 0 as N grows. Applying Proposition 90, we conclude that
the measure of X; +...+ Xy converges to the measure of Y; +...+ Y}y in distribution.

This finishes proof of the main theorem.

The key points of this proof are as follows: 1) We can substitute each random
variable X; in the sum Sy with a free random variable Y; so that the first and the
second derivatives of any polynomial with Sy in the argument remain unchanged.
This depends on Condition A being satisfied by X;. 2)We can estimate a change in
the third derivative as we substitute Y; for X; by using the first part of Condition A
and several matrix inequalities, valid for any collection of operators. Here Condition
A is used only in the proof that the k-th moment of (&, + ... + &) /N'/2 is bounded
as N — oo.

It is interesting whether the ideas of this proof can be generalized to the case of
the multivariate CLT.

12 CLT, Rate of Convergence

In this section we investigate the speed of convergence in free CLT and establish an
inequality similar to the classical Berry-Esseen inequality.

Recall that without reference to operator theory, the free convolution can be de-
fined as follows. Suppose p; and p, are two probability measures compactly sup-
ported on the real line. Define the Cauchy transform of p; as

Gi(z):/oodﬂi—(t)

o 2t
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Each of G; (z) is well-defined and univalent for large enough z and we can define
its functional inverse, which is well-defined in a neighborhood of 0. Let us call this
inverse the K -function of 1, and denote it as K; (2):

Ki(Gi(2)) = Gi (K;(2)) = .

Then, we define K3 (2) by the following formula:
1
K3 (2) = Ki(2) + K> (2)_;- (47)

It turns out that K3 (2) is the K-function of a probability measure, j4, which is the
free convolution of i, and p,.

Let us turn to issues of convergence. Let d (14, 15) denote the Kolmogorov dis-
tance between the probability measures p; and p,. That is, if F; and F; are the
distribution functions corresponding to measures j; and ., respectively, then

d (s piz) = sup|F3 (z) = 2 (2)]
Te
Let 1« be a probability measure with the zero mean and unit variance and let ms be
its third absolute moment. Then the classical Berry-Esseen inequality says that

1
d (™, v) < Omg—,
('u ) — 3 \/ﬁ
where v is the standard Gaussian measure and £(™ is the normalized n-time convo-
lution of measure p with itself:

p™ (du) = px .ok g (Vndu) -

This inequality was proved by Berry (1941) and Esseen (1945) for a more general
situation of independent but not necessarily identical measures. A simple example

~1/2 cannot be

with Bernoulli measures shows that in this inequality the order of n
improved without further restrictions.
We aim to derive a similar inequality when the usual convolution of measures is

replaced by free convolution. Namely, let

1™ (du) = pB ... B p (v/ndu)

and let v denote the standard semicircle distribution. It is known that (™ con-
verges weakly to v (Voiculescu (1983), Maassen (1992), Pata (1996), and Voiculescu
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(1998)). We are interested in the speed of this convergence and we prove that if p is
supported on [—L, L], then
(n) 3 1
d(u ,1/) <CL°—. (48)

vn
An example shows that the rate of n~1/2
similar to the classical case.

cannot be improved without further restrictions,

The main tool in our proof of inequality (48) is Bai’s theorem (1993) that relates
the supremum distance between two probability measures to a distance between their
Cauchy transforms. To estimate the distance between Cauchy transforms, we use
the fact that as n grows, the K-function of ;™) approaches the K -function of the
semicircle law. Therefore, the main problem in our case is to investigate whether the
small distance between K -functions implies a small distance between the Cauchy
transforms themselves. We approach this problem using the Lagrange formula for
functional inverses.

The rest of the paper is organized as follows: Section 2 contains the formulation
and the proof of the main result. It consists of several subsections. In Subsection 2.1
we formulate the result and outline its proof. Subsection 2.2 evaluates how fast the
K -function of ;™ approaches the K -function of the semicircle law. Subsection 2.3
provides useful estimates on behavior of the Cauchy transform of the semicircle law
and related functions. Subsection 2.4 introduces a functional equation for the Cauchy
transforms and concludes the proof by estimating how fast the Cauchy transform of
1™ converges to the Cauchy transform of the semicircle law. An example in Section
3 shows that the rate of n~'/2 cannot be improved.

12.1 Formulation and proof of the main result
12.1.1 Formulation of the result and outline of the proof

Let the semicircle law be the probability measure on the real line that has the follow-
ing cumulative distribution function:

1 x
B@) =1 [ VISP ()

where X|_, o () is the characteristic function of the interval [-2,2].
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Theorem 95 Suppose that 1 is a probability measure that has zero mean and unit
variance, and is supported on interval [—L, L]. Let (™ be the normalized n-time
firee convolution of measure pi with itself> ™) (du) = p8...Bu (v/ndu) . Let F, ()
denote the cumulative distribution function of ™). Then for large enough n the
following bound holds:

sup | F, (z) — @ (2)] < CL*n~ "2,
where C' is an absolute constant.

Remark: C' = 2% will do, although this constant is far from the best possible.
Proof: First, we repeat here for convenience of the reader one of Bai’s results
(same as Theorem 59 on p. 58):

Theorem 96 (Bai (1993)) Let measures with distribution functions F and G be sup-
ported on a finite interval [— B, B] and let their Cauchy transforms be G (z) and
Gg (2) , respectively. Let z = u + iv. Then

1 A
wlF () -G <~ | [ 1656~ Gs a9

sow [ gty —g<x>\dy} |
ly|<2ve

UV oz

4B
m(A—B)(2y-1)

1 / 1 J
= — u.
Y T Jjuj<e L+ u?

Note that if G () is the semicircle distribution then |G’ (z)| < 7~'. Therefore
|G (x +y) — G(x)| < |y| /m. Integrating this inequality, we obtain:

where A > B, k = < 1,7 > 1/2, and c and ~ are related by the

following equality

1 4c*
— sup G (z+y)—G(z)|dy < —v. (50)
Uz Jly|<2ve &
Hence, the main question is how fast v can be made to approach zero if the first
integral in (49) is also required to approach zero.

Let G4 and G,, be the Cauchy transforms of the semicircle law and (™), respec-
tively. Assume for the moment that the following lemma holds:
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Lemma 97 Suppose v = 2'°L3/\/n. Then for all sufficiently large n, we have the
following estimate:

2 210L3
/|Gn(u+iv)—G¢,(u+iv)|du§ N
-8

Let us apply Bai’s theorem using Lemma 97 and inequality (50). Let ® (x) and
F. () denote the cumulative distribution functions of the semicircle law and ;.("™,
respectively. The semicircle law is supported on [—2, 2] | and by taking n sufficiently
large we can ensure that (™) is supported on any fixed inteval that includes [—2, 2]
(see Bercovici and Voiculescu (1995)). Suppose that n is so large that u(™ is sup-
ported on [—2°/4 2%/] . Then we can take A = 8, B = 2°/%, ¢ = 6, and calculate
v = 0.895 and x = 0.682. Then Bai’s theorem gives the following estimate:

sup |7, (z) — @ (z)] < 1.268 (2'°L3n~"/? 4 46937L%n~"/?)

< 2L 12,

QED.

Thus, the main task is to prove Lemma 97. Here is the plan of the proof. First,
we estimate how close the K -functions of (™ and ® are to each other. Then we
note that the Cauchy transforms of ;™ and ® can be found from their functional
equations:

K, (Gn (2)) = 2,

and
Ko (Go (2)) = 2,
where K, and K denote the K -functions of 1™ and ®. From the previous step we
know that K, () is close to K (z) . Our goal is to show that this implies that G,, (2)
is close to Gg (2) .
If we introduce an extra parameter, ¢, then we can include these functional equa-

tions in a parametric family:

K (Gi(2)) = 2. (51)

Parameter ¢ = 0 corresponds to ® and ¢ = 1 to (™. Next, we fix z and consider G,
as a function of ¢. We develop this function in a power series in ¢:

Gi=Go+ Y ot
k=1
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where ¢;, are functions of z. Then we estimate [, for each £ > 1, where

8
I :/|Ck (u+ iv)]| du.
8

Then,

8
/\Gn (u+iv) — Go (u+iv)| du < ka,
-8 k=1

and our estimates of [ allow us to prove the claim of Lemma 97.

12.1.2 Speed of convergence of K-functions

In this Subsection, we derive an estimate for the speed of convergence of the K-
functions of (™ and the semicircle law. Let K, () denote the K -function of (™.
For the semicircle law the K -function is K¢ (2) = 2 '+2. Define ¢, (2) = K,, (2)—
z—z %
Lemma 98 Suppose ji has zero mean and unit variance and is supported on [—L, L.
Then the function ¢, (z) is holomorphic in |z| < \/n/ (8L) and

2
< 32L3ﬂ.
o ()] < 320" 2

Proof: The measure ;™ is the n-time convolution of the measure i (dz) =:
p (v/ndz) with itself. Therefore, K, (z) = nK;(z) — (n—1)z"'. Since 1 is
supported on [—L/+/n, L/\/n], we can estimate K (z) — 2 — 12 inside the cir-

cle |z| = \/n/ (8L) by using the estimates for coefficients of K; (z) from Lemma 64
on p. 62:

Kﬁ(z)—;—gz

> oL 1 /4L\"
= Al - —<—> ||
LY, o 1
< 32(—) EBrr=
N £ 21
L 3
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Note that we used the assumption about the mean and variance of the measure 1 in
the first line by setting b; = 0 and b; = 1/n.
Using the summation formula (47) for K -functions, we further obtain:

3

1 L3,
K, (2) — ~ — 2| < 32— |2,
K- 1 -2 <3l

QED.

Lemma 98 shows that as n grows, the radius of the convergence area of ¢,, (2),
and therefore of K, (2) , grows proportionally to y/n. In particular, the radius of con-
vergence will eventually cover every bounded domain. Lemma 98 also establishes
the rate of convergence of K, (z) to its limit Kg (2) = 271 + 2.

12.1.3 Useful estimates

Suppose G (z) is the Cauchy transform of the semicircle distribution.

Lemma 99 ) |Gg (2)| < 1ifImz > 0;
2) |z —2Gs (2)| > 2VImz ifIm z € (0,2).

Proof: Go(z) = (:—V22—4)/2. If = = u + iv and v is fixed, then the
maximum of |G (2)| is reached for u = 0. Then |G (iv)| = (Vo2 +4 —v) /2 and
sup |Ge (iv)| = 1.

Next, |z — 2Gg (2)] = |Vu? —v? —4+i2uv|. If v is in (0,2) and fixed, the
minimum of this expression is reached for u = /4 — v2 and equals 2/v. QED.

Lemma 100 [fn > 64L% and Im z > 0, then we have:

3213
v

Proof: This Lemma follows directly from Lemmas 98 and 99. QED.

|00 (Ga (2))] <

12.1.4 Functional equation for the Cauchy transform

Let G,, () denote the Cauchy transform of ;1(™). Let us write the following functional
equation:

G(t,z)+ +tp, (G(t,2)) = z, (52)

1
G (t,z)
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where t is a complex parameter. For ¢ = 0 the solution is G¢ (2), and for ¢ = 1 the
solution is G, () . Assume that ¢, (z) is not identically zero. (If it is, then ;™ is
semicircle and d (u{™, v) = 0.) Let us write equation (52) as
Sl Gty (53)
Ge, (G)

We can think about 2 as a fixed complex parameter and about ¢ as a function of the
complex variable G, i.e., t = f (G) . Suppose ¢,, (G4 (2)) does not equal zero for a
given value of z. (This holds for all but a countable number of values of parameter
z.) Then, as a function of G, f is holomorphic in a neighborhood of G5 (z) . What
we would like to do is to invert this function f and write G = f~! () . In particular
we would like to develop f~! () in a series of t around ¢ = 0. Then we would be able
to estimate | f~! (1) — f~' (0)|, which is equal to |G,, (2) — G (2)] . To perform this
inversion, we use the Lagrange formula in Lemma 60 on p. 58.

Assume that z is fixed, and let us write GG instead of G (z) and G instead of
G (z) . By Lemma 60, we can write the solution of (53) as

G=Go+ ) ot (54)
k=1
where i
1 Gy, (G)
* =5 d, (m) | 3)

We aim to estimate [;, =: ffg |cx (u + v)| du. In particular, we will show that for
any v € (0,1), I; = O (n~"/?). In addition, we will show that if v = b/\/n for
a suitably chosen b, then Y >, I, = o (n_l/ 2) . This information is sufficient for a
good estimate of

8
/ |G (u+iv) — Gg (u + )| du.
-8
Let us consider first the case of £ = 1. Then
G@(,Dn (G‘I))
Gy — Gy

G‘1>(70n (G‘I>)
22 —4

cT =

)
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where G5 denotes another root of the equation G2 — 2G + 1. Therefore, if 2 = u +iv,
then we can calculate:

|Cl| _ |G‘I’| |<)0n <G¢)|
[(u? - 4)? 4+ 2 (u? +4) v + vY] i
32L3 1

<

Vn [(u2 — 4)2 +2(u?+4)0v2 + 04] 1/e’
where the last inequality holds by Lemma 100 for all n > 64L2.

Lemma 101 Foreveryv € (0,1),
8
2 2 2 2 4 —1/4
[(u —4) +2(u —i—4)v +v] du < 24.
8

Proof: Let us make substitution = u? — 4. Then we get:
60
/ (2% +2 (2 + 8)v? —I—U4]71/4

—4
60

/ 1 dx
(@2 o) Ve

dx
vo+4

J

IN

Now we divide the interval of integration in two parts and write:

-2 60

7z fus .

22
2
dx

—4
- 60
1/ 2 / dx
< — + = [ ==
T V2) Vr+4d V2 xl/?
—4 0

4
= 2+—2v60<24.

7

QED.

Corollary 102 For every v € (0,1) and all n > 64L?, it is true that

768L3

NG

8
[1 =: /|Cl (U‘FZ'U)’dU <

-8
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Now we estimate ¢, in (54) for £ > 2. Define function f, (G) by the formula

o) = (G219

where G, denotes the root of the equation G? — zG + 1, which is different from G.
Then formula (55) implies that k¢, equal to the coefficient before (G — ch)k_l in
the expansion of fi (G) in power series of (G — Gg). To estimate this coefficient,
we will use the Cauchy inequality:

Mk (7")

|kcx| < Rl

where M, (r) is the maximum of | f; (G)| on the circle |G — Go| = .
We will use » = /v and our first goal is to estimate My, (1/v) .

Lemma 103 Let z = u + iv and suppose that v € (0,1) . If n > 256 L2, then

Mk (U) S

k
51213 1
Vn ((u2 — 4)2 + 2u2712)1/4

Proof: Note that |G| < |G| + /v and therefore |G| < 2 provided that v €
(0,1) . Then Lemma 98 implies that if n > 256 L2, then ¢,, (G) is well defined and
|0, (G)| < 128L3/y/n. 1t remains to estimate |Gy — G| from below. If we write
G = Gy + €\/v, then we have

Ga— G| = |VZ—d-c'Vi
> V24| -V
— ((u2—4)2+2(u2+4)v2+v4>1/4—\/5
> ((u2—4)2+2(u2+4)02>1/4—\/5>0.

From the concavity of function ¢'/4 it follows that for positive A and B the fol-
lowing inequality holds:

[8 (A + B)]1/4 . A1/4 Z B1/4.
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Using v? as A, and [(u2 — 4 + 2u2v2] /8 as B, we can write this inequality as
follows:
2 2 2 2\ /4
(=) + (202 +4)0?)

Therefore

1 1/4
~ Vo g ((u2 — )+ 2u2v2> > 0.

k
51213 1 ]
Vn ((u? - 4)* + 2u21)2)1/4

QED.

Corollary 104 For everyv € (0,1), k > 2, and all n > 256 L2 it is true that

k
k1 | 51213 1
\keg (u+v)| <ov™ 2
Vn ((u2 — 4)2 + 2u2v2)1/4

Now we want to estimate integrals of |c; (u + 7v)| when u changes from —8 to 8.
The cases of £ = 2 and k£ > 2 are slightly different and we treat them separately.
Let

8
I = /\ck (u + iv)| du
8

Lemma 105 [fv € (0,1) and n > 256L%, then i)

log (60/v) 2'19LS
< Y
- \/5 n

3\ k
I < 203/2 (512L > .
k vy/n

I

and ii) if k > 2, then

Proof: Using Corollary 104, we write:

8

; /’ (utiv)|d 11 (512L3)k/ du
ke —- Cr \u 0 U S — — .
J kot=D/2 \ \/n o ((u2—4)2+2u2v2)k/4

After substitution 7 = u? — 4, the integral in the right-hand side of the inequality can

be re-written as .
6

7 _'/ 1 dz
* '4 (22 +2(z + ) 2)* Vo + 4
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We divide the interval of integration into two portions and write the following in-
equality:

dx
<
- \/9:+ (@ +2(z+4) V)

< 2\/§+/(d—x.

22 + U?)k/4

Ik

If we use substitution s = x/v, then we can write:

60 p 60/v p
i S
_/1 (a2 + )0 ! V5 (L4 52)

We again separate the interval of integration in two parts and write:
60/v 60/v

2 ds d ds
e (1+ s?) i = o
0

Here we have two different cases. If & = 2, then we evaluate the integrals as 1 +
log (60/v) . Therefore,

J 2v/3 + 2 + 2log (60/v)

<
< 4log (60/v).
Hence,

1976
I < log (60/v) 2L |

If & > 2, then we have:
60/v

ds 2
= /ds—l— / = %
V2 V2

VAN
-t

w\l?r )
/N

—_

+
|

| —

—_
N~ =

IN



Therefore,

6 12
Je <234 — < ——,
vzt vz 1
and
1 1 51203\ " 12
Ik S 7 %
L p(k—1)/2 NG vE-1
3 k
- ng 512L |
-k vy/n
QED.

Corollary 106 Ifv = 1024L3/\/n, and n > 256L? then
log (5565 V)

1479/2
I, <2°°L 3/d .

In particular, I, = o (n_l/Q) as n — o0o.
Now we address the case when £ > 2.

Corollary 107 Suppose v = 1024L3/\/n, and n > 256 L*. Then

- 3 30 g2 1
;Ik < S = 1536L 7

In particular, Y 7", Iy = o (n™Y/?) as n — oc.
Joining results of Corollaries 102, 106, and 107, we get the following result.

Lemma 108 Suppose v = 1024L3/\/n. Then for all sufficiently large n, we have the
following estimate:

8
/|Gn (u+iv) — Go (u + )| du <

-8

210L3
vn

Proof: From formula (54) we have
|G — Ga| < el
k=1
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Since the series has only positive terms, we can integrate it term by term and write:

8

o 8
/|Gn(u+iv)—G¢(u+iv)|du < Z/|ck(u+iv)ldu
k=1 "¢

-8

T68L3

< S 4o
210L3

<

— \/ﬁ

for all sufficiently large n. QED.
Lemma 108 is identical to Lemma 97 and its proof completes the proof of Theo-
rem 95.

12.2 Example

Consider a Bernoulli measure: p{—1/p} = pand p{1/q} = g = 1 — p. This is
a zero-mean measure with the variance equal to (pg) " . Let u (dz) = p B ... B

i (1 /p%d:c) and let F,, () be the distribution function corresponding to z(™).
Proposition 109 If'p # q, then there exist such positive constants C'y and C5 that

Cin~Y? < sup |Fn () — @ (2)] < Con~1/?

for every n.

Proof: From the Voiculescu addition formula and the Stieljes inversion formula,
it is easy to compute the density of the distribution of (™)

\/4—x2+2pq - L

N pgn

n () = :
R ) ()

if the square root is real, and if not, f, (z) = 0. We compare this distribution with
the semicircle distribution, which has the following density:

6(r) = 5 VI X o (1)
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More precisely, we seek to estimate

s [ (5.0 -o0) ]

The support of f, is [-2v1 —n~ T+ cn™ 2, 2¢/1 —n~T + cnV/?] , where ¢ =
(p — q) /+/Pq. Suppose in the following that p > ¢ and introduce the new variable

u=x+2y1—n"1t—c¢/\/n. Then,
2rfn (u) = \/4u V1-—n-1-
~ Vdu —u?,

where the asymptotic equivalence is for u fixed and n — oo and we omit all terms
that are o (n~'/2) . Similarly,

2w (r) = \JA—(u—2(1—n1)+en12)?
~ VAu — u2 + den-Y2 — 2cun—1/2

2—u
= VAu—uZ[1+2
= + c\/_uél—u

1 2-
2 1
\/+ C\/_uél—u ]
1 2—-u
~ Viu— 2
“ uc\/ﬁuél—u

1 2—u

Vnuvi—u

Consequently,

¢(u) = fulu) ~ Viu—u?

After integrating we get:
1
~ C_f (.CE) )

/0 (1) = 6 () ~ o—

where f () is a continuous positive bounded function. From this expression it is
Jo () — o (1)) dt‘ has the order of n~1/2 provided that p # q.

clear that sup,,
QED.

This example shows that the rate of n~/? in Theorem 95 cannot be improved
without further restrictions on measures. It would be interesting to extend Theorem
95 to measures with unbounded support or relate the constant in the inequality to
moments of the convolved measures, similar to the classical case.
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13 Superconvergence of Sums of Free Random Vari-
ables

In many respects, free probability theory parallels classical probability theory. There
exist analogues of the central limit theorem (Voiculescu (1986)), the law of large
numbers [Bercovici and Pata (1996)], and the classification of infinitely divisible
and stable laws [Bercovici and Voiculescu (1992) and Bercovici et al. (1999)]. On
the other hand, certain features of free and classical probability theories differ strik-
ingly. Let S,, = n~Y/23"" | X, where X; are identically distributed and free random
variables. Then the law of S,, approaches the limit law in a completely different
manner than in the classical case. To illustrate this, suppose that the support of X is
[—1, 1]. Take a positive number o < 1. Then, in the classical case the probability of
{|Sn| > an} is exponentially small but not zero. In contrast, in the non-commutative
case the probability becomes identically zero for all sufficiently large n. This mode of
convergence has been called superconvergence by Bercovici and Voiculescu (1995).

In this paper we extend the superconvergence result to a more general setting of
non-identically distributed variables and estimate the rate of the superconvergence
quantitatively. It turns out, in particular, that the support of .S,, can deviate from the
supporting interval of the limiting law by not more than ¢//n, and we explicitly
estimate the constant c. An example shows that the rate ~'/? in this estimate cannot
be improved.

Related results have been obtained in random matrix literature. For example,
Johnstone (2001) considers the distribution of the largest eigenvalue of an empirical
covariance matrix for a sample of Gaussian vectors. This problem can be seen as a
problem about the edge of the spectrum of a sum of n random rank-one operators
in the N-dimensional vector space. More precisely, the question is about sums of
the form S,, = Z?:l x;x,, where x; is a random N-vector with the entries distrib-
uted according to the Gaussian law with the normalized variance 1/N. Then S, is a
matrix-valued random variable with the Wishart distribution.

Johnstone is interested in the asymptotic behavior of the distribution of the largest
eigenvalue of S,,. The asymptotics is derived under the assumption that both n and
N approach oo, and that limn/N = ~ > 0, v # oo. Johnstone finds that the
largest eigenvalue has the variance of the order n~2/3 and that after an appropriate
normalization the distribution of the largest eigenvalue approaches the Tracy-Widom
law. This law has a right-tail asymptotically equivalent to exp [— (2/3) s*?] , and,
in particular is unbounded from above. Johnstone’s results have generalized the orig-
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inal breakthrough results by Tracy and Widom (1996) (see also Tracy and Widom
(2000)) for selfadjoint random matrices without the covariance structure. In Sosh-
nikov (1999) and (2002), it is shown that the results regarding the asymptotic dis-
tribution of the largest eigenvalue remain valid even if the matrix entries are not
necessarily Gaussian.

In an earlier contribution, Bai and Silverstein (1998) also considered empiri-
cal covariance matrices of large random vectors that are non-neccesarily Gaussian
and studied their largest eigenvalues. Again both n and /N approach infinity and
limn/N =~ > 0, v # oo. In contrast to Johnstone, Bai and Silverstein were inter-
ested in the behavior of the largest eigenvalue along a sequence of increasing random
covariance matrices. Suppose the support of the limiting eigenvalue distribution is
contained in the interior of a closed interval, /. Bai and Silverstein showed that the
probability that the largest eigenvalue lies outside of [ is zero for all sufficiently large
n.

These results are not directly comparable with ours for several reasons. First,
in our case the edge of the spectrum is not random in the classical sense and so it
does not make sense to talk about its variance. Second, informally speaking, we are
looking at the limit situation when N = oo, n — oco. Because of this, we use much
easier techniques than all these papers as we do not need to handle the interaction of
the randomness and the passage to the asymptotic limit. Despite these differences,
comparison of our results with the results of the random matrix literature is stimulat-
ing. In particular, the superconvergence in free probability theory can be thought as
an analogue of the Bai-Silverstein result.

13.1 Results and examples

In the classical case the behavior of large deviations from the CLT is described by
the Cramer theorem, the Bernstein inequality, and their generalizations. It turns out
that in the non-commutative case, the behavior of large deviations is considerably
different. The theorem below gives some quantitative bounds on how the distribution
of a sum of free random variables differ from the limiting distribution.

Let X,,;, ¢ =1,..., k, be a double-indexed array of bounded self-adjoint random
variables. The elements of each row, X, 1, ..., X,, 1, are assumed to be free but are not
necessarily identically distributed. Their associated probability measures are denoted
[, ;> their Cauchy transforms are G, ; (2) , their £-th moments are a,(ff, etc. We define

Sy = Xp1+ ...+ X, i, and we will the study the behavior of the probability measure
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i, associated with S,,.

We will assume that the first moments of the random variables X, ; are zero and
that ||.X,.;|| < Ly, Letwv, = ag)l + ...+ aﬁn, L, = max;{L,;}, and T,, =
L3+ + L3, .

Theorem 110 Suppose that limsup,, . T,/ v > 2712 Then for all sufficiently
large n the support of i, belongs to

I = (=2\/v, — T,/ Vn, 28/ + T J0r)

where ¢ > 0 is an absolute constant.

Remark 1: ¢ = 256 will do although it is not best possible.

Remark 2: Informally, the assumption that limsup, _ T,,/vy> > 2712 means
that there are no large outliers. An example when the assumption is violated is pro-
vided by random variables with variance asz)- =n"'and L,; = 1. Then T,, = n and
v = 1, so that 7}, / v3/% increases when n Srows.

Remark 3: The assumption in Theorem 110 are weaker than the assumptions of
Theorem 7 in Bercovici and Voiculescu (1995). In particular, Theorem 110 allows
making conclusions about random variables with non-uniformly bounded support.
Consider, for example, random variables X, £k = 1,...,n, that are supported on
intervals [—k'/3, k'/?] and have variances of order £%/3. Then T, has the order of n?
and v, has the order of n°/3. Therefore, T}, / v>'? has the order of n~'/2 and Theorem
110 is applicable. It allows us to conclude that the support of S,, = X7 + ... + X, is
contained in the interval (—2,/v, — cn'/3, —2,/v, + en'/?) .

Example 111 Identically Distributed Variables.

A particular case of the above scheme is the normalized sums of identically dis-
tributed, bounded, free r.v.: S, = (§; + ... + &,,) /v If ||§;]] < Lthen ||€;/v/n] <
L,; = L, = L/\/n. Therefore T,, = L?//n. If the second moment of &, is o then
the second moment of the sum S, is v,, = o2. Applying the theorem we obtain the
result that starting with certain n, the support of the distribution of .S, belongs to
(=20 — c(L3/0*) /2,20 + ¢ (L3 /o?)n=1/?) |

Example 112 Free Poisson
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Let the n-th row of our scheme has k,, = n identically distributed random vari-
ables X, ; with the Bernoulli distribution that places probability p,; on 1 and g, ; =
1 — py,; on 0. (It is easy to normalize this distribution to have the zero mean by
subtracting p,, ;). Suppose max; p,; — 0 as n — oo and

n

an,iﬁ)\>0

i=1

asn — oo. Then L, ; ~ 1 and afm- = Pn,i (1 — pn;) so that T), ~ n and v, — A as
n — oo. Therefore, Theorem 110 does not apply. An easy calculation for the case
Pni = A/n shows that superconvergence still holds. This example shows that the
conditions of the theorem are not necessary for superconvergence to hold.

Example 113 Identically Distributed Bernoulli Variables

Let X; be identically distributed with a distribution that puts positive weights p
and ¢ on —+/q/p and \/p/q, respectively. Then EX; = 0 and EX? = 1. It is not
difficult to show that the support of S,, = n=%/23"" X, is the interval [ = [z, 5],

where
1 qg—p 1
Tro=424/1—- -+ 1L —
v n \/pq vn

This example shows that rate of n~'/2 in Theorem 110 cannot be improved without
further restrictions. Note also that for p > ¢, L,, is \/]7 , and therefore the coeffi-
cient before n~1/2 is of order L,,. In the general bound the coefficient is L3 /o2, It is
not clear whether it is possible to replace the coefficient in the general bound by a
term of order L,,.

Recall the scaling properties of the Cauchy transform and its inverse:

Lemma 114 j) G, 4(2) = o 'Ga(z/a) and ii) Koa(u) = aKa(au).

The claim of the lemma follows directly from definitions.

13.2 Proof

The key ideas of the proof are as follows:

1) We know that the Cauchy transform of the sum S, is the Cauchy transform of a
bounded r.v. (since by assumption each X, ; is bounded). Consequently the Cauchy
transform of .S,, is holomorphic in a certain circle around infinity (i.e., in the area
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|z| > R for some R). We want to estimate R and apply Lemma 56 to conclude that
Sy, is supported on [— R, R] .

2) Since the K-function of S,,, call it K,,(z), is the sum of K-functions of X, ;
and the latter are inverses of Cauchy transforms of X, ;, it is an exercise in complex
analysis to estimate the radius of convergence of power series of K, (z) at z = 0 and
locate critical points of K, (2) (i.e., zeros of its derivative). Using this information,
we can prove that the K-function of S, takes real values and is a one-to-one function
on a sufficiently large real interval around zero. Therefore, it has a differentiable
inverse defined on a sufficiently large real interval around infinity (i.e. on the set
I = (—o00,—A] U[A, c0) for some A, which we can explicitly estimate). Moreover,
with a little bit more effort we can show that this inverse function is well-defined and
holomorphic in an open complex neighborhood of /. This shows that Lemma 56 is
applicable, and the estimate for A provides the desired estimate for the support of S,,.

We will start with finding the radius of convergence of the Taylor series of K, (2) .
First we need to prove some preliminary facts about Cauchy transforms of X, ;.

Define g,,; (2) = G,; (271) . Since the series G, ; (2) are convergent everywhere
in |z| > Ly, then the Taylor series for g, ; () converges everywhere in |z < L, ;.

Assume that R?,, ; and m,, ; are such that

L. Rn,i Z Ln,l7
2. |Gni(2)] = my,; > 0everywhere on |z| = R, ;;
3. gn,i(2) is one-to-one in 2| < R, ;.

For example, we can take R, ; = 2L,,; and m,,; = (4Lm)_1 . Indeed, for any z
with |z| =7 > L,,; we can estimate G, ; (2):

1 aqzu‘ ‘afm

r r3
N 1_(%+Lf’m+ )
o 73 rd
1 L2, 1
T =L




valid for every i and everywhere on |z| = 2L,, ;.
It remains to show that g, ;(z) is one-to-one in |z| < (2L, ;)" . This is indeed so
because
gni(z) = 2 <1 +a@22 4 a®3 4 ) ,

n,i n,%

and we can estimate

(2) 3) ! 2—|—L ! 3 :
2) 2 3).3 2 3

2t a2+ < L7 ‘ [ Ty
an,@Z an,zz ‘ LY <2Ln,z) Tt (2 n,i) 2

Definition 115 Let R, = max; {R,,;}, m,, = min; {m,,;},and D,, = Zf;l R, (mn’i)_2 )

We are now able to investigate the region of convergence for the series K, ; (2) .
Lemma 116 The radius of convergence of K-series for measure p,, is at least m,,.

The lemma says essentially that if r.v. X, 1, ..., X, ;. are all bounded by L,,
then K'-series for ) . X,,; converge in the circle |z| < 1/(4L,,).

Proof: Let us apply Lemma 61 to G,,,; (z) with  having radius (R,;)”'. By
Lemma 61 the coefficients in the series for the inverse of G,,; (2) are

b(k? _ 1 % dZ
w2k Sy, 22, (2)k

and we can estimate them as

R

bW < Iy )R
ni| S = (M)

This implies that the radius of convergence of K-series for measures ji,, ; is 1m,,;.
Consequently, the radius of convergence of K-series for measure p,, is at least m,,.
QED.

Now we can investigate the behavior of K, (z) and its derivative inside its con-
vergence circle.

Lemma 117 For every z in |z| < m,,, the following inequalities are valid:

< D,|z, (56)

< 2D,||. (57)




Note that D,, is approximately k,L>, so the meaning of the lemma is that the
growth of K,, — 27! — v,z around 2z = 0 is bounded by a constant that depends on
the norm of the variables X, 1, ..., X, ..

Proof: Consider the circle with radius m,, ;/2. We can estimate [, ; inside this
circle

]_ an — an — n,1
o= =l < T ) ol T (7 o
Ry -3 2mi,z‘
+ 1 (M) 2] o + ...
1 11 11
= an n,i - - 5 a ~ a0 <an n,i - 2~
) P (54 35+ 335 + o) < Baslma) 1o

Consequently, using Voiculescu’s addition formula we can estimate

1
‘Kn (2) = < —vnz| < Dy 127, (58)

Similar argument leads to the estimate:

1
‘K; (2) + 2 — tn| < 2Da J2]. (59)

QED.

Lemma 118 Suppose m,, > 4/\/v,, r, < 1/ (2,/vn) , and T, > 4D, /v?. Then
there are no zeros of K/ (z) inside |z| < 1/\/v, — 7.

Proof: On |z| = on'/? =1, we have 1272 > v,,. Also |z — on Pz + o t?| >

TnUn 2 This is easy to see by considering two cases Re z > 0 and Re z < 0. In the

first case 2—051/2 > r, and z+v;1/2 >v;1/2.1nthesecondcase z—v,fl/Q >
vﬁm and z—l—v;m > r,. Therefore,
-2 -2 ~1/2 ~1/2
‘—z +vn| = ‘z ‘Un‘z—vn/}‘z+vn/|

3/2
> a2,

The circle + lies entirely in the area where formula (57) applies to K/, (z) . (Since

by assumption r,, < v;1/2/2 , then r,, + 051/2 < 21};1/2 and therfore r,, + 051/2 <
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m,, /2, provided that myvs® > 4, which holds by assumption.) Consequently, using

(57) we can estimate
K] (2) — (=272 +v,) | <4Dpv, V2,

2, By assumption 1, > 4D,v, 2 therefore vf{/ 2rn >

where we used |z| < 2u;,"
AD,vp Y ? and Rouche’s theorem is applicable. Both K ! (2) and —2~2+wv, have only
one pole, which is of order two, in |z| < v~'/2 —r,, and the function —z~2 4 v,, has
no zeros inside |z| < v~1/2

zeros of K/ (z) inside |z| < v~'/2 — r,,. (Rouche’s theorem is often formulated only

—r,. Therefore, Rouche’s theorem implies that there is no

for holomorphic functions but as a consequence of the argument principle (see e.g.
Theorems 11.2.3 and I1.2.4 in Markushevich (1977)) it can be easily re-formulated for
meromorphic functions. In this form it claims that a meromorphic function, f(z), has
the same difference between the number of zeros and number of poles inside a curve
~ as another meromorphic function, g(z), provided that |f (2)| > |g(2) — f(2)].
For this formulation see, e.g., Hille (1962), Theorem 9.2.3.) QED.

Condition 119 Assume in the following r, = 4D, /v2 and r, < 1/ (2@) .

Now we use our knowledge about the location of critical points of K, (z) to
investigate how it behaves on the real interval around zero.

Lemma 120 Suppose m,, > 4/./v, and Dn/vf’/2 < 1/8. Then K, (z) maps the
interval [—1/\/% + 703 1/\/Un — rn] in a one-to-one fashion on the set that contains
the union of two intervals (—oo, -2/, — ch/vn) U (2@ + Dy, /v, oo) , Where
c is a constant that does not depend on n.

Remark: For example, ¢ = 8 will work.

Proof: The assumption that m,, > 4/,/v, ensures that the series K, (z) con-
verges in |z| < 4/,/v,, z # 0. Note that K, (z) is real-valued on the set /| =
[—1/\/@ + 7y, 0) U (0, 1/\/0n — rn} , because this set belongs to the area where
the series K, (z) converges and the coefficients of this series are real. Moreover, by
Lemma 118, there is no critical points of K, (z) on I (i.e., forevery z € I, K| (2) #
0), therefore K, (z) must be strictly monotonic on subintervals [—1 /\/Vn + Tn, 0)
and (0,1/,/v, — 1] . Consequently, K,, (I) = (—00, K, (—1/1/0n + 1) |U[K,, (1/1/0n — T) , 00) .
We claim that K, (1/\/v_n— rn) < 2\/v, + 8D, /v, and K, (—1/\/@—#7’71) >
—2/vp, — 8Dy, /vy,.
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Indeed, write

then

() ot o)

According to our assumption 7,/v,, = 4D,/ v3/ 2 <1 /2. Therefore we can estimate

VT (L )+

1
< 1+ 2r4/vp,
1—7r, o, TrnA/Un, + Ty

and

1
Kn<m—7’n) §2m+rnvn+‘h(

We can estimate the last term using Lemma 117 as

1
h -1, | <D,
<\/Un T)_

Altogether, after substituting r,, = 4D,, /v? we get

2
= D, /v,.

n

1
K, (\/m — rn> < 2y/v, + 8D,/ v,.

Similarly we can derive that

1
K, (_\/@ —H"n) > —2\/v, — 8D, /v,.

QED.

From the previous Lemma we can conclude that K, () has a differentiable in-
verse defined on (—o0, —24/v, — ¢Dy, /v,) U (2y/v,, + ¢D;, /v, 00) . We can extend
this conclusion to an open complex neighborhood of this interval. This is achieved
in the next two lemmas.

Lemma 121 As in previous Lemma suppose that m,, > 4/./v,, and Dn/vg/2 <1/8.
Let z be an arbitrary point of the interval [ 1/\/Uy + Ty, 1/\/@ ] Then we
can find a neighborhood U, of z and a neighborhood W, of w = K,, (2) such that
K, is a one-to-one map of U, on W,, and the inverse map K, ' is holomorphic
everywhere in W,.
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Proof: Since the series K, (z) — z~* converges in |z| < 4/ \/Vn, function K, (2)
is holomorphic in |z| < 4//v,, 2 # 0. In addition, by Lemma 118, if

20 € [—1/3/Un + T, 1/ /U — T3]

then 2, is not a critical point of K, (z). Therefore for z # 0, the conclusion of
the lemma follows from Theorems I1.3.1 and I1.3.2 in Markushevich (1977). For
z = 0 the argument is parallel to the argument in Markushevich except for a different
choice of local coordinates: Indeed, f () = 1/K, (z) is holomorphic at z = 0, it
maps z = Otow = 0,and f'(2) = 1 # 0 at z = 0. Therefore, Theorems I1.3.1
and I1.3.2 in Markushevich (1977) are applicable to f (z) and it has a well defined
holomorphic inverse in a neighborhood of w = 0. This implies that K, (z) has a
well-defined holomorphic inverse in a neighborhood of oo, given by the formula
K;'(z)=f(1/2). QED.

n

Lemma 122 Local inverses K, ' (2) defined in the previous lemma are restriction of
a function G,, (2) which is defined and holomorphic everywhere in a neighborhood of
I ={o0}U <—oo —2vy? —¢D /vn} U [2211/2 + ch/vn,oo>. The function G, (2)
is the inverse of K,, (z) in this neighborhood.

Proof: By Lemma 120, for every point w € [ we can find a unique

€ [=1/\/on + 10,1/ 0p — 14

such that K, (z) = w. Let U, and W, be the neighborhoods defined in the previous
lemma. Also let us write (I, K;!) to denote the local inverses defined in the pre-
vious lemma together with their areas of definition. Our task is to prove that these
local inverses can be joined to form a function defined everywhere in a neighborhood
of I. We will do it in several steps.

First, an examination of the proof of the previous lemma and Theorem II.3.1 in
Markushevich (1977) shows that we can take each U, in the form of a disc. Then,
let (72, = U,/3, that is, define 172 as a disc that has the same center but 3 times

smaller radius than U,,. Define Ww as K, ((7;) . These new sets are more convenient

because of the following property: If (721 N [72,2 # @ then either ljzl U (722 c U,
orU,, UU,, C U, In particular, this means that if U., NU., # 0 then K, (z) is a
one-to-one map of UZ1 U UZ2 on le U sz This is convenient because K, is one-
to-one not only on a partlcular nelghborhood UZ1 but also on the union of every two
intersecting neigborhoods UZ1 and UZ2 Let us call this extended invertibility property.
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Next define even smaller U, with the following properties: 1) U. C sz; 2)

—~ ~

Ww =: K, (ﬁz) is either an open disk for z # 0 or the set |w| > R for z = 0;
and 3) 0 ¢ Ww. This is easy to achieve by taking an appropriate open subset of Ww
as Ww and applying K !. Note that the property of the previous paragraph remains

valid for the new sets U 2

Discs Ww form an open cover of I and the corresponding sets U. form an open
cover for K1 (I), which is a closed interval contained in [—1/\/1)” + 7, 1/\/Un — rn} .

LetU, i =0,..., N, be a finite cover of K, ! (I), selected from {[72} . (We can do
it because of compactness of K, (1) .) And let W, =: K,, (U;) be the corresponding
cover of I, selected from Wz . For convenience, let W, denote the set Ww for

w = oo. Finally let R = UY,U; and S = UY W;. Sets R and S are illustrated in
Figure 1.
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Clearly S is open. We aim to prove that .S is simply connected in the extended
complex plane C U {oc}. For this purpose let us define the deformation retraction
F of the set S by the formula: 1) if z € W, then z — z; 2) if 2 ¢ W), then
z — Rez 4 (1 — t) Im z. Here parameter ¢ changes from 0 to 1. (For the definition
and properties of deformation retractions see, e.g., Hatcher (2002), the definition is
on page 2 and the main property is in Proposition 1.17.) This retraction reduces S
to a homotopically equivalent set S’ that consists of W, and two intervals of the real
axis that do not include 0. After that we can use another deformation retraction F5
that sends 2 to (1 —¢)~'2. This retraction reduces S’ to S” = {oo} which is evidently
simply-connected.

We know that there is a holomorphic inverse K, !(z) defined on each of W;.
Starting from one of these domains, say W, we can analytically continue K ! (z) to
every other IW;. Indeed, take a point 2y € Uj and z; € U; and connect them by a path
that lies entirely in R = U ,U;. This path corresponds to a chain {U}, },s=1,..,n
that connects Uy and U;. That is, Uy, = Uy, Uy, = U;, and Uy, N Uy,,, # @. The
corresponding {W}, } form a chain that connects W, and W, that is, W, = W,
Wy, = Wi, and Wy, N Wy, | # . By its definition, this chain of sets IV has also
a specific property that K, ' (Wy,) N Kt (Wy,,,) = Uy, NUy,,, # @.

Consider two adjacent sets, W}, and W, in this chain. Then the correspond-
ing local inverses (Wj,, K, ') and (Wy,,,, K,;') , which were defined in the previous
lemma, coincide on an open non-empty set. Indeed, K, (U k; N Uk, +1) is an open and
non-empty set. Since K, (Uy, N Uy,,,) C Ky (Uy,) N Ky, (Ury,,) = Wi, 0 Wi,
functions (Wy,, K,,;*) and (W, ,, K,;'') are well defined on K, (U, N Uy, , ). More-
over, they must coincide on K, (Ukj N Uk, +1) i

Indeed, by construction Uy, MUy, ., # () and, therefore, by the extended invertibil-
ity property, K, is one-to-one on Uy, U Uy, , . Hence there cannot exist two different
zand 2’ € Uy, UUy,,, that would map to one point in K, (Uy, N Uy,,,). Hence
(Wy,, K,;') and (Wy,,,, K, ') must coincide on K, (U, N Uy, , ) -

Using the property that if tow analytical functions coincide on an open set then
each of them is an analytic continuation of the other, we conclude that the local in-
verse (W), K;7') can be analytically continued to W}, ,, where it coincides with the
local inverse (ij oKy 1) . Therefore, at least one analytic continuation of (Wy, K, !)
is well-defined everywhere on .S and has the property that when restricted to each of
W; it coincides with a local inverse of K, (z) defined in the previous lemma. Since
S is simply connected, the analytic continuation is unique, that is, it does not depend
on the choice of the chain of the neighborhoods that connect W, and W;.
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Let us denote the function resulting from this analytic continuation as GG,, (z) . By
construction, it is unambiguously defined for every I¥/; and the restrictions of G, (2)
to W; coincide with K, *. Therefore, G,, (z) satisfies the relations K, (G, (z)) = z
and G,, (K, (z)) = z everywhere on R = UY ,U; and on S = U} ,W;. Every claim
of the lemma is proved because S' is an open neighborhood of /.

QED.

Lemma 123 The function G, (z) constructed in the previous lemma is the Cauchy
transform of S,,.

By construction, G, ! (2) is the inverse of K, (z) in a neighborhood of {oco} U
<—oo, —op? ch/vn) U <2wl/2 + Dy, /vn, oo) . In particular, it is inverse of
K, (z) in a neighborhood of infinity. Therefore, in this neighborhood it has the
same power expansion as the Cauchy transform of .S,,. Therefore, it coincides with
the Cauchy transform of .S,, in this neighborhood. Next we apply the principle that
if two analytical functions coincide in an open domain then they coincide at every
point where they can be continued analytically. QED.

Now it remains to apply Lemma 56 and we obtain the following Theorem.

Theorem 124 Suppose that i) lim inf m,, /v, > 4, and ii) lim sup,,_, ., Dn/v?{/2 <

1/8. Then for all sufficiently large n the support of i, belongs to

I = (=2\/v, — Dy /v, 2/v,, + cD,, Jvy)

where c > (0 is an absolute constant (e.g. ¢ = 8).

Proof of Theorem 124. Let us collect the facts that we know about G,, (z) that
was defined in Lemma 122. First, by Lemma 123 it is the Cauchy transform of a
bounded random variable S,,. Second, by Lemma 122 it is holomorphic at z € R,

|z| > 208/* + ¢D, /vn. Using Lemma 56 we conclude that the distribution of \S,, is

supported on the interval —21)71/ 2 cDy, /v, 21}}/ 24 cD, | . QED.
If we take R, ; = 2L, ; and m,, ; = (4Lm)_1 , then assumption 1) is equivalent to

. . . VUn
lim inf min

n—oo 1 LTL,i

> 4,

which is equivalent to

Ly,
lim sup < 16.

n—oo 1/ Un
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From ii) we get

32570 L3,
3/2 ’
Un

Sk Ry ()7

1/8 > lim sup 572
Un

n—~o0

= lim sup

n—oo

which is equivalent to

T,
lim sup =7 < 1/256.
n—o0 Uy,

Finally note that the condition lim sup,, . T}, /v5/ > < 2712 implies that

lim sup L, /+/v, < 16.

n—oo

Therefore, Theorem 110 is a consequence of Theorem 124.
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Part 111
Limit Theorems for Products of Free
Operators

14 Norms of Products of Free Random Variables

14.1 Introduction

Suppose X, X, ... , X, are identically-distributed free random variables. These
variables are infinite-dimensional linear operators but the reader may find it conve-
nient to think of them as very large random matrices. The first question we will
address in this paper is how the norm of II,, = X;X5...X,, behaves. If X; are all
positive, then it is natural to look also at the symmetric product operation o defined
as follows: X; 0 Xy = X 11 2X,X 11 /2. The benefit is that unlike the usual operator
product, this operation maps the set of positive variables to itself. For this operation
we can ask how the norm of symmetric products Y;, = X; o X, o ... o X,, behaves.?
Products of random matrices and their asymptotic behavior were originally stud-
ied by Bellman (1954). One of the decisive steps was made by Furstenberg and
Kesten (1960), who investigated a matrix-valued stationary stochastic process X7, ...
, X, ..., and proved that the limit of n™'E (log || X;...X,,||) exists (but might equal
+00) and that under certain assumptions n~! log || X;...X,,|| converges to this limit
almost surely. Essentially, the only facts that are used in the proof of this result are
the ergodic theorem, the norm inequality || X;X5|| < || X[ ||X2|| and the fact that
the unit sphere is compact in finite-dimensional spaces. It is the lack of compact-
ness of the unit sphere in the infinite-dimensional space that makes generalizations
to infinite-dimensional operators non-trivial (see Ruelle (1982) for a generalization in
the case of compact operators). More work on non-commutative products was done

3The operation o is neither commutative, nor associative. By convention we multiply starting on
the right, so, for example, X; 0 Xo 0 X30 X, = X; 0 (X3 o (X3 0 Xy)). However, this convention is
not important for the question that we ask. First, it is easy to check that X; o X5 has the same spectral
distribution and therefore the same norm as X5 o X;. Second, if X1, X5, and X3 are free, then the
spectral distribution of (X7 o X5) o X3 is the same as the spectral distribution of X; o (X3 0 X3),
and therefore these two products have the same norm. In brief, if X; are free, then the norm of
X 0 X9 0...0 X, does not depend on the order in which X; are multiplied by the operation o.
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by Furstenberg (1963), Oseledec (1968), Kingman (1973), and others. The results
are often called multiplicative ergodic theorems and they find many applications in
mathematical physics. For example, see Ruelle (1984).

In this paper, we study products of free random variables. These variables are
(non-compact) infinite-dimensional operators which can be thought of as a limiting
case of large independent random matrices.

Suppose that X; are free, identically-distributed, self-adjoint, and positive. Sup-
pose also F (X;) = 1. Then we show that the norm of Y;, = X; 0 X5 0... 0 X,, grows
no faster than a linear function of n. Precisely, we find that

lim sup ™" [Vl < ex | X3]]-

n—oo

We are also able to show that if X; is not concentrated at 1, then
lim inf n Y2 ||Y,| > ¢ > 0.
n—oo

For the usual products 1I,, = X;X5...X,, we can relax the assumption of self-
adjointness. So, suppose that X; are free and identically-distributed but not necessar-
ily self-adjoint. Also, we do not require that ' (X;) = 1. Then we show that

Tim n” log ||IL, || = log v/ E (X} X5). (60)

Another way to describe the behavior of II,, is to look at how the norm of a fixed
vector & changes when we consecutively apply free operators X1, ..., X, to it. More
precisely, suppose that the action of the algebra of variables X; on a Hilbert space H
is described by a cyclic representation 7 and that the vector £ is cyclic with respect
to the expectation F. By definition, this means that £ (X) = (£, 7 (X) &) for every
operator X from a given algebra. Then we show that

n”'log | (IL,) £]| = log v/ E (X} X;). (61)

Note that we do not need to take the limit, since the equality holds for all n.

The reader may think of cyclic vectors as typical vectors. For example, if the
representation 7 is cyclic and irreducible then cyclic vectors are dense in H. In
colloquial terms, (60) says that for large n the product II,, cannot increase the norm
of any given vector £ by more than [F (X*X)]™/?
vector & this growth rate is achieved.

. And (61) says that for every cyclic
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One more way to capture the intuition of this result is to write

lim n~'log ||IL,|| = lim n~'log sup ||« (IL,) z||
n—o0 —oo Jall=1

We have shown that this limit is equal to
™" log || (IL,) €|

where £ is a cyclic vector. Thus, for large n the product II,, acts uniformly in all
directions. Its maximal dilation as measured by sup,_; [|7 (IL,) z|| has the same
exponential order of magnitude as the dilation in the direction of a typical vector €.

It is helpful to compare these results with the case of commutative random vari-
ables. Suppose for the moment that X; are independent commutative random vari-
ables with positive values. Then,

nlLIEO n'log | X1.. X,|| = log || X;l| .

where the norm of a random variable is the essential supremum norm (i.e., || X|| =
esssup,cq | X (w)|). Indeed, for every ¢ > 0 the measure of the set

{w: X (@) X (@) = [[ X[ ([ Xall = €}

is positive. Therefore || X;...X,,|| = || X1]|" . Note that log \/E (X} X;) < log | Xi]|
and therefore the norm of free products grows more slowly than we would expect
from the classical case.

Another interesting comparison is that with results about products of random
matrices. Let X, be 1.1.d. random k x k matrices. Then under suitable conditions,

T}Lr{:on_llog||Xn...X1||

exists almost surely. Let us denote this limit as A. Furstenberg (1963) developed a
general formula for A, and Cohen and Newman (1984) derived explicit results in the
case when entries of X; have a joint Gaussian distribution. In particular, if all entries
of X; are independent and have the distribution A/ (0, s3) then

A= (1/2) {log (s;) + log2 + ¢ (k/2)}

where ¢ is the digamma function (¢ (x) = dlogI (z) /dz). If the size of the ma-
trices grows (k — oo) then A\ ~ (1/2)log (ks?). To compare this with our results,
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note that if ks? — s?, then the sequence of random matrices approximates a free
random variable X; with the spectral distribution that is uniform inside the circle
of radius s. For this free variable, £ (Xi*XZ) = %, and our theorem shows that

lim,, oo n ™! H)A(; 1..X, H = log s. This limit agrees with the result for random matri-
ces. Thus, our result can be seen as a limiting form of results for random matrices.
The results regarding ||Y,,|| are also interesting. We can associate with X; and Y,
probability measures f1y and 1y, , which are called the spectral probability measures
of X; and Y,,, respectively. Then the measure (1, is determined only by n and the
measure /y and is called the n-time free multiplicative convolution of 1 with itself:

py, = px B Wy,
———

n times

The norm |[|Y,|| is easy to interpret in terms of the distribution 1y, . Indeed, it is the
smallest number ¢ such that the support of 1y, is inside the interval [0, ¢] . Therefore,
the growth in [|Y},|| measures the growth in the support of the spectral probability
measure if the measure is convolved with itself using the operation of the free multi-
plicative convolution.

In the case of classical multiplicative convolutions of probability measures, the
support grows exponentially, so that if 1y is supported on [0, L x|, then the measure
x,. x, is supported on [0, (Lx)"]. What we have found in the case of free multi-
plicative convolutions is that if we fix £X; = 1, then the support of the 1, grows
no faster than a linear function of n, i.e., the support of 1. is inside the interval
[0, cn L, with an absolute constant c.

As was pointed out in the literature, a similar phenomenon occurs for sums of
free random variables. The support of measures obtained by free additive convolu-
tions grows much more slowly than in the case of classical additive convolutions.
This effect was called superconvergence by Bercovici and Voiculescu (1995). Our
finding about ||Y,,|| can be considered as a superconvergence for free multiplicative
convolutions.

The rest of the paper is organized as follows. Section 2 formulates the results.
Section 3 contains the necessary technical background from free probability theory.
Sections 4, 5, and 6 prove the results. And Section 7 concludes.
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14.2 Results

Let X1, Xo, ... , X, be free identically-distributed positive random variables. Con-
sider II,, = X; X5... X, and Y,, = X; o X5 0 ... 0 X, (by convention we multiply on
the left, so that, for example, X; 0 Xs0 X530 X, = Xj0 (X530 (X530 Xy))). We will
see later that these variables have the same moments: E (II,,)" = E (V)" . As a first
step let us record some simple results about the expectation and variance of Y,, and
I1,,. We define variance of a random variable A as

o? (A) =: E (4%) — [E(A)].

Proposition 125 Suppose that X; are self-adjoint and E (X;) = 1. Then E (11,,) =
E(Y,) =1and o*(I1,) = 02 (V,,) = no? (X;).

Note that the linear growth in the variance of II,, = X;...X,, is in contrast with
the classical case, where only the variance of log (X;...X,,) grows linearly. We will
prove this Proposition later when we have more technical tools available. Before that
we are going to formulate the main results.

Let || A|| denote the usual operator norm of operator A.

Theorem 126 Suppose that X, ..., X, are identically-distributed positive self-
adjoint free variables. Suppose also that E (X;) = 1. Then

(1) there exists such a constant, ¢, that ||Y, || < c||X;|| n;

and

) [IVall = o (Xi) /.

For the next theorem define

Y ¢ T
TTO\EBEXX)) T

Theorem 127 Suppose that X1, ..., X,, are free identically-distributed variables (not
necessarily self-adjoint). Then

(1) there exists such a constant, ¢, that |IL,|| < ¢ || X;|| v [E (X7 X;)] "/,

and

(2) 1| = Y20t [ (X X))

Corollary 128 Suppose that X, ..., X,, are free identically-distributed variables
(not necessarily self-adjoint). Then

im0~ log 11| = log /B (X X)
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Next, suppose that the algebra A acts on an (infinitely-dimensional) Hilbert space
H. In other words, let 7 be a representation of A. We call representation 7 cyclic if
there exists such a vector £ € H that E (X) = (£, 7 (X)) for all operators X € A.
The vectors with this property are also called cyclic.

Theorem 129 Suppose 7 is a cyclic representation of A, & is its cyclic vector, and
X1, ..., X, are free identically-distributed variables from A. Then

n”tlog |7 (I,) €| = log v/ E (X} X;)

Corollary 130 [f' 7 and £ are cyclic then
log [T [| ~ log || (II) £]| ~ nlog || (X1) £

as n — oQ.

14.3 Preliminaries

Let us write out several first terms in the power expansions for v (2), ¥* (2), and
S (z) . Suppose for simplicity that £ (A) = 1 and let E (A*) = my,. Then,

Y (2) = 24+ me2®+mg2 + ...,
Vv (z) = z—mp2® — (my—2md) 2P+ .,
S(z) = 14 (1—ma)z+ (2mj —mo —ms) 2° + ...
The Voiculescu theorem about multiplication of random variables implies that
Su, = Sy, = (Sx)", where Sx denotes the S-transform of any of X;. Now it is

easy to prove Proposition 125. Indeed, let us denote Sy, as S,. Then, using the
power expansions we can write:

Sp(z) = 1+ (1 —mgn)) Z+ ..

where mgn) —: E(I1,)* and my =: F (X;)?. Then, using power expansion in (21),
we conclude that E (T1,,) = 1. Next, by definition 02 (X;) = my — 1 and 02 (II,,) =
m{"” — 1. Therefore, we can conclude that o (IT,,) = no (X) . QED.
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14.4 Proofs

Proof of Theorem 126

Throughout this section we assume that X; are self-adjoint, F (X;) = 1, and the
support of the spectral distribution of X; belongs to [0, L] .

Let us first go in a simpler direction and derive a lower bound on ||Y,|| . That is,
we are going to prove claim (2) of the theorem. From Proposition 125, we know
that £ (Y,) = 1 and 0% (Y,,) = no? (X;). It is clear that for every positive random
variable A, it is true that F (42) < ||A||* and therefore || A > \/02 (A) + [E (A)].
Applying this to Y;,, we get ||Y,,|| > v/no? + 1. In particular, ||Y,,|| > ov/n, so (2) is
proved.

Now let us prove claim (1). By Theorem 49, S,, (z) = (Sx (2))". The idea of
the proof is to investigate how |Sx (z)|" behaves for small z. It turns out that if z is
of the order of n™ !, then | Sy (2)|" > ¢ where c is a constant that does not depend
on n. We will show that this fact implies that ¢, (2) (i.e., the ¢-function for Y},) has
the convergent power series in the area |z| < (cn)”" and that therefore the Cauchy
transform of Y,, has the convergent power series in |z| > cn. This fact and the Perron-
Stieltjes inversion formula imply that the support of the distribution of Y, is inside

[—cn, cn].
Lemma 131 E (X*) < L* .

Proof:

L L
E (Xk) - / Nedpy (A) < Lkl/ Mpx () = L',
0 0

where dyy denotes the spectral distribution of the variable X. QED.

Lemma 132 The function 1y (2) is one-to-one in |z| < (4L) ™" and if || = (4L) ",
then [ x (2)] = (61) "

Proof: If |z| < (4L) " then
[Ux () =2l < |2l ) E(XF) |/
k=2

=1 |
< HXm=3
k=1
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Therefore, 1y (z) is one-to-one in this area.
If |z] = (4L) ", then

[x () = Jol =Y B (XF) |

QED.
By Lemma 60, we can expand the functional inverse of ¢y (2) as follows:

U (W) = ut Y o,
k=2

where

. 1 / dz
k= -

2mik )y [x (2))*
Lemma 133 If |u| < (72Ln)"", then

1
‘wx (uw) _1‘ < i
U —n

Proof: Using the previous lemma we can estimate cy:

1 g3 k-1
< —— (6L)" < = (6L .
o < 717 (61) < 5 (61)
Then
-1 %)
vy (U) 1‘ _ chukl
u k=2
3/ 1\ 3 1
< Z — ) ==
- 2;(1271) 212n — 1
3 12n 1 1

provided that |u| < (72Ln)~". QED.
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Lemma 134 If |u| < (72Ln)"", then

1
11— Sx (u)] < o
Proof: Recall that Sx (u) = (1 + u) ¢y" (u) /u. Then we can write:

11— Sx (u)] = u+«y+w<fzﬁﬁ_1ﬂ

u

< ul + |14y -

Then the previous lemma implies that for [u| < (72Ln)"" and n > 2, we have the

estimate: .

72Ln

1

11— S (u) —.

< — 1
< 72Ln + ' *
Note that L > 1 because £X = 1. Therefore,

1 731 1
<

1— < — 4+ —— .
| Sx (u)| - 72njL 72Tn — 6n

QED.
Lemma 135 For all positive integer n if |u| < (72Ln)~", then
e/ > |Sx (u)[" > e Y3,

Proof: Let us first prove the upper bound on |Sx (u)|" . The previous lemma
implies that

|&mwg0+%)ggm

n

Now let us prove the lower bound. The previous lemma implies that

Sx ()] > (1—%)".

In an equivalent form,

1

nlog|Sx (u)| > nlog (1—@> . (62)

Recall the following elementary inequality: If x € [0,1 — e™!], then

log (1 —z) > —2u.
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Let x =1/ (6n). Then

1 1
log(1—— ) >——.
6n 3n

Substituting this in (62), we get

1
nlog|Sx (u)] 2 —3,

or
1Sx (u)|" > e /3.

QED.

By Theorem 49, S,,(u) =: [Sx (u)]" is the S-transform of the variable Y,,. The
corresponding inverse 1)-function is ¢ (u) = uS, (u) / (1 +u).

First, we estimate S,, (u) — 1.

Lemma 136 If |u| < (72Ln)"", then

[Sn (u) = 1] <

| —

Proof: Write

1Sx (w)" =1 < |Sx (u) = 1| (|Sx ()" +[Sx (w)|" > + ... + 1)
1 1
< Lam, L
= oS "S5
QED.

Lemma 137 The function 1, (u) is one-to-one in |u| = (72Ln)"" and if |u| =

(72Ln)" | then
1

102Ln’
Proof: Recall that by definition in (21), ¢, * (u) = uS, (u) / (1 + u) . Therefore,

Sy (u) — (1 +u)
1+u

|, (u)] >

[t (u) = u| = [u|

and by Lemma 136 we have the following estimate:

S (u) = (1 +u) 1 [ul
Su (u) — 1
L+u e A .
721 1 1
< Sl4 <
- 715 71 T 4



Therefore, 1, * (u) is invertible in |u| < (72Ln)"".
Next, note that ¢ ' (u) = uS, (u) / (1 + u) and if |u| = (72Ln) ", then

> L / 1+ ! > _1
— 72Ln 72Ln ) — T3Ln’

U
1+ u

Using Lemma 135, we get:

1

1)) > 3> .

ot Wl 2 e 2 1o,

QED.
Now we again apply Lemma 60 and obtain the following formula:
- 1 du
V() =24 |55 7{ k] 2, (63)
k=2 2mik Jy WT_LI (U)}

where we can take the circle |u| = (72Ln) " as 7.
Lemma 138 The radius of convergence of series (63) is at least (102Ln)_1 .

Proof: By the previous lemma, the coefficient before 2* can be estimated as
follows: {1
< = ——(102Ln)".
lexl = 73, (102E0)

This implies that series (63) converges at least for |z| < (102Ln) " . QED.

Lemma 139 The support of the spectral distribution of Y, = X; 0 Xs0...0 X,
belongs to the interval [—102Ln,102Ln] .

Proof: The variable Y,, is self-adjoint and has a well-defined spectral measure,
i, (dzx) , supported on the real axis. We can infer the Cauchy transform of this mea-
sure from 1, (2):

G (2) = Z ! [¢n (Z_l) + 1} :

Using Lemma 138, we can conclude that the power series for GG, (z) around z = oo
converges in the area |z| > 102Ln. The coefficients of this series are real. Therefore,
using the Perron-Stieltjes formula we conclude that 1, (dx) is zero outside of the
interval [—102Ln, 102Ln| . QED.

Lemma 139 implies the statement of Theorem 126.
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Proof of Theorem 127

The norm of the operator 1I,, coincides with the square root of the norm of the
operator II; II,,. Therefore, all we need to do is to estimate the norm of the self-adjoint
operator II*IT,.

Lemma 140 For every bounded operator X € A, products X*X and X X* have
the same spectral distributions.

Proof: Since F is tracial, £ (X*X)" = E (XX*)*. Therefore, X*X and X X*
have the same sequences of moments and, therefore, the same distributions. QED.

If two variables A and B have the same sequences of moments, we say that they
are equivalent and write A ~ B. In particular, if two self-adjoint variables have
the same spectral distribution, then they are equivalent. Conversely, if two bounded
self-adjoint variables are equivalent, then they have the same spectral distribution.

Lemma 141 [f A ~ B, Ais free from C, and B is free from C, then A4+C ~ B+C,
AC ~ BC, and CA ~ CB.

Proof: Since A and C are free, the moments of A + C' can be computed from
the moments of A and C. The computation is exactly the same as for B + C since
B and C are also free. In addition we know that A and B have the same moments.
Consequently, A + C' has the same moments as B + C, i.e., A+ C ~ B + C. The
other equivalences are obtained similarly. QED.

Lemma 142 [f A ~ B, then S (2) = Sg (2). In words, if two variables are equiv-
alent, then they have the same S-transform.

Proof: From the definition of the i-function, it is clear that if A ~ B, then
V4 (2) = g (2). This implies that " (2) = 3" (2) and therefore Sy (2) =
Sp (2) . QED.

For example, since X; are all identically distributed, all Sy, () are the same and
we will denote this function as Sy (z) . Similarly, Sx-x, (2) does not depend on i
and we will denote it as Sy+x () .

Lemma 143 If X, ..., X,, are free then
ICIL, ~ X)X, . X7 X,
and if X4, ..., X,, are in addition identically distributed then

Stim, = S, = (Sx+x)"
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Proof: We will use induction. For n = 1, we have II7II; = X7 X;. Therefore
S, = Sx+x. Suppose that the statement is proved for n — 1. Then
141

I, = X5 X:X.X,
~ XpXIXE L LXTXy X,

where the equivalence holds because £ is tracial and it is easy to check that the
products have the same moments. Therefore,

LI, ~ (XoX5) I, 1L,
~ (XX I, T
by Lemmas 140 and 141. Then the inductive hypothesis implies that
LI, ~ X2 X, . X7 X
Using Lemma 142 and Theorem 49, we write:
St = (Sxex)"

Since IT# 11, ~ IL,II%, therefore St=mr, = Sm,m: = (Sx»x)" . QED.

We have managed to represent Sty 11, as (Sx«x)" and therefore all the arguments
of the previous section are applicable, except that we are interested in (S« )" rather
than in (Sx)" . In particular, we can conclude that the following lemma holds:

B XrX,
TTO\EXxx) )
Then

(1) |, | < 102 | X" nE (X7 X0)" ", and
2) MIEIL | 2 vv/nE (X7 X5)".

Lemma 144 Define

Proof: Let us introduce variables R; = s 'X; where s> = E(X*X). Then
IR:R;|| = (| Xi||/s)* and E (R*R;) = 1. Let II, = R;...R,. Then II*Il, =
s2r1*I1,, and the S-transform of II*I1, is (Sg-z)" .

Note that INI,*JNI” has the same S-transform and therefore the same distribution as
(Ri{Ry)o...o( R R,,) . Using Theorem 126, we conclude that Hﬁ;ﬁn <102 (| X;|| /5)* n.

It follows that || TI*IL,|| < 102 || X;||* s*2n. In addition, Theorem 126 implies that

> Vno (R} R;)
= h
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Consequently,
LI > yv/ns™.
QED.
From Lemma 144 we conclude that
Il < 11X VRE (X7 X)),
and
[Tl = 220t E (X X))
This completes the proof of Theorem 127.

Proof of Theorem 129
By definition of the cyclic vector, we have:

Im () €)* = (r (L) € 7 (IL,) €)
= (&7 (L) €)
= E(LIL).
Using Lemma 143, we continue this as follows:

E(IM,) = E(X'X,.X! X))
= [B(X*X)]".

Consequently,
_ 1 .
n~log |TL.£|| = 51ogE(X X).
QED.

14.5 Conclusion

We have investigated how the norms of II,, = X;...X,, and Y,, = X; o ... 0 X, grow
as n — oo. For ||IL,|| , we have shown that lim,, .., n~! log||TL,|| exists and equals
log \/E (X;X;). For ||Y,||, we have proved that the growth rate of ||Y,,|| is some-
where between /n and n. There remains the question of whether lim,, o, n™° ||Y,,||
exists for some s.

Another interesting question, which is not resolved in this paper, is how the spec-
tral radius of II,, grows. Indeed, for Y,,, the norm coincides with the spectral radius.
But for II,,, the norm and the spectral radius are different because II,, is not self-
adjoint.
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15 On Asymptotic Growth of the Support of Free Mul-
tiplicative Convolutions

15.1 Preliminaries and the main result

First, let us recall the definition of the free multiplicative convolution. Let a; denote
the moments of a compactly-supported probability measure i, a;, = [ t*du, and let
the ¢-transform of y be ¥ (2) = Y7, ax2". The inverse 1)-transform is defined as
the functional inverse of ¢ (z) and denoted as ¢»("V) (2) . It is a well-defined analytic
function in a neighborhood of z = 0, provided that a; # 0.

Suppose that  and v are two probability measures supported on R* = {z|z > 0}
and let wfjl) () and 1Y (2) be their inverse t-transforms. Then, it is possible to
show that

F)= 0+ ()95 (2)

is the inverse -transform of a probability measure, which is called the free mul-
tiplicative convolution of measures ;o and v, and which is denoted as ;1 X v. The
significance of this operation can be seen from the fact that if 1 and v are the distrib-
utions of singular values of two free operators X and Y, then ;X v is the distribution
of singular values of the product operator XY (assuming that the expectation is tra-
cial). For more details about free convolutions and free probability theory, the reader
can consult (Voiculescu, Dykema, and Nica 1992), (Hiai and Petz 2000), or (Nica
and Speicher 2006).

Let the support of a measure p be inside the interval [0, L], let 1 have the ex-
pectation 1 and variance v. We assume that the measure consists only of absolutely
continuous and atomic parts and that the number of atoms is finite. We are interested
in the support of the n-time free multiplicative convolution of the measure ;1 with
itself, which we denote as 1, .

Theorem 145 Let L,, denote the upper boundary of the support of i,,. Then

Ly
inf — > w,
n
L, 14w
li — < (142 .
1mnsg£)o i (1+ v)exp(1+2v)

Remarks: 1) Let X; be free identically distributed variables and let II,, = X;....X,,.
If 11 is the spectral probability measure of XX, then p,, is the spectral probability
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measure of IT*IT,,. Assume that £/ (X X;) = land £ ((X;‘Xi)Z) = 14w, and define
1L, ]|, =: [£ (I1*I1,,)]"/? . Then our theorem implies that

VAV [T, < L] < Va2 (T + o) [T,

for all sufficiently large n. This result also holds if we relax the assumption F (X} X;) =
1 and define

E (X7 X))

O EXX))

2) This theorem improves the result in Section 14 ((Kargin 2007)), where under

the same conditions on the measure p it was shown that L,,/n < cL where ¢ is a

certain absolute constant. Thus the asymptotic growth in the support of free multi-

plicative convolutions y,, is controlled by the variance of 1 and not by the length of

its support.

15.2 Proof of the main result

In our analysis we need a couple of estimates on the v-transform. Let the support of
a measure p be inside the interval [0, L], let this measure have the unit expectation,
and let it have the variance v. Note that

v:/tzu(dt)—lgL—l,

because we assumed that the expectation of measure f is 1.
We want to estimate higher moments of measure p in terms of v and L.

Lemma 146 For every k > 3,

L' v+1, ifL>2,

E (Xk) S { (L71)2

2k +1,  ifL <2.

Proof: By binomial expansion,

[t = Z 5) [ -0 i)

j=0
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If L > 2, then for each term of the sum with j < k£ — 2 we can estimate this term
k—j—2 .
by (L —1) v, and so we have:

E(x*) < Kg) (L—l)k_2+<];> (L—1)’“‘3+...+(k52)1}u+1

1 LyeR k—j v v
— m[z(j)@—l) ]v—kL_l—(L_1)2+1

=0

Lk
< Wv-l- 1.

If L < 2, then we can estimate:

() () ()]

< 2y +1.

E(X*)

IN

QED.
Now we can estimate v and its derivative. For example, if L > 2, then we have:

vl3 23 23

Similarly,

vl3 3-2Lz , 3-—2z ,
. 4
T 1P = Lz)2z - z)2Z (64)

P (2) <1+2(1+0v)z+

If L < 2, then

3 23

w(z)§z+(1+v)22+8v1_22+1_2,

and
3—4z , 3-—-2z ,

(1—22)2" (1— 2)22

P (2)<1+2(1+wv)z+8v

These estimates are valid for all z € [0, L) .
Proof of Theorem 145: The first claim of Theorem 145 is easy. Note the esti-
mate:

Ly
nv—vn—/ t*dp, (1) —1< L, — 1,
0
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which is valid because the variances are additive relative to free multiplicative con-
volution, the expectation of the measure 1, is 1, and the measure is supported on
[0, 00) . This implies that

L
inf =— > v.
n

The proof of the second claim is more involved. Let the i)-transform of the n-time
convolution be denoted as 1, (z) . The idea is that the Taylor series for v, (z) di-
verges for those real z which are greater in absolute value than 1/L,,. Therefore the
function v, () must have a singularity in the closed disc |z| < 1/L,; i.e., there
should exist a point zj in this disc, such that the Taylor series for 1, (2) diverges at
zo- Since all the coefficients in this series are real and positive, we can take z, to be
real and positive. Therefore, in order to bound 1/L,, from below, we are looking for
the singularity of ¢,, (z) which is located in R™ and which is closest to 0.

From the results in (Belinschi and Bercovici 2005) we know that for all large
n, the measure y,, does not have atoms in R\ {0}. Since atoms of y,, correspond
to poles of 1, (2) , therefore, we can assume that the function 1, (z) does not have
poles in R™. Hence, the problem is reduced to finding the branching point of ¢, (2) ,
which would be closest to 0. This branching point of ¢, (z) equals the critical value
of /Y (2). By Voiculescu’s theorem,

W= (M ) [ @),

u

where ¢(_1) (u) is the inverse ¥-function for measure . Therefore we can find criti-
cal points of ){"V) (z) from the equation:

% [nlogw(_l) (w) + (n — 1) log <1+“)] =0,

u

We can write this equation as

n d 1

- (1) - -
n—ldulng () u (14 u) 0

Thus, our task is to estimate that root of this equation which is real, positive and
closest to 0. In particular, if we succeed in proving that for all u € [0, b] the following

inequality is valid:

d n—1 1
1 (=1

du og " (u) > n u(l+u)

(65)
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then we can be sure that all the critical points of 1){"") (z) are greater than b. Since
the inverse -transform is increasing on the interval [0, b], therefore we will be able
to infer that the critical value of )\~ (2) is greater than

ool (59)"

Hence, we will be able to conclude that the upper boundary of the support of p,, is
less than

1 < b ) n—1
[w(—l) (b)} "\1+0b ‘
In order to proceed with this plan, we re-write inequality (65) as

1 _n-l 1
W' (z) " n () A+9(2)

(66)

where z = 7V (u) .
Consider first the case L > 2. Using estimate (64), we infer that inequality (66)
is implied by the following inequality:
1 1 n—1 1

Z > )
P142(14v)z+ a3 4 S22 T () (149 (2))

Next we note that ¢) (z) > z because we assumed that the first moment is 1 and
because all other moments are positive. Therefore, it is enough to show that

1 - n—1 1
vL3 —2Lz —2z :
1+2(1+v)z+ (Lfl)z Gors 2t + (?73)222 n 14z
Let us write this as
1 1 3—2z vl3 3—2Lz
> (142 2 2,
e N T L T I (W S

If we fix an arbitrary e > 0, then clearly forall z < (n (1 + 2v + ¢)) " this inequality
holds if n is sufficiently large.

A similar conclusion can be achieved in the case when L < 2. This implies
that we can find such c (e, L, n) that inequality (66) holds for all real positive z <
20 (n) =(n(1+2v+e) " c(e,L,n)and that ¢ (e, L,n) — 1 asn — oo.
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Next step is to estimate [2o/v) (z0)]" " . Note that 1) () = z+(1 + v) 2240 (%),
where the coefficient in the term O (z3) depends on L, but can be chosen uniformly
for all z < zy (n) if n is sufficiently large. Therefore,

as n — o0. It follows that

14w

2020/ (20)]" = (n (1420 +)) " exp (‘—1 T te

>c’(5,L,n),

where ¢ (¢, L,n) — 1 as n — oo. It follows that the upper boundary of the support
of the n-time convolution can be estimated as follows:

1
L, <n(142v+e¢)exp (H;—vv—l—s) " (¢,L,n),

where ¢’ (¢, L,n) — 1 as n — oo. In particular, this means that

L, 14w
li — < (142 .
im sup — <1+ U)exp<1+2v)

QED.

15.3 Conclusion

It would be interesting to find out whether the limit of (nv) -t L,, exists, and if it does,
then whether it depends on the measure .

16 Lyapunov Exponents for Free Operators

16.1 Introduction

Suppose that at each moment of time, ¢;, a system is described by a state function
¢ (t;) and evolves according to the law ¢ (t,11) = X, (t;) , where X is a sequence
of linear operators. One can ask how small changes in the initial position of the sys-
tem are reflected in its long-term behavior. If operators X; do not depend on time,
X; = X, then the long-term behavior depends to a large extent on the spectrum of
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the operator X. If operators X; do depend on time but can be modelled as a station-
ary stochastic process, then the long-term behavior of the system depends to a large
extent on so-called Lyapunov exponents of the process X;.

The largest Lyapunov exponent of a sequence of random matrices was inves-
tigated in a pioneering paper by Furstenberg and Kesten (1960). This study was
followed by Oseledec (1968), which researched other Lyapunov exponents and finer
aspects of the asymptotic behavior of matrix products. These investigations were
greatly expanded and clarified by many other researchers. In particular, Ruelle (1982)
developed a theory of Lyapunov exponents for random compact linear operators act-
ing on a Hilbert space. Cohen and Newman (1984), Newman (1986b), Newman
(1986a), and Isopi and Newman (1992) studied Lyapunov exponents for random
N x N matrices when N — oo.

The goal of this paper is to investigate how the concept of Lyapunov exponents
can be extended to the case of free linear operators. It was noted recently (Voiculescu
(1991)) that the theory of free operators can be a natural asymptotic approximation
for the theory of large random matrices. Moreover, it was noted that certain difficult
calculations from the theory of large random matrices become significantly simpler
if similar calculations are performed using free operators. For this reason it is in-
teresting to study whether the concept of Lyapunov exponents is extendable to free
operators, and what methods for calculation of Lyapunov exponents are available in
this setting.

Free operators are not random in the traditional sense so the usual definition of
Lyapunov exponents cannot be applied directly. Our definition of Lyapunov expo-
nents is based on the observation that in the case of random matrices, the sum of
logarithms of the £ largest Lyapunov exponents equals the rate at which a random
k-dimensional volume element grows asymptotically when we consecutively apply
operators X;.

In the case of free operators we employ the same idea. However, in this case
we have to clarify how to measure the change in the "t-dimensional volume ele-
ment" after we apply operators X;. It turns out that we can measure this change by
a suitable extension of the Fuglede-Kadison determinant. Given this extension, the
definition proceeds as follows: Take a subspace of the Hilbert space, such that the
corresponding projection is free from all X; and have the dimension ¢ relative to the
given trace. Next, act on this subspace by the sequence of operators X;. Apply the
determinant to measure how the “volume element” in this subspace changes under
these linear transformations. Use the asymptotic growth in the determinant to define
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the Lyapunov exponent corresponding to the dimension ¢.

It turns out that the growth of the ¢-dimensional volume element is exponential
with a rate which is a function of the dimension ¢. We call this rate the integrated
Lyapunov exponent. It is an analogue of the sum of the & largest Lyapunov exponents
in the finite-dimensional case. The derivative of this function is called the marginal
Lyapunov exponent. Its value at a point ¢ is an analogue of the k-th largest Lyapunov
exponent.

Next, we relate the marginal Lyapunov exponent fx (t) to the Voiculescu S-
transform of the random variable X' X;. The relationship is very simple:

fx (t) = = (1/2)log [Sx+x (=1)] . (67)

Using this formula, we prove that the marginal Lyapunov exponent is decreasing
in ¢, and derive an expression for the largest Lyapunov exponent. Formula (67) also
allows us to prove the additivity of the marginal Lyapunov exponent with respect to
operator product: fxy (t) = fx () + fy (t) .The author is unaware if an analogous
result holds for finite-dimensional random matrices.

As an example, we calculate Lyapunov exponents for variables X; that have the
Marchenko-Pastur distribution with parameter A as the spectral probability distri-
bution of X;X;. The case A\ = 1 corresponds to the case considered in Newman
(1986b), and the results of this paper are in agreement with Newman’s “triangle”
law. In addition, our results regarding the largest Lyapunov exponent agree with the
results regarding the norm of products of large random matrices in Cohen and New-
man (1984). Finally, our formula for computation of Lyapunov exponents seems to
be easier to apply than the non-linear integral transformation developed in Newman
(1986b).

An interesting by-product of our results is a relation between the extended Fuglede-
Kadison determinant and the Voiculescu S-transform, which allows expressing each
of them in terms of the other. Since under certain conditions the extended determi-
nant retains the multiplicativity property of the original Fuglede-Kadison determi-
nant, this relation sheds some additional light on the multiplicativity property of the
S-transform.

The rest of the paper is organized as follows: Section 16.2 describes the extension
of the Fuglede-Kadison determinant that we use in this paper. Section 16.3 defines
the Lyapunov exponents of free operators, proves an existence theorem, and derives
a formula for the calculation of Lyapunov exponents. Section 16.4 computes the
Lyapunov exponents for a particular example. Section 16.5 connects the marginal
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Lyapunov exponents and the S-transform, proves additivity and monotonicity of the
marginal Lyapunov exponent, and derives a formula for the largest Lyapunov expo-
nent. In addition, it derives a relation between the determinant and the S-transform.
And Section 16.6 concludes.

16.2 A modification of the Fuglede-Kadison determinant

Let A be a finite von Neumann algebra and E be a trace in this algebra. Recall
that if X is an element of A that has a bounded inverse, then the Fuglede-Kadison
determinant ((Fuglede and Kadison 1952)) is defined by the following formula:

1
det (X) = exp §Elog (X*X). (68)

The most important property of the Fuglede-Kadison determinant is its multiplica-
tivity:

det (XY) = det (X) det (V). (69)
This determinant cannot be extended (non-trivially) to non-invertible X if we require
that property (69) holds for all X and Y.

However, if we relax this property, then we can define an extended determinant
as follows: Let log™ (t) =: logt if t > A and =: 0 if t < \. Note that on the
interval (0,1), Elog™ (X*X) is a (weakly) decreasing function of ), and therefore
it converges to a limit (possibly infinite) as A — 0.

Definition 147 ]
_ 1 +A *
det(X)—eprIiﬁ)lElog (X*X).

This extension of the Fuglede-Kadison determinant coincides with the extension
introduced in Section 3.2 of Luck (2002) .

Example 148 Zero Operator
From Definition 147, if X = 0, then det X = 1.

Example 149 Finite dimensional algebra
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Consider the algebra of n-by-n matrices M, (C) with the trace given as the
normalization of the usual matrix trace: F (X) = n~!Tr(X). Then the original
Fuglede-Kadison determinant is defined for all full-rank matrices and equals the
product of the singular values of the operator in the power of 1/n. It is easy to
see that this equals the absolute value of the usual matrix determinant in the power of
1/n. The extended Fuglede-Kadison determinant is defined for all matrices, includ-
ing the matrices of rank k£ < n. It is equal to the product of non-zero singular values
in the power of 1/n.

We can write the definition of the determinant in a slightly different form. Recall
that for a self-adjoint operator X € A we can define its spectral probability measure
as follows: First, we write the spectral decomposition as

X :/ APy (),

where { Px (-)} is a family of commuting projections. Then, the spectral probability
measure of X is defined by the following formula:

px (5) = E(Px (5)),

where S is an arbitrary Borel-measurable set. We can calculate the trace of any
summable function of a self-adjoint variable A by using its spectral measure:

BFCO= [ f0)dux ().
In particular the determinant of operator X can be written as

1
det (X) =exp=lim [ log™ (t) dux.x (t).
2 A0 Jp+

For arbitrary probability measure x with support in R* = {z|x > 0}, we write:

1
det () = exp 5 1){%1 . log™ () dp (1) .

For all invertible X the extended determinant defines the same object as the usual
Fuglede-Kadison determinant. For non-invertible X, the multiplicativity property
sometimes fails. However, it holds if a certain condition on images and domains of
the multiplicands is fulfilled:
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Proposition 150 Let V' be the closure of the range of the operator A. If B is an injec-
tive mapping onV and is the zero operator on V-, then det (BA) = det (B) det (A) .

The claim of this proposition is a direct consequence of Theorem 3.14 and Lemma
3.15(7) in Luck (2002).

Now let us connect the determinant and the concepts of free probability theory.
Following the conventions of free probability theory, we will call the pair (A, F) a
non-commutative probability space if A is a finite von Neumann algebra, F is a trace
in this algebra, and F () = 1. The trace F will be called the expectation by analogy
with classical probability theory. Let A, ..., A, be sub-algebras of algebra A, and let
a; be elements of these sub-algebras such that a; € Ay;).

Definition 151 The sub-algebras A, ..., A, (and their elements) are called free or
freely independent if E' (a;...a,,) = 0 whenever the following two conditions hold:
(a) E (a;) = 0 for every i, and

(b) k(i) # k (i+ 1) for everyi < m,and k (m) # k(1).

The random variables are called free or freely independent if the algebras that
they generate are free. (See Voiculescu et al. (1992) or Hiai and Petz (2000) for more
details on foundations of free probability theory.)

If 1 1s the spectral probability measure for X* X and v is the spectral probability
measure for Y*Y, then the spectral probability measure of Y*X* XY depends only
on p and v. It is called the free multiplicative convolution of measures 1 and v, and
denoted as ;X v.

Proposition 152 Let y1 and v be two probability measures supported on R*. Suppose
that they have no atoms at 0, i.e., ;1({0}) = v ({0}) = 0. Then det (uXv) =
det (1) det (v) , where X v denotes the free multiplicative convolution of measures
panduv.

Proof: Let us take free, self-adjoint, and positive X and Y, such that ; and v are
the spectral probability measures for X2 and Y2, respectively. Then, by definition,
u X v is the spectral probability measure for Y X2Y and we can write det (1 X v) =
det (XY) = det (X)det(Y) = det(u)det (v). The second equality holds true
because the closure of the image of Y is the whole space (guaranteed by v ({0}) = 0),
and X is injective on this image (guaranteed by p ({0}) = 0). QED.
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16.3 Definition of Lyapunov exponents for free operators

Let {Xz}?L be a sequence of free identically-distributed operators. LetIl, = X, ... Xy,
and let P, be a projection which is free of all X; and has the dimension ¢, i.e.,

Definition 153 7he integrated Lyapunov exponent corresponding to the sequence X;
is a real-valued function of t € [0, 1] which is defined as follows:
1
F (t) = lim —logdet (I1,P;),
n—oo M

provided that the limit exists.

Remark: In the case of random matrices, II, is the product of independent
identically-distributed random matrices. In this case, it turns out that the function
defined analogously to F'(¢) equals the sum of the ¢V largest Lyapunov exponents
divided by N, where N is the dimension of the matrices and ¢ belongs to the set
{0/N,1/N,...,N/N}.

Our first task is to prove the existence of the limit in the previous definition.

Theorem 154 Suppose that X; are free identically-distributed operators. Let u =:
dim ker (X;) . Then

F ) = Hlimy o Elog™ (BXTX0P), ift <1—u,
Limy o Elog™ (P.XT X1 P, ift >1—u.

Before proving this theorem, let us make some remarks. First, this theorem shows
that the integrated Lyapunov exponent of the sequence { X;} exists and depends only
on the spectral distribution of X X;.

Next, suppose that we know that F' (¢) is differentiable almost everywhere. Then
we can define the marginal Lyapunov exponent as f(t) = F'(t). We can also
define the distribution function of Lyapunov exponents by the formula: F(x) =
u{t €[0,1]: f(t) <z}, where p is the usual Borel-Lebesgue measure. Intuitively,
this function gives a measure of the set of the Lyapunov exponents which are less than
a given threshold, z. In the finite-dimensional case it is simply the empirical distrib-
ution function of the Lyapunov exponents, i.e., the fraction of Lyapunov exponents
that fall below the threshold x.

Proof of Theorem 154: The proof is through a sequence of lemmas. We will
consider first the case of injective operators X; and then will show how to generalize
the argument to the case of arbitrary X;.

Let P4 denote the projection on the closure of the range of operator A.
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Lemma 155 Suppose that A is an operator in a von Neumann probability space A,
that A is injective, and that Py is a projection of dimension t. Then projection Pap, is
equivalent to P,. In particular, E (Pap,) = t.

Proof: Recall that polar decomposition is possible in A. (See Proposition 11.3.14
on p. 77 in Takesaki (1979) for details.) Therefore, we can write AP, = W B, where
W is isometric and B is self-adjoint and where both W and B belong to .A. By def-
inition, the range of W is [Range (AP,)], and the domain of W is [z : Bz = 0]~ =
[x: APz =0]" = [z: Po = 0]" = [Range (P,)]. Therefore, P4p, is equivalent
to P, with the equivalence given by the isometric tranformation . In particular,
dim (Psp,) = dim (P,), i.e., E (AP,) = t. QED.

Lemma 156 [f A, A*, and P, are free from an operator algebra B, then Pap, is free
from B.

Proof: P,p, belongs to the algebra generated by /, A, A*, and F;. By assump-
tion, this algebra is free from B. Hence, Pap, is also free from 5. QED.

Let us use the notation @), = Px, x,p, for kK > 1 and )y = P,. Then by
Lemma 156, Q) is free from X} ;. Besides, if all X are injective, then their product
is injective and, therefore, by Lemma 155, (), is equivalent to F;.

Lemma 157 If all X; are injective, then
det (I, P,) = H det (X;Qi-1) -

Proof: Note that I, P, = X,,Q0,, 1 X,,_1 ... Q1 X1Qo. We will proceed by induc-
tion. We need only to prove that

det (Xp1 Qi Xk - .. Q1. X1Q0) = det (Xpy1Qy) det (X ... Q1.X1Q0) - (70)

Let V}. be the closure of the range of X, ... ()1 X1(Q)o. Since X, is injective and ),
is the projector on V4, therefore X} 1@}, is injective on V;, and equal to zero on V.
Consequently, we can apply Proposition 150 and obtain (70). QED.

Now we are ready to prove Theorem 154 for the case of injective X;. Using
Lemma 157, we write

1 n
n~'logdet (I1,P,) = - Z log det (X;Q;_1) -

=1
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Note that X; are identically distributed by assumption, (); have the same dimension
by Lemma 155, and X; and ();_; are free by Lemma 156. This implies that

lﬁg Elog™ (Qi-1X; XiQi-1)

does not depend on 4, and hence, det (X;Q;_1) does not depend on 7. Hence, using
1 = 1 we can write:

n~!logdet (I, P;) = logdet (X, P,) .

This finishes the proof for the case of injective X;. For the case of non-injective
X, i.e., for the case when dim ker (X;) > 0, we need the following lemma.

Lemma 158 Suppose that P, is a projection operator free of A and such that E (P;) =
t. Then dimker (AP;) = max {1 — ¢, dimker (A)} .

Proof: Let V = (Ker A)" and let Py be the projection on V. Then E (Py) =
1 — dim Ker A. Note that Az = 0 <= Pyx = 0. Consequently, AP,x = 0 <—
Py P,x = 0. Therefore, we have:

dim{z: AP,z =0} = dim{z: PyPa =0}
= dim{z: P.PyPx = 0}.

Since P, and Py are free, an explicit calculation of the distribution of P, Py P,
shows that
dim{x: PPy Px =0} =max{l —¢,1 —dimV}.

QED.

Consider first the case when 0 < dim ker X; < 1 — ¢. This case is very similar to
the case of injective X;. Using Lemma 158 we conclude that dim Ker (X P;) = 1—t,
and therefore that F (Px,p,) = t. If, as before, we denote Py, p, as ()1, then the
projection ()1 is free from X5, and F (Q;) = t.

Similarly, we obtain that E (Pyx,q, ) = t. Proceeding inductively, we define ), =
Px,0,_, and conclude that Q) is free from X, and that £ (Qy) = 1.

Next, we write X;.. X1 P, = X Qr_1Xp_1Qr_2...X1Q0, where )y denotes F;,
and note that X, ();_; is injective on the range of (J;_;. Indeed, if it were not in-
jective, then we would have dim (Ker (X}) N Range (Qx—1)) > 0. But this would
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imply that dim (Ker X;Qy_1) > dim (Ker Qx_1) = 1 — ¢, which contradicts the fact
that dim (Ker X, Q;_1) = 1 — t. Therefore, Proposition 150 is applicable and

det(Xk...let) = det(Xka_l)...det(XlQo)
= [det (X, P)]F.

Now let us turn to the case when dim ker X; = u > 1—¢. Then dim Ker (X, P;) =
1 —w and therefore F (Px, p,) = u. Proceeding as before, we conclude that £ (Q) =
u for all £ > 1, and we can write X;.. X 1 P, = X,Qr_1Xi_1Qp_2...X1Q0, Where
we have denoted P, as (Jy. Then we get the following formula:

det (Xlept) - det (Xkafl) det (XQQl) det (X1Q0>
= [det (X1 P,)]* " det (X1 P,).

Therefore,
lim n~'logdet (IT,, P;) = logdet (X1 P,) .

n—oo

QED.

16.4 Example

Let us compute the Lyapunov exponents for a random variable X that has the prod-
uct X*X distributed according to the Marchenko-Pastur distribution. Recall that
the continuous part of the Marchenko-Pastur probability distribution with parameter

2 2
A > 0 is supported on the interval [(1 — \/X) , (1 + \/X) 1 , and has the following
density there:

VA = (@12
Pa(@) = 27x '
For A € (0,1), this distribution also has an atom at 0 with the probability mass
(1 — \) assigned to it. The Marchenko-Pastur distribution is sometimes called the
free Poisson distribution since it arises as a limit of free additive convolutions of the
Bernoulli distribution, and a similar limit in the classical case equals the Poisson
distribution. It can also be thought of as a scaled limit of the eigenvalue distribution
of Wishart-distributed random matrices (see (Hiai and Petz 2000) for a discussion).
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Proposition 159 Suppose that X is a non-commutative random variable such that
X*X is distributed according to the Marchenko-Pastur distribution with parameter
A Af A > 1, then the distribution of Lyapunov exponents of X is

0, ifr < (1/2)log (A —1)
Flx)=4¢ e +1-X ifzec[ilog(A—1),1log))
1 ifazzélog)\.

If A < 1, then the distribution of Lyapunov exponents of X is

e*, ifw < (1/2)log(A)
F(x)=14 A ifze[3log()N),0)
1 ifx > 0.

Remark: If A\ = 1, then the distribution is the exponential law discovered by
C. M. Newman as a scaling limit of Lyapunov exponents of large random matrices.
(See Newman (1986b), Newman (1986a), and Isopi and Newman (1992). This law
is often called the “triangle” law since it implies that the exponentials of Lyapunov
exponents converge to the law whose density function is in the form of a triangle.)

Proof of Proposition 159: It is easy to calculate that the continuous part of the

2 2
distribution of P, X P, is supported on the interval [(\/Z — \/X) ) (ﬂ + \/X) ] ,

and has the density function

AN ()P

2y

Pt (SC)

This distribution also has an atom at x = 0 with the probability mass max {1 — A\, 1 — t}.
See for example, results in (Nica and Speicher 1996).

Next, we write the expression for the integrated Lyapunov exponent. If A > 1, or
A < 1but A > t, then

1
F(t) = limElog" (RX'XF)

(Vi+va)®

:% / logx\/él)\t—[x—(t—k)\)] N

(71)

2rx
(Vi-va)?
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If A\ <1and A\ < t, then

L. € *
F(t) = §1€1ﬂ)1E10g+ (PioaX"XPy_y)

(=) VA= =z — 1P
R J— x‘_
F\(t) = % / log x - dx. (72)
(V)

Differentiating (71) with respect to ¢, we obtain an expression for the marginal Lya-
punov exponent:

(Vi+VA)?
1 / log = r—1t+ A

, 7 \/4)\28—[£U—t+)\]2

dz. (73)

(Vi-3)

2
Using substitutions u = {az — <\/Z - \/X) ] / (2@) —1and then § = arccos u,
this integral can be computed as

1

Hr () :§log()\—t).

From this expression, we calculate the distribution of Lyapunov exponents for the
case when A > 1:

0, ifz < (1/2)log (A —1)
Fz)=14 e*+1-X ifze[ilog(A—1),5log))
1 ifxz%log)\.

A similar analysis shows that for A < 1, the distribution is as follows:

e*  ifx < (1/2)log(N)
Fx)=4¢ A ifze[tlog()),0)
1 ifz > 0.

QED.

16.5 A relation with the S-transform

In this section we derive a formula that makes the calculation of Lyapunov exponents
easier and relates them to the S-transform of the operator X;. Recall that the -
function of a bounded non-negative operator A is defined as 1 4 (2) = > 7o | E (A*) 2F.
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Then the S-transform is S4 (2) = (14 271) wi;” (z), where w(Afl) (2) is the func-
tional inverse of ¢ 4 (z) in a neighborhood of 0.

Theorem 160 Let X; be identically distributed free bounded operators. Let Y =
XXy and suppose that 11y ({0}) =1 —u € [0,1), where uy denotes the spectral
probability measure of Y. Then the marginal Lyapunov exponent of the sequence
{ X} is given by the following formula:

[ —Mog[Sy (~0) it <u
pet = { T3l AN

where Sy is the S-transform of the variable Y.

Remark: Note that if X7X; has no atom at zero then the formula is simply

fx (t) = —3log [Sy (=1)].
Proof: If t > u, then fx (t) = 0 by Theorem 154. Assume in the following that

t < u. Then P,X*X P, has an atom of mass 1 — ¢ at 0. Let x, denote the spectral
probability measure of P,.X* X P, with the atom at 0 removed. (So the total mass of
i, 1s t.) We start with the formula:

¢ ds
logz =1 -
ogr = log (¢ + ) /0 Py

/ log z p, (dx) = lim {tlog (c) +/ Gt (—s) ds},
0 e 0

where G is the Cauchy transform of the measure ;.
Next, note that G; (—s) = —s !¢, (—s™!) — ts~! and substitute this into the
previous equation:

00 —1
/ logx p, (dz) = lim {t logc —tlogc+ tlog (e / wt }
0

c—00,e—0

= hm{tlog / wt ) }

Using substitutions v = —log s, and A = —loge, we can re-write this equation as

follows:
/ log x p, (dx) = hm { —tA — / v, (— }
0

151

and write:



The function v, (—e”) monotonically decreases when v changes from —oo to
oo, and its value changes from 0 to —t. Let s* =: 1, (—e’) = ¢, (—1) and let
&, (z) denote the functional inverse of ¢, (—e") . The function &, (z) is defined on the
interval (—t¢,0) . In this interval it is monotonically decreasing from oo to —oo. The
only zero of &, (z) is at z = s*.

It is easy to see that

A s*
fim {-ta= [Cocerat = [ e @an

_/Lwt(—e”)dv:—/:ﬁt(x)dx.

[Crege )= [awa
0 —t

and that

Therefore,

It remains to note that &, (z) = log [—¢§_1) (m)] , in order to conclude that
00 0 (-1)
/ logx p, (dx) = —/ log [—wt (93)} dzx.
0 —t

The next step is to use Voiculescu’s multiplication theorem and write: wif” (x) =
¢§,_1) (x) (14 )/ (t + z). Then we have the formula:

/Uoologa:,ut(dx) = —/(:log [—@Dg,_l)(x)} dx—/ilog Eij} dx

= —/Olog [—7,0%7” (x)} dr+ (1 —1t)log (1 —t)+tlogt.

—t

The integrated Lyapunov exponent is one half of this expression, and we can obtain
the marginal Lyapunov exponent by differentiating over ¢:

f@ = % <— log [— (;” (—t)} +logt —log (1 — t))

_ _%104(1—%) (YU(—t)}
_ —%log[Sy(—t)]'
QED.
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Example

Let us consider again the case of identically distributed free X; such that XX,
has the Marchenko-Pastur distribution with the parameter A > 1. In this case Sy (z) =
(A + z)_1 . Hence, applying Theorem 160, we immediately obtain a formula for the
marginal Lyapunov exponent:

1

[ )= 5log(A—1).

Inverting this formula, we obtain the formula for the distribution of Lyapunov expo-

nents:
0, ifz < (1/2)log(A—1),
Flz)=4¢ e +1-X, ifze[tlog(A—1),1log)),
1 ifo%log)\,

which is exactly the formula that we obtained earlier by a direct calculation from
definitions. It is easy to check that a similar agreement holds also for A < 1.

Corollary 161 Let X and Y be such that X*X and Y*Y are bounded and have
no atom at zero. Let fx, fy, and fxy denote the marginal Lyapunov exponents
corresponding to variables X, Y and XY, respectively. Then

Ixy (t) = fx (t) + fy (1).

Proof: By Theorem 160,

frv(t) = —510g[Sy-x-xv (1)
— 5108 [Sy-y (~1) Sex (1)
— IO+ 0.

QED.

Corollary 162 If X is bounded and X*X has no atom at zero, then the marginal
Lyapunov exponent is (weakly) decreasing in t, i.e. f% (t) < 0.

Proof: Because of Theorem 160, we need only to check that S (¢) is (weakly)
decreasing on the interval [—1, 0] , and this was proved by Bercovici and Voiculescu
in Proposition 3.1 on page 225 of Bercovici and Voiculescu (1992). QED.

153



Corollary 163 If X is bounded and X* X has no atom at zero, then the largest Lya-
punov exponent equals (1/2)log E(X*X).

Proof: This follows from the previous Corollary and the fact that Sy (0) =
1/E(Y).QED.

Remark: It is interesting to compare this result with the result in Cohen and
Newman (1984), which shows that the norm of the product of N x N i.i.d. random
matrices Xy, ..., X, grows exponentially when n increases, and that the asymptotic
growth rate approaches 1 log E(tr (X7 X;)) if N — oo and matrices are scaled ap-
propriately. The assumption in Cohen and Newman (1984) about the distribution
of matrix entries is that the distribution of X X; is invariant relative to orthogonal
rotations of the ambient space. Since the growth rate of the norm of the product
X; ... X, is another way to define the largest Lyapunov exponent of the sequence
X, therefore the result in Cohen and Newman (1984) is in agreement with Corollary
163.

The main result of Theorem 160 can also be reformulated as the following inter-
esting identity:

Corollary 164 If'Y is bounded, self-adjoint, and positive, and if { P} is a family of
projections which are free of Y and such that E (P,) = t, then

dr..
log Sy (~t) = —= |lim Blog™ (PY Py)|

log det (\/}_/Pt)] :

- o]

Conversely, we can express the determinant in terms of the S-transform:

Corollary 165 If X is bounded and invertible, then
1
det (X) = exp {—5/ log Sx+x (—t) dt} .
0

16.6 Conclusion

One interesting remaining question is how the obtained results are related to the
infinite-dimensional analogue of Newman’s non-linear transformation, which can be
defined as follows: Let K (dt) be the spectral probability measure for /X X;. Then
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for a certain range of x, we define H (z) as the solution of the following integral
equation:

t2
/H(:U):c2+ (1— H(x))tzK(dt) =1.

A claim suggested by Newman’s results about random matrices is that if X} X; is
invertible, then H (x) is the distribution function for e, where p is the marginal
Lyapunov exponent of X.

17 CLT for multiplicative free convolutions on the unit
circle

17.1 Introduction

Suppose X is a unitary n-by-n matrix. Then X has n eigenvalues, which are all lo-
cated on the unit circle. If we give each eigenvalue a weight of n =1, then we can think
about the distribution of these eigenvalues as a probability distribution supported on
n points of the unit circle. More generally, if X is a unitary operator in a finite von
Neumann algebra, then we can define a spectral probability distribution of X, which
is supported on the unit circle (see, e.g., Section 1.1 in Hiai and Petz (2000)).

If we have several unitary operators X1, ...., X,,, then it is natural to ask about the
spectral distribution of their product. In general, we cannot determine this distribu-
tion without more information about relations among operators Xj, ..., X,,. However,
if X1, ...., X,, are infinite-dimensional and, in a certain sense, in a general position rel-
ative to each other, then the spectral distribution of their product is computable. The
idea of a general position was formalized by Voiculescu in his concept of freeness
of operators (see Voiculescu (1983), Voiculescu (1986), and a textbook by Hiai and
Petz (2000)). If operators X7, ..., X, are free and unitary and their distributions are
[y, --es [y, TESPECtively, then the distribution of their product is determined uniquely.
This distribution is called the free multiplicative convolution of measures (i, ..., (t,,
and denoted as p1; X ... X ..

What can we say about the asymptotic behavior of (™ =: p; X ... Xy, , as n
increases to infinity? In particular, what are necessary and sufficient conditions on y;
that ensure that ;™) converges to the uniform distribution on the unit circle?

To answer this question, let us define the expectation with respect to the measure
;. This 1s a functional that maps functions analytic in a neighborhood of the unit
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circle to complex numbers:

E..f=: f (&) dp; (€) -
|€]=1
If unitary operator X; has the spectral probability distribution 1;, then we will also
write:
Ef(X;)=1E,f.

In particular, £ X; denotes f‘ ¢=1 Edu,; (§) . Then the answer is given by the following
theorem:

Theorem 166 Suppose {X;} are free unitary operators with spectral measures [i,.
The measure 1\ of their product 11, = X;...X,, converges to the uniform measure
on the unit circle if and only if at least one of the following situations holds:

(i) There exist two indices i # j such that EX;, = EX; = 0;

(ii) There exists exactly one index i such that EX; = 0, and [[;,_, ., EX) — 0 as
n — oQ;

(iii) There exists exactly one index i such that X; has the uniform distribution;

(iv) EX}, # 0 for all k, and [ [,_; EX; — 0 as n — oo.

In other words, convergence of 1(™) to the uniform law implies that -, EX) —
0, and the only case when the reverse implication fails is when £ X; = 0 for exactly
one X, the measure x, is not uniform, and HZ:Z .1 EXy - 0asn — oo. Note that
cases (ii) and (iii) above are not exclusive. It may happen that both 1, is uniform and
[Ti—is1 EXy — 0asn — oo. In this case, both (ii) and (iii) hold, and 1™ converges
to the uniform law.

This theorem can be thought of as a limit theorem about free multiplicative con-
volutions of measures on the unit circle. There is some literature about traditional
multiplicative convolutions of measures on the unit circle, or more generally, about
convolutions of measures on compact groups. For the unit circle, this investigation
was started by Levy (1939). Then it was continued by Kawada and 1t6 (1940), who
studied compact groups, and Dvoretzky and Wolfowitz (1951) and Vorobev (1954),
who both considered the case of commutative finite groups. These researchers found
an important necessary condition for convergence of convolutions to the uniform law.
This condition requires that there should be no normal subgroup such that the support
of the convolved measures is supported entirely in an equivalence class relative to this
subgroup. This condition is sufficient if summands are identically distributed. If they
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are not, then there are some sufficient and necessary conditions, which is are espe-
cially useful if the group is cyclic. A textbook presentation with further references
can be found in Grenander (1963).

Recent investigations of convolutions on groups are mostly concerned with the
speed of convergence of convolved measures to the uniform law. For a description
of progress in this direction, the reader can consult surveys in Diaconis (1988) and
Saloff-Coste (2004).

It turns out that free convolutions converge to the uniform law under much weaker
conditions than usual convolutions. As an example, consider the distributions that
are concentrated on —1 and +1. Let measure y; put the weight p, on +1. Then
usual convolutions remain concentrated on —1 and +1, and therefore they have no
chance to converge to the uniform distribution on the unit circle. In contrast, we
will show that free convolutions do converge to the uniform law, provided that either
[Ti—r, 20k — 1) — 0 for arbitrarily large ko, or there exist two indices i and j such
that p, = p; = 1/2.

The rest of this section is organized as follows. In Section 17.2 we outline the
proof. Section 17.3 derives some auxiliar results that will be used in the proof.
Section 17.4 proves the main result (Theorem 166). Section 17.5 derives the key
estimate used in the proof. And Section 17.6 concludes.

17.2 Outline of the proof

Let (A, E) be a non-commutative probability space and {X;};°, be a sequence of
free unitary operators (random variables) from this space. Let I1,, denote the partial
products: II,, = X;...X,,. We denote E (X;) as a;, and F (II,,) as a(y). First, note
that it is enough to consider the case when all a; are real and non-negative. Indeed,
%11, converges in distribution to the uniform law if and only if II,, converges in
distribution to the uniform law. Therefore if a; is not real and positive, then we can
replace X; with e~*2"8% X, without affecting the convergence of II,,.

We divide the analysis into the following cases:

Casel a,) = 0.

Case Il a(,) — 0, and there are at least two indices, 7 and j, such that a; = a; =

Case I a(,) — 0, and for all 7, a; > 0.

Subcase III.1 liminfa; = 0.
Subcase III1.2 liminfa; = a > 0.
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Case IV a(,) — 0, and there exists exactly one index ¢, such that a; = 0.
We will show that without loss of generality we can assume in this case that
a; = 0,and a; > 0 forall £ > 1.
Subcase IV.1 X has the uniform distribution.
Subcase IV.2 X; does not have the uniform distribution, and H,Z:Q a, — 0
as n — oo.
Subcase IV.3 X does not have the uniform distribution, and szz an, - 0
as n — 00.
We will show that I1,, does not converge to the uniform law if and only if either
Case I or Case 1V.3 holds.

17.3 Auxiliary lemmas

We will use the Lemmas below:

Lemma 167 Suppose A and B are free unitary operators, |E (A)| < aand |E (B)| <
b. Then

‘E [(AB)’“} ’ < Mj max (a, b)

for some absolute constants Mj,.

Proof: If we expand £ [(AB)’“} using Theorem 8, then we can observe that each
term in the expansion contains either £ (A) or £ (B) as a separate multiple. The
remaining multiples in this term are < 1 in absolute value; therefore, we can bound
each term by max (a,b). The number of terms in this expansion is bounded by a
constant, M. Therefore, ‘E [(AB)k] is bounded by M} max (a,b) . QED.

In the following lemmas we use the fact that the sequence of measures y;, sup-
ported on the unit circle, converges to the uniform law if and only if all moments
converge to 0. (That is, for each £, f\&\zl R du; (€) — 0as i — oo.) For complete-
ness we give a proof of this result below

Recall that the i-function of a bounded random variable X is defined as

Uy (2) =) E(X*) 28 (74)
k=1

If X is unitary operator with the spectral measure i, then we can write:




Let us define ¢{’ =: E (X}) = Jiej=1 €"dt; (€) - Note that for a fixed 4, A" are
coefficients in the Taylor series of v, (z), i.e., of the ¢-function of the measure ;.

Lemma 168 Let 11, be a sequence of measures supported on the unit circle. If for
each k the coefficients c,(;) — 0 asi — oo, then ¢, (2) — 0 uniformly on compact

subsets of the unit disc.

Proof: Let €2 be a compact subset of the unit disc, and let 2 C D,, where D,
denotes a closed disc with the radius » < 1. Fix ane € (0, 1) . Then we can find such
a ko that

Z c,(fj Vb < e /2
k=ko
forall z € D, and all j. Indeed, cl(f ) < 1, and therefore,
00 ko
() k| <
k=ko

so we can take ko = log (¢ (1 —r) /2) /log .

Given kg, we choose a jy so large that for all j > jg and all £ < ky, we have
’c,(cj )‘ < g/ (2ko) . This is possible because by assumption for each k, coefficients c,(j )
converge to zero as j — 00, and we consider only a fixed finite number of possible

k.

Consequently,
ko—1 ko—1
Zc,(j)zk < Z c,ij) <eg/2
k=1 k=1
for every j > jo and all z € D,.. Therefore,
<€

Z c,gj)zk
k=1

for every j > jo and all z € D,. Therefore, ¢, (2) — 0 uniformly on D,, and

therefore on €2. Since 2 was arbitrary, we have proved that ¢; (z) — 0 uniformly on
compact subsets of the unit disc. QED.

Lemma 168, formula (34), p. 70. and Theorem 74, p. 69, imply that if all
moments of y; converge to 0, then p1; — v, where v is the uniform distribution on
the unit circle. QED.
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Lemma 169 Suppose {A, },"_, is a sequence of unitary operators that converges in
distribution to the uniform law. Let {B,}.., be another sequence of unitary op-
erators, and let the operator B,, be free of the operator A,, for every n. Then the
sequence of products B, A, converges in distribution to the uniform law. Also, the
sequence A, B,, converges to the uniform law.

Proof: Let a,i") =F ((An)k> . By assumption, for each fixed %, the moment

a;") — 0 as n — oo. If we represent F ((BnAn)k> as a polynomial in individual

moments of B,, and A, then all terms of this polynomial contain at least one of the
E"), v < k, which are perhaps multiplied by some other moments. All of
these other moments are less than 1 in absolute value. Therefore, we can write the
following estimate:

moments a

B ((BuA)")| < Mimax {af”}
where M}, is the number of terms in the polynomial. If £ is fixed and n is growing,

then the assumption that A,, converges in distribution to the uniform law implies that
(n)

max;< {ai } converges to zero. Therefore, all moments of B, A,, converge to zero
as n — 00, and therefore, by Lemma 168 and Theorem 74, p. 69, the sequence B, A,,
converges in distribution to the uniform law. A similar argument proves that A, B,,

converges in distribution to the uniform law. QED.

Lemma 170 Suppose that B is a unitary operator, {A,} is a sequence of unitary
operators, B is free from each of A, E (B) # 0, and the sequence A, does not
converge to uniform law. Then the sequence of products BA,, does not converge to
the uniform law.

Proof: The condition that the sequence A,, does not converge to the uniform law
means that for some fixed £ the sequence of k-th moments of A,, does not converge
to zero as n — oo. Let k be the smallest of these indices. By selecting a subsequence
we can assume that !E (Afl)} > a > 0 for all n. Consider £ ((BAn)k>:

E ((BAn)k> = [E(B)E (45) + ..,

The number of the terms captured by ... is finite and depends only on k. Each of
these terms includes at least one of F (A’,) where i < k, and other multipliers in this
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term are less than 1 in absolute value. Therefore, each of these terms converges to
zero. Hence, for any € > 0, there exist such N that for all n > N, the sum of the
terms captured by ... is less than ¢ in absolute value. Take ¢ = |E (B)|* a/2. Then
for n > N, we have:

(E ((BAn)k)‘ > |E(B)|Fa/2.

Therefore, the sequence of products BA, does not converge to the uniform law.
QED.

Lemma 171 Suppose that B is a unitary random variable, {A,} is a sequence of
unitary random variables, B is free from each of A, B is not uniform, and the
sequence of expectations E (A,) does not converge to zero. Then the sequence of
products BA,, does not converge to the uniform law.

Proof: By selecting a subsequence we can assume that |E (A,,)| > « > 0 for all
n. The assumption that B is not uniform means that for some k, F (Bk) # 0. Let k

be the smallest of such k. Consider £ <(BAn)k> :
E ((BAn)’f) = [E(A)"E(BY) + ...

Each of the terms in ... includes one of F (B?) where i < k. Therefore, all terms in
... are zero. Hence,

(E ((BAH)’“H — ‘[E (AN E (Bk)( > o |E (BY)].

Therefore, the sequence of products BA, does not converge to the uniform law.
QED.

17.4 Analysis

We use the following notation: v, and S; denote - and S-functions for variables X;
(and measures ), and 1,y and S,y denote these functions for variables II,, (and
measures (™).

Case I: a(,) - 0.

Since £ (II,,) = a(y), therefore, if a(,y - 0, then £ (II,,) -+ 0. Hence, II,, cannot
converge to the uniform measure on the unit circle.

Case Il a(,) — 0, and there are at least two indices 7 and j such that a; =
a; = 0.
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Assume without loss of generality that j > 7. Consider II,, with n > j and define
X = X;. . X;and Y =: X;;1..X,,. ThenlIl, = XY, and F(Y) = E(X) = 0.
Using Lemma 167, we obtain that ’E [(Hn)k} ‘ = 0 for every k > 0. Therefore, the
1-function of II,, is zero, and II,, has the uniform distribution on the unit circle.

Case Il a(,) — 0, and for all 7, a; > 0.

Subcase III.1 lim inf a; = 0.

In this case we can find a subsequence a,,, that monotonically converges to zero.

Now, consider IT;, where j € [n;,n;;1). Then we can write II; = XY, where
X=X..X,,1,andY = X,,,.. X;. Then £X <a,, ,and EY <a,, <ay, ,.

Applying Lemma 167 we get

| ()] < Mian,_,.

This implies that for a fixed &,
and Proposition 74, this establishes that II; converges to the uniform law.
Case Ill a(,,) — 0, and for all 4, a; > 0
Subecase II1.2 lim inf a; = a > 0.
Let us choose such an a that 0 < a < a. Starting from some jo, a; € (a,1). Let
ﬁn = Xjy.--Xy4jo—1- Then, by Lemmas 169 and 170, ﬁn converges to the uniform

E (I1%) | approaches zero as j — co. By Lemma 168

law if and only if II,, converges to the uniform law. Hence, without loss of generality
we can restrict our attention to the case when a;, € (a, 1) for all k.

In this case we have to use the analytic apparatus developed by Voiculescu for
free multiplicative convolutions. Let ¢y (u) denote the functional inverse of ¥y (2)
in a neighborhood of z = 0, where ¢y (2) is as defined in (74). (This inversion is
possible provided that F (X') # 0.) Define also

_u+1
wu

Sx (u) vx' (u).

By Voiculescu multiplication theorem, if X and Y are bounded free random vari-
ables and both F (X)) and F (Y') are not zero, then Sxy (2) = Sx (2) Sy (2) .

To prove convergence to the uniform law, we have to establish that for every
k > 0 the coefficient c,(fn) in the Taylor expansion of function ), (z) approaches

zero as n — 0o. We know from Lemma 60, p. 58, that
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therefore, our main task is to estimate this residual. This is the same as estimating
the coefficient before the term z*~! in the Taylor expansion of

o= [% <z>] |

We will approach this problem by using the Cauchy inequality (see Section 5.23 in
Whittaker and Watson (1927)). Recall that this inequality says that

M (r)

rk—1 ’

)k‘c,&")

< (75)

where r > 0 is such that f (z) is analytic inside |z| = r and

M (r) =:max |f (2)].

|2|=r

It is easy to note that the constant in the Taylor expansion of z/ @b(_nl) (2) is a(m
which approaches zero as n — 00. So M (0) = a,). The main question is how large
we can take 7, so that M (r) remains relatively small. In other words, we want to
minimize the right-hand side of (75) by a suitable choice of r.

Proposition 172 Suppose that EX; = a; > a for each i and that a(,y =: [, a; —
0. Let a; = 1 — a;. Then for all sufficiently large n, the following inequality holds:

(&) [(Se) (5]

Proof: The main tool in the proof is the following proposition:

o

where C = 217,

Proposition 173 Suppose that a; =: 1 — a; < 1 — a for each i, and that z and n are

such that
a’> . - -
|z] < coaq iR 1, ;ai
Then,
b k
z k n
——| < (2¢ ( . Gi) .
1/J(n1) (Z) ( ) HZ:l




We will prove this proposition in the next section and assume for now that it
holds.

Lemma 174 Suppose 1 > ay, > 0 for all k, and let o; =: 1 — a;. Then [[}_, a; — 0
ifand only if 37" | a; — 00.

This is a standard result. For a proof see Section 2.7 in Whittaker and Watson
(1927). Since log (1 — ;) < —a;, we also have the following estimate.

ﬁai < exp <— Zn:ai> . (76)
i=1 i=1

Let ng be so large that >° o; > 1. (We can find such no because by Lemma
174, 377 o — o0 as n — 00.) In particular, this implies that >  a; > 1 for

every n > ng. Define , = a® (31, ;)" /6684. Then, using Proposition 173 and
formulas (75) and (76), we get:

< (260" (H:;l a,)k (6i§4 Z; ai) k-1
{2@_127 (Z; ai) exp (— S a)} k,

provided that n > ny. QED.
Using Lemma 174, we get the following Corollary:

‘k;c,&")

Corollary 175 If the assumptions of Proposition 172 hold, then for each k, the co-
(n)

efficient c;,,” — 0 as n — 00.

This Corollary shows that in Case II1.2 the product 11, converges to the uniform
law.

Case IV a(,) — 0, and there exists exactly one index ¢, such that a; = 0.

First, we want to show that without loss of generality we can assume in this case
that a; = 0, and a; > 0O for all £ > 1. Indeed, suppose a; = 0 for i > 1. Let
X = X;..X;_; and let ﬁn = X;...Xi1n_1- Then E (X) # 0, and using Lemmas
169 and 170, we conclude that II,, converges to the uniform law if and only if ﬁn
converges to the uniform law.

Subcase IV.1 X, has the uniform distribution.
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In this case all moments of X; are zero, i.e., Ff (X{‘“‘) = 0 for all £ > 0, and
Theorem 8 implies that all moments of I1,, are zero. Therefore, I1,, is uniform for all
n.

Subcase IV.2 X does not have the uniform distribution, and [[;_, a,, — 0 as
n — oQ.

By Case I1I, the product X5...X,, converges to the uniform law, and using Lemma
169, we conclude that I1,, also converges to the uniform law.

Subcase IV.3 X; does not have the uniform distribution and [[,_, a,, - 0 as
n — oQ.

Applying Lemma 171 to B = X; and A = X,...X,,, we conclude that II,, does
not converge to the uniform law.

17.5 Proof of Proposition 173

Let N
e (% <z>> |

Using Theorem 49, 49, we can write this function as follows:

n

2" 1 ’

i=1

We want to estimate | f (z)| for all sufficiently small z. The plan of the attack is
as follows. First, we will show that if a; is close to 1, then v); ' () behaves approx-
imately as z/ (a; + z) . The quantitative version of this statement is in Lemma 181.

n k
This behavior implies that f (z) is approximately [a(n) H'—1 (14 z/a;) /(14 z)]}
and it is easy to show that the product is convergent if = < C'>_ (1 — @;) . This im-
plies the statement of Proposition 173.

To implement this plan, we start with some auxiliary estimates, which will later
allow us to estimate v, (), and then ¢; * () for small z.

Lemma 176 Suppose 1 is a probability measure on |—m, ) such that

'/7; (e —1)du(9)| < a. (78)

Then, i)
2

/ 0%dp (0) < %a < 5a;

—Tr
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ii)
T 71'3
‘/ Hdu(ﬁ)‘g (1—|—E>a<3a, and

iii) if k > 2, then
T k
| 0t duo) < o

Proof: Condition (78) implies that

| - cos@)du®) <a

—T
and that

'/W sin(&)du(ﬁ)‘ <a

Since 1 — cos @ > (2/72) 6*, from the first of these inequalities we infer that:
| #auo) < (2
which proves claim i) of the lemma.

Next, note that |sin 6 — 6| < ||° /6, and that

1

™ ™ 3
3 T 5 T
Z < — < —a.
6/7r|9| d,u(@)_6/_7r9d,u(9)_1204

Therefore,

’/_Zed’*(e)‘ = ’/_:Sinw)du(@)‘+‘/_Z(9—sin(9))du(9)

71.3

< —a.
~ Oé+12@

This proves claim i1) of the lemma.
For claim iii), note that

T ™ k
/ 0 du (6) < 72 / o du (0) < T

QED.
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Lemma 177 Suppose Condition (78) holds, and k is a positive integer. Then

‘/—Z (e = 1) du (9)' < Tk

Proof: First, remark that |1 — cos (k)| < (k6)” /2 and therefore

s 2 ™
‘/ (cosk:@—l)d,u(@)‘ < % 62dy (0)

Wzk;w
<
- 4

Q.

Next, we will use |sin (kf) — k6| < (k|0])* /6 and write

[smtaano| < | [ wao|+ |z [ worao)

Consequently,

. 414 3 2
i _ 1) du (0)] < T kS (1+ 2
e yao| < o (147)

< Tk

QED.

Lemma 178 Let X be unitary and EX = a > 0. If |z] <1/2and 1 — a < «, then

4z < 7160 |z|*.
-z

Yy (2) —

Proof: We can write:

Ux (%) = 1

(e}
:E Xk —azk
-2
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Therefore, using Lemma 177, we estimate:

< i(]E(X’“) — 1/ +[1—al) 2

< TalzP)[(k+2)* +1/7] |2

az
1—=2

Vx (2) —

< T16a|z|?

QED.
To derive a similar estimate for 15 (z), we need a couple of preliminary lemmas.

Lemma 179 Suppose X is unitary and EX = a > 0. Then the function 1y (z) has
only one zero (z = 0) in the area |z| < a/3 . If |z| = a/3, then |1y ()| > a?/6.

Proof: Write the following estimate:

[¥x (2) —az| =

kf: E (X*) 2

22 < &)z
z — |2
1—|z| 27

if |z| < a/3. By Rouche’s theorem, vy (2) has only one zero in |z| < a/3. The
second claim also follows immediately from this estimate. QED.

Lemma 180 Suppose X is unitary and EX = a > 0. Then the function 1" (2) is
analytical for |z| < a?/6. In this area it can be represented as

UR () = (L2 (2),

where v (2) is an analytical function. If |z| < a®/12, then

Proof: Using Lagrange’s formula, we can write

_ 7w
vy (2) = P > o,
k=2
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where

11 du
. ?U{ Ox @)

By the previous Lemma, we can use the circle with the center at 0 and radius a/3 as
v, and then we can estimate c;, as follows:

o< W3 _2(6\"
F = k(a2/6)f  ka \a? '

It follows that the power series for ¢)5" (2) converges in |z| < a?/6. In particular it
follows that 15" (2) can be represented as

¥ (1) =~ (120 (2),

where v (2) is an analytical function. For v (z) we have the following estimate:

6 1

< ——F.
|U(Z)| — azl—(%|z\

So if |z] < a?/12, then

QED.
Lemma 181 Let X be unitary and EX = a > 0. If |2] < a®/12,and o > 1 — a,

then
vy (2)
z/ (a+ 2)

3342c
-1 < —— 7.
a

Proof: First of all, note that Lemma 180 implies that

95 ()] < 214

for |z| < a?/12.
Now we use the functional equation for ¢3" (2):

Yy (w;{l (Z)) =z
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If |2| < a?/12, then |4 ()| < 2|z| /a < a/6 < 1/2 and we can apply Lemma
178 to get:

—1
z— Wx—p < 716« W))}l (z)|2
1 -9y (2)
2864 4
< > 2]
Next, we write this as
_ _ 2864«
= (a+2)9x ()] < [1-u ()] =5 I
3342a0 |
< SR
It follows that .
vy (2) 1| < 3342a 2.
z/ (a+ 2) a?

QED.

Lemma 182 Let EX; = a; and assume that for each i, it is true that a; > a. Assume
also that |z| < a®/3342 and let o; =: 1 — a;. Then

anl a; n 1
< ==
BEE 11 1—cilz|

n

1
11 ¥; 't (2)

=1

& z

| | (1 + —>
. a;
i=1

where ¢; = 3342«;/a?.

Proof: From Lemma 181 we infer that

07! ()] > 2t ( 334204@ - |>

CLZ‘1+Z/CL¢

Multiplying these inequalities together and inverting both sides, we get the desired
result. QED.

Lemma 183 Under the assumptions of the previous lemma, the following inequality

holds: i
v a 1+z/a,
Z 79

where ¢; = 3342«;/a?.
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Proof: The claim of this lemma is a direct consequence of Lemma 182 and equal-
ity (77). QED.
We will estimate terms in the product on the right-hand side of (79) one by one.

Lemma 184 Suppose that o; =: 1 — a; < 1 — a for each i, and that

02
|z| < ] min (Z ozz>

Then
]i[l“‘Z/CL2 Se
1+ 2

i=1

Proof: We write:

1+ z/a
=

=1

— exp (ReZlog (1+—1i2>) .

Recall that Relog (1 4+ u) < |u| if |u| < 1. Under our assumption about |z| , it is true
that

o; Z
— <1
CL11—|—Z
Therefore we can write:
"~ 1+ z/a
_TH <
< z .
< exp <GIZ|Z%)
< e.

QED.

Lemma 185 Suppose that o; =: 1 — a; < 1 — a for each 1, and that

a? & )
|z] < min < 1, (Z ai>
6684 —

Then,

n

1
[T =e

i=1
where ¢; = 3342« /a?.
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Proof: We use the inequality log (1 — u) > —2u, which is valid for u € (0,1/2),
and write:

n 1 n
H:1—-q|z| - P “gi;log(l—-qlzb>

=1

< exp Q\lecz)
=1
6684 [
< oo (50
< e )

QED.
Finally, note that if |2| < a?/6684, then |z| < 1/2 and, therefore,
2. Collecting all the pieces, we obtain that if

—1
a? &
|2| < —— min ¢ 1, (Z ozz->
6684 2

(1+ z)_l‘ <

then: k
sl < ) (T o) -

This completes the proof of Proposition 173.

17.6 Conclusion

We have derived sufficient and necessary conditions for the product of free unitary
operators to converge in distribution to the uniform law. If essential convergence
denotes the situation when the partial products continue to converge even after an
arbitrary finite number of terms are removed, then the necessary and sufficient con-
dition for essential convergence is that the products H: E X; converges to zero for
all ko, that is, that the products of expectations essentiall; converge to zero. Essential
convergence implies convergence. In addition, non-essential convergence can occur
when there is either a term that has the uniform distribution, or there are two terms
that have zero expectation. In the latter case convergence occurs because the product
of these two terms has the uniform distribution.
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Part 1V
Free Point Processes and Free
Extremes

In classical probability theory, one of the most important places is taken by the the-
ory of extremal events. Recently, a similar theory has started to be developed in
the context of free probability theory, in the role of independent random variables is
played by freely independent non-commutative operators in a Hilbert space. In par-
ticular, (Ben Arous and Voiculescu 2006) have introduced and studied free extremal
processes. The main object of this paper is to show that free extremes are naturally
related to an object that we call a free point process.

The basic element in both classical and free theory of extremes is a measure /.
In the classical case, we take a sequence of i.i.d. random variables X;, distributed
according to y, and then define a sequence of scaled maxima:

X’i_ n
X("):max{ a}a

1<i<n n

where a,, and b,, are certain constants.

If F'( denotes the distribution function of X (™), then it was shown in the classical
works by (Frechet 1927), (Fisher and Tippett 1928), and (Gnedenko 1943) that there
are only 3 possible limit laws, to which a sequence of F(") can converge, and that for
a given measure /., the distributions (™) can converge to only one of these laws. In
this case, it is said that the measure i belongs to the domain of attraction of this limit
law.

In the free case, a sequence of free self-adjoint operators X; is taken, such that
each of X, has the spectral probability distribution . Using some ideas from (Ando
1989), (Ben Arous and Voiculescu 2006) have defined a maximum operation that
maps any n-tuple of self-adjoint operators to another self-adjoint operator, which is
called their maximum. By analogy with the classical case, the sequence of scaled
maxima is defined as X = max;<;<, {(X; — a,I) /b,} , and F}") (x) is defined
as the spectral distribution function of the self-adjoint operator X (™. Note that in
general F}") (z) # F™ (z).

The same question presents itself: When does the sequence of F ;n) (x) con-
verges?
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Surprisingly, the answer to this question is very similar to the answer in the clas-
sical case: There are only 3 possible limit laws, and for a given p, the distributions
F}") can converge to only one of them. As in the classical case, this allows defining
domains of attraction of the free limit laws. A puzzling fact is that the limit laws are
different in the classical and free cases, but the domains of attraction are the same!

In order to investigate this situation further, let us return to the classical case and
consider the random point process NV,,, which is defined by the following formula:

N, = ZI: O(X;—an)/bn

When does this point process converges? It turns out that this question is intimately
related to the convergence of the distributions F(™. If F( (z) converges to one of
the classical limit laws G (), then the correspondlng point process weakly converges
to a Poisson random measure on every interval [a, o), provided that G (a) > 0. Con-
versely, if V,, weakly converges on an interval [a,00) to a Poisson random measure
with the intensity measure A (dz) , then F(™ (z) converges on the interval [a, 00) to
a limit law G (x). The limit law G (x) and the intensity A (dz) are related by the
equation G () = exp [—A ((x, 00))].

What is the free analogue of the point process N,,? To motivate our definition,
note that we can think about /V,, as a linear functional on the space of measurable
bounded functions: (N,,, f) =: > ", f ((X; — a,) /b,) . This functional takes values
in the space of bounded random variables. We define free point process analogously
but prefer to work in a slightly greater generality and associate a free random process
to any triangular array of free random variables

Let A be the set of densely-defined closed operators affiliated with a von Neu-
mann algebra A, and let B, (R) denote the set of all bounded, Borel measurable
functions f : R — R.

Definition 186 Let X;,, € A, (i = 1,...,n;n = 1,...) be a triangular array of

freely independent self-adjoint variables. Then the free point process M,, associated
with the array X, is a sequence of A-valued functionals on Bo, (R), which are

defined by the following formula:

(M, f) = Zf
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A triangular array of free variables that we use in applications to free extremes
is, of course, X;,, = (X; —a,) /b,, where X, is a sequence of free self-adjoint
variables.

We can also define the concept of weak convergence of a free point process as
a weak-* convergence of the corresponding functionals. In the classical case, after
a suitable scaling, the point process V,, converges to a Poisson random measure.
It turns out that in the non-commutative case the free point process converges to a
free Poisson random measure, which was recently defined in (Voiculescu 1998) and
(Barndorff-Nielsen and Thorbjornsen 2005). Moreover, we have the following result.

Let 2 = inf{z : G'(z) > 0}, where G' (z), i € {I,II,I11} is one of the
classical extremal laws. On the interval [z, 00) , let us define a measure \’ (dz) by
the equality \’ ((z,00)) = —log G* ().

Theorem 187 The following statements are equivalent:

(i) 11 belongs to the domain of attraction of the classical extremal limit law G* (x);
(i) | belongs to the domain of attraction of the free extremal limit law G} (x),

(iii) For some a,, and b, the point process N, weakly converges on (z',0) to the
Poisson random measure with the intensity \' (dzx);

(iv) For some a,, and b,, the free point process M, weakly converges on (z',00) to
the firee Poisson random measure with the intensity \' (dx) .

The equivalences of (i) and (iii) follows from the results in (Resnick 1987), and
the equivalence of (i) and (ii) was proved in (Ben Arous and Voiculescu 2006). Thus,
we only need to prove the equivalence of (1) and (iv).

Let p, (A) = pu(b,A+ a,). Note that (i) is equivalent to the statement that
nu, (A) — X' (A) for all Borel sets A C (2%, 00). Indeed, suppose that y is in
the domain of attaction of G (z). If F'(z) denote the distribution function of the
measure /i, then

F" (byx + a,) — G*(2),

For every x € (z',00), G* (x) is positive. After taking logarithms on both sides, we
get
nlog F (b,x + a,) — log G* (z),

which is equivalent to

n(l—F(byr+a,)) — —logG" (z).
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Consequently,
iy, ((2,00)) = A ((2,00)),

from which we conclude that n,, (A) — A’ (A) for all Borel sets A C (27, 00) . The
reverse implication is also clear.

Therefore, the equivalence of (i) and (iv) will be established if we prove the fol-
lowing general result about free point processes.

Recall that a measure is called Radon if i (K) < oo for every compact K.

Theorem 188 Let X, be a triangular array of free, self-adjoint random variables
and let the spectral probability measure of X, ,, be 1,,. Let \ be a Radon measure on
D C R. The free point process M, associated with the array X, ,, converges weakly
on D to a free Poisson measure M with the intensity measure \ if and only if

np, (A) = A(A) (80)
for every Borel set A C D.

We will prove this result in Section 18.

Theorem 187 tells us that the convergence of a free point process is related to the
convergence of the distribution of free maxima. In addition, free processes can help
us to define higher order free extreme processes. Indeed, in the classical case one
way to calculate the probability distribution of the k-th order statistic is to calculate
the probability that exactly k£ — 1 variables X; exceed a threshold ¢. This probability
can be defined in terms of the corresponding point process.

In order to see that free point processes are necessary in the free case, note that
the straightforward approach to the definition of higher order statistics does not work.
While we can still define a set of space directions, which are dilated by exactly £ — 1
operators by the amount that exceeds ¢, this set is not a linear subspace except when
k = 1, and we cannot apply to this set the non-commutative analogue of probability
— the dimension function. To break through this difficulty, we have to use free point
processes.

Precisely, let X, ..., X,, be freely independent self-adjoint variables and let X
have the distribution F;. Define projections P; (t) = 1y, (X;) and consider the
variable

Yit)=3 P,
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Definition 189 For every real k > 0, we say that F™ (t|k) =: E [1jo4 (Y (t))] is
the distribution function of k-th order statistic of the sequence X,...X,,, and that it is
the k-th order free extremal convolution of distributions F;.

To understand better the meaning of this definition, note that Y (¢) = > 7" | 1¢;00) (X;) =

(M, 1(1,00)) , Where M, is the free point process associated with the sequence X;.
Therefore the distribution F'™ (¢|k) equals the expectation of Lo, (<Mn, 1(t7oo)>) )
In the classical case we have an analogous expression 1j k) (( Ny, 1t,00))), Where
N, =>"" | dx, is the (classical) point process associated with the sequence of (clas-
sical) random variables X;. In this case, the indicator function 1 (<Nn, 1(t7m)>)
corresponds to the event that the number of elements of X1, ..., X,, located in the
interval (¢, c0) does not exceed k.

If X© denote the largest element of (classical) random variables, X1, ..., X,

X ™) denote the second largest one, and so on, then a realization of X, ..., X,, will be
counted by 1jg (<Nn, 1(t7oo)>) ifand only if X(®) < ¢. Tt follows that Elj (<Nn, 1(t7w)>) =
Pr {X k) < t} , 1.e., this expectation gives the distribution of the (k + 1)-st largest
element of the sequence Xy, ..., X,,.

Thus, the expression E1j j ((My, 1(,00))) can be interpreted as the non-commutative
analogue of the distribution of the (k + 1)-st order statistic. Note that the definition
is valid not only for all integer £ but also for all non-negative real k.

One question that immediately arises is whether we can define an operator, for
which the distribution /' (¢|k) would be a spectral distribution function? The an-
swer to this question is positive. The condition ¢ > ¢ implies that 1o (Y (¢')) >
Lio,g (Y (t)) . Therefore, as t grows, the operators 1jg ) (Y (¢)) form an increasing
family of projections and we can use this family to construct the required operator by
the spectral resolution theorem.

Definition 190 For every real k > 0, let

AL /t dlpx (Y (1))
We call Z®) the k order statistic of the family X;.

From the construction it is clear that F'(™) (¢|k) is the spectral distribution function
of the operator Z*).

In complete analogy with the classical case the limits of these free extremal con-
volutions can be computed using the limits of free point measures. If G (z) is one
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of the classical limit laws, then we use G~ (z) to denote the functional inverse of

G (z). Let
t (k) = G- (exp {— (1 + \/hﬂ) :
to(k) = GV (é) :
(exp {— <1 . \/E)2D .

Let A(f) = — log G (1) and py (€) = (27€) " 1/46 — (1= A (1) + )%,

ty (k) = Gty

Theorem 191 Suppose that measure i belongs to the domain of attraction of a (clas-
sical) limit law G (x) and a,,, b, are the corresponding norming constants. Assume
that X, are free self-adjoint variables with the spectral probability measure | and let

") (t|k) denote the distribution of the k order statistic ofthefamlly (X; — ay) /by,
where i=1,...,n. Then, as n — oo, the distribution F™ (t|k) converges to a limit,
F(t|k), which is given by the following formula:

(

0, ift<t_,
f(kl N )QPt dg, ift €t to],
H‘f(kl \/—t)th §)dg, i (to,t+],
\ — A (1) 1o (k). ift>t.
It turns out that in the particular case of the 0-order free extremal convolutions,

their limits coincide with the limits discovered in (Ben Arous and Voiculescu 2006)
(see Definition 6.8 and Theorems 6.9 and 6.11):

F(tk) =

Do) = (1-e ) Lop (@)
o) = (1—i) 1100 () ; and

a;-a

D o
(t0) = (1 —|z[") 110 () + 1jp.e0) (2),

where « is a positive parameter.
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18 Convergence of Free Point Processes

18.1 Free Poisson random measure

Recall some facts about the free Poisson distribution with parameter (“intensity”) A.

2 2
The continuous part of this distribution is supported on the interval {(1 — \/X) , (1 + \/X) ]
and the density is

\/495—(1—)\+x)2
B 2w '
In addition, if A < 1, then there is also an atom at zero with the probability weight
1 — A\. We call such an operator a (non-commutative) Poisson random variable with

pa ()

intensity A and size 1.

The sum of two freely independent Poisson random variables of intensities \;
and )\, is again a Poisson random variable of intensity A\; + Ao.

If we scale a non-commutative Poisson random variable by a, then we get a vari-
able, which we call a scaled (non-commutative) Poisson random variable of intensity
A and size a.

Non-commutative Poisson random variables arise when we convolve a large num-
ber, N, of Bernoulli distributions that put probability A\/N on 1 and probability
1 — A/N on 0. The following result is well-known, see (Voiculescu 1998), or (Hiai
and Petz 2000).

Proposition 192 Suppose p,,, (n = 1,2, ...) is a sequence of Bernoulli distributions,
such that p,, ({1}) ~ A\/nand p,, ({0}) =1 — p,, ({1}) . Define v,, as follows:

vy, =u, B...Bpu,.
—_——

n times

Then v,, weakly converges to the free Poisson distribution with intensity \ and size 1.

The following definition is basic for our investigation.
Definition 193 Let (O, B, v) be a measure space, and put
By={BeB:v(B)<oo}.

Let further (A, E) be a W*-probability space, and let A, denote the cone of positive
operators in A. Then a free Poisson random measure (fPrm) on (O, B, v) with values
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in (A, E) is a mapping M : By — A, with the following properties:

(i) For any set B in By, M (B) is a free Poisson variable with parameter v (B) .
(ii) If r € N, and By, ..., B, € By are disjoint, then M (By) , ..., M (B,) are free.
(iii) If r € N, and By, ..., B, € By are disjoint, then M (U;ZlBj) = Z;Zl M (Bj).

The existence of a free Poisson measure for arbitrary spaces (©, B, ) and (A, E)
was shown in (Voiculescu 1998) and a different proof was given in (Barndorff-
Nielsen and Thorbjornsen 2005).

If f is a real-valued simple function in L' (©, B, v), i.e,. if it can be written as

f = Z ailBiv
=1

for a system of disjoint B; € By, then we define the integral with respect to a Poisson
random measure M as follows:

© i=1

It is possible to check that this definition is consistent. Moreover, as it is shown in
(Barndorff-Nielsen and Thorbjornsen 2005), this concept can be extended to a larger
class of functions:

Proposition 194 Let f be a real-valued function in L* (©, B, v) and suppose that s,
is a sequence of real valued simple B-measurable functions, satisfying the condition
that there exists a positive v-integrable function h (), such that |s, (0)] < h(0)
for all n and 0. Suppose also that lim,,_.. s, (0) = f(0) for all 0 Then integrals
f@ Sn dM are well-defined and converge in probability to a self-adjoint (possibly
unbounded) operator I ( f) affiliated with A. Furthermore, the limit I (f) is indepen-
dent of the choice of approximating sequence s,, of simple functions.

The resulting functional I ( f) is defined for all real valued functions f in L! (©, B, v)
and is called the integral with respect to the free Poisson random measure M. It pos-
sesses all the usual properties of the integral: additivity, linear scaling, continuity,
etc.

180



18.2 Free point process and weak convergence

Let A be the set of densely-defined closed operators affiliated with a von Neumann
algebra A, and let B, (R) denote the set of all bounded, Borel measurable functions
f:R—=R.

Definition 195 Let X;,, € A, (i = 1,...,n;n = 1,...) be a triangular array of
freely independent self-adjoint variables Then the free point process M, associated
with the array X, , is a sequence of A-valued functionals on By, (R), which are

defined by the following formula:
(M, f) =) f (Xin) .
i=1

Note that we use terminology “point process” to emphasize the analogy with the
classical case. In the classical case, an analogous functional N,, can be realized as a
random real-valued measure V,, (dz) which is concentrated on a (random) finite set
of points in R. In particular, (N, f) is a random variable. In the free case ), is not
random in the classical case but is completely determined by the array X; ,,. However,
for each f, the bracket (M,,, f) is an operator in A and thus is a free random variable.

Next, we define the mode of convergence of free point measures that in the clas-
sical case corresponds to the weak convergence of point processes.

Let D be a Borel subset of R and let 3° (D) denote the space of bounded, Borel
measurable functions that have compact support on D.

Definition 196 We say that a free point process M, converges weakly on D to a free
Poisson random measure M, which is defined on (D, B, \) and takes values in A, if
for every function f € F52 (D) the following convergence holds:

(M,, f) % /Rf dM.

Sometimes we need to speak about convergence with respect to a class of func-
tions, which is different from F5° (D).

Definition 197 We say that a free point process M, converges weakly with respect
to a class of functions F to a free Poisson random measure M., if for every function
f € F the following convergence holds:

(M,, f) % /Rf dM.
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Theorem 198 Let X, ,, be a triangular array of free, self-adjoint random variables
and let the spectral probability measure of X, ,, be p,,. Let X\ be a Radon measure on
D C R. The free point process M,, associated with the array X, , converges weakly
on D to a free Poisson measure M with the intensity measure \ if and only if

iy, (A) = X (4) (81)
for every Borel set A C D.

We will prove Theorem 188 by considering initially the convergence of free point
processes M,, with respect to the class of simple functions (i.e., finite sums of indica-
tor functions), and then approximating functions from a more general class by simple
functions.

18.3 Convergence with respect to simple functions

Let S (D) be the class of simple functions on D C R, i.e., the class of finite sums of
indicator functions of Borel sets belonging to D.

Proposition 199 Let X, ,, be a triangular array of free, self-adjoint random vari-
ables and let the spectral probability measure of X, ,, be j,,. Let \ be a Radon mea-
sureon D C R.If

np, (A) — X (A)

for each Borel set A C D, then the free point process M, associated with the array
X,.n converges weakly with respect to S (D) to a free Poisson random measure M
with the intensity measure \.

Before proving this theorem, we derive some auxiliary results.

Lemma 200 Suppose X, ,, is an array of free and identically distributed random
variables with the spectral measure . Let nyu, (A) — AA) < 0o as n — oo. Let
Zin =14 (Xin). Thenasn — oo, the sum S,, = Z?Zl Z; n, converges in distribution
to a free Poisson random variable with intensity \ (A) .

Proof: Note that Z, ,, are projections with expectation 1, (A) and they are free.
Therefore, > " | Z;,, is the sum of free projections and we can use Proposition 192
to infer the claim of the lemma. QED.
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As the next step to the proof of Proposition 199 we need to check that if Borel
sets Ay, are disjoint, then the sums S, = > | 14, (X;,,) are asymptotically free with
respect to growing n.

Recall the definition of the asymptotic freeness: Let (.A;, E;) be a sequence of
non-commutative probability spaces and let X; and Y; be two random variables in
A;. Let also x and y be two free operators in a non-commutative probability space

(A E).

Definition 201 7he sequences X; and Y; are called asymptotically free if the se-
quence of pairs (X;,Y;) converges in distribution to the pair (x,y) . That is, for every
€ > 0 and every sequence of k-tuples (ny, ..., ny) with non-negative integer n;, there
exists such iy that for i > 1, the following inequality holds:
|B; (XY XYY — B (a™y™ L a™ oy < e

At the cost of more complicated notation, this definiton can be generalized to the
case of more than two variables.

Now, we can formulate a generalization of Proposition 192 that says that cer-
tain sums of projections not only converge to Poisson random variables, but are also
asymptotically free.

Proposition 202 Let P, ,, be free projections of dimension \/n and Q); ,, be free pro-
Jections of dimension yi/n Assume P, ,, and (Q);,, are free if i # j, and orthogonal to
each other if i = j. Let S, = Y . Pipand ¥, = > | Qin. Then the sequences
Sy and %, converge in distribution to free variables S and %, that have free Poisson
distributions with parameters \ and u, respectively. In particular, the sequences S,
and X, are asymptotically free.

Proof: The fact that each of the sequences .S, and ¥,, converge to a free Pois-
son distribution is clear from Proposition 192. The essential part is to prove that
asymptotic freeness holds. Let us introduce variables CNQM which are (i) free among
themselves, (ii) distributed according to the same distribution as (); ,, and (iii) are
free from all of P;,,. Define in = Z?zl @m Clearly, S,, and f]n are freely in-
dependent and 3, has the same distribution as %,,. Consequently, the sequence of

(Sn, En) converges in distribution to (S, X)) , where S and X are two freely indepen-
dent random variables with free Poisson distributions.
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What remains to prove is that if an integer » > 0 is fixed and P, (S,,%,) is an
arbitrary non-commutative polynomial of degree r, then

E [PT (S, 50) — P (sn, §n>] -0

asn — 00.

From this moment on we will omit the subscript n from variables P, ,,, ); ., and
éim to make the notation more transparent.

Let us expand P, (S, X,,) as a sum of products of variables P, and );. A similar
expansion in products of P; and CNQZ holds for P. SSN, EN],Q . The expectations of the
corresponding product terms in these expansions differ if and only if for some ¢, the
product includes both P; and @); (and P; and @l in the corresponding term of the
other expansion). Otherwise, these two products are the same from the distributional
point of view and therefore must have the same expectations.

Example: Consider £ (S,%,) — E (SnEN]n> . Then we note that £ (P,Q;) =

E (H@j) if i # 7, and therefore:

E(S,%,) — E <5n§)n> = Z [E (PQi) — E (Pz@zﬂ

End of Example.

Now consider one of the products that do have different expectations. Consider
first the product in the expansion of P, (S, %,,) . Let [ is a set of all indices that are
used in this product (without regard to whether it is the index of a P or a ()). For
example, if the product is P1@3P7C§3P3, then the set [ is {1,3,7} .

Let I = {i,...,i,} . Using the freeness of elements P; and ; and the fact that
they are projections and therefore P/ = P, and @” = sz for every m > 1, we can
compute the expectation of such a product as

Vs

S ezt v E(B)T LB (R E(Qy) E(QL) . 62)

where the sumis overe; € {0,1,...,7} and v; € {0,1,...,r} . Note that the following
three conditions must hold for the terms in this sum: (i) For each ¢, either ¢; > 1,
or v; > 1, or both > 1. (L.e., either F (F;) or E <@,> is present in the product,
they cannot be both absent by the definition of the set 7.) (ii) For at least one i,
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both ¢; and v; are > 1. (This condition must hold because of our assumption that we
consider only products with different expectations, so that for at least one 7, both P;
and ; must be present in the product.) (iii) The coefficient ¢ (1, ..., &5, V1, ..., Vs)
can depend on the number of elements P;’s and @’s and on their arrangement in the
product, but it does not depend on n. In particular it can be bounded by a function of
T.

(For example, £ (PiQsPrQsPy) = E (P) E (Py) E(P) E (GQs) )

Since E (P;) = A/n and E (Q;) = u/n, therefore we can estimate the expecta-
tion of this product as follows:

1 < () 1
n51+‘~~+5s+1/1+-~+1/s - n5+1 ’

|E (product)| < ¢ (r)

If the degree of polynomial is » and the number elements in [ is s, then the number
of possible product terms with an index set / that consists of s elements is bounded
by n® (the upper bound on the number of possible choices of the set [ that consists of
s elements) multiplied by a certain function f (r) which counts the possible arrange-
ments of P, and QVZ-, if the set I with s elements is fixed. Therefore we estimate:

. . 1
|E (sum of products with set I that consists of s elements)| < ¢ (r) —.
n

Finally note that s < r, and therefore we can estimate the expectation of the sum of
those products of P; and @l that have expectations different from the corresponding
products of P; and Q; as rc (r)n™!.

Essentially the same argument can be used to estimate the expectation of the
corresponding products of P; and ;. Here, to derive formula (82) (with a possibly
different coefficient ¢) we can use the freeness of pairs { P;, ;} , and the fact that P;
and (), are projections, orthogonal to each other.

For example, to calculate F (P;(Q3()1 Ps) we can first use freeness to write:
E(PiQsQ1P3) = E(P)E(Q1) E(P3Q3) + E(Ps) E(Qs) E(P1Q1)
—E(P) E(Q1) E(Ps) E(Q3) -
And then we can use orthogonality to finish this calculation as follows:
E(PQsQ1Ps) = —E (1) E(Q1) E(Ps) E (Qs)

Given formula (82), the argument goes exactly as in the case with P; and @i, and
allows us to conclude that the expectation of the sum of the relevant products of F;
and Q; is bounded by r¢” (r)n=L.
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Therefore, if an integer r is fixed, then, as n grows, £/ [Pr (Sn, Xn) — P, (Sn, inﬂ —
0. Therefore (.S, ¥,,) converges in distribution to (S,X), where S and X are free.
This shows that S, and ¥,, are asymptotically free. QED.

It is possible to extend this result to more than two families of projectors. This
generalized result is as follows:

Proposition 203 Let P, (where n=12.;1i=1..nand k = 1,....,1) be
projections of dimension Ak / n. Assume that for each n, algebras A; generated by

ZTL’

,n

sets {P( } are free. Also assume that for each n and 1, the projections P
k=1

are orthogonal to each other, i.e., P( )P( = 0 for every pair k # k. Let S =

Yor P k). Then the sequences S converge in distribution to freely independent
varzables S®) that have firee Poisson distributions with parameters AR respectively.
In particular, the sequences S¥ are asymptotically free.

Now we can proceed to the proof of Proposition 199.

Proof: Let f = >, cxla, (z), where A; are disjoint Borel sets. Using the
assumption that npu, (Ax) — A (Ay) and Lemma 200, we can find a free Poisson
random measure M such that

Z1Ak ) 5 M (A = /R Ly, () M (da)

as n — oo. Indeed, it is enough to take a Poisson random measure M with the
intensity measure \.

In addition, by Proposition 203, sums S, = >, 14, (X;,) become asymptoti-
cally free for different & as n grows. Since M (Ay) are free by the definition of the
free Poisson measure, this implies that

> ay (i) 4 Y el (4) = Y e /R La, (2) M (d).

as n — oo. Therefore,

S ) [ )Mo

where we used the additivity property of the integral with respect to a free Poisson
random measure (see (Barndorff-Nielsen and Thorbjornsen 2005), Remark 4.2(b)).
QED.
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18.4 Convergence with respect to bounded, Borel measurable func-
tions with compact support

The goal of this section is to prove our main Theorem 188.

Consider a bounded, Borel measurable, compactly supported function f : D —
R, such that 0 < f < 1. (A more general case of a function f, which satisfies
C1 < f < (s, can be treated similarly.) For positive integers N = 1,2,..., and
k=1,...,N, define the set

k—1 k

The sets A,(CN) are disjoint, measurable, and have finite A-measure. Their union is D.
We define lower and upper approximations to the function f as follows:

Y k-1
lN (l’) == Z TlAl(gN) (ZL’) y
k=1
and
N
Z A(N)
k=1

We note that:
D) 1 (z) < (2);
(ii) IV (x) is an increasing sequence of functions;
(iii) u (z) is a decreasing sequence of functions, and
iv) limy o0 IV (z) — vV (z) = 0 uniformly in .

The functions IV (z) and « () are simple: IV (z) = SN, C]({:N)lAI(CN) (x) and
u (z) = 3N d,(cN)lAm) (x) . Note also that sup,, (d,(CN) - c,gN)> = 1/N converges
to zero as N — oo0. '

Let us drop for convenience the superscript N when we consider it as fixed, and
simply write [ () = S0, cxla, (z) and u (v) = SN dpla, (), where Ay, are
disjoint Borel-measurable sets. By Proposition 199, as n — oo,

N

Zl chMka

k=1

where M, are freely independent Poisson random variables with intensities A\, =
A (Ag). Let F (z) denote the distribution function of 1 | ¢ M,
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Similarly,
N
ST u(Xin) SN diy,
k=1

i=1
and we denote the distribution function of 31, dj M}, as F,, ().

Let F,, denote the distribution function of )", f (X;,) and let F; be one of
the limit points of this sequence of distribution functions.

Proposition 204 F is a distribution function and F, (xv) < Fy(z) < F,(x) for

every T.

Proof: We will infer this from Lemma 205 below and its Corollary. This lemma
is a particular case of Weyl’s eigenvalue inequalities for operators in a von Neumann
algebra of type I 1. If F4 (z) is the spectral distribution function of a self-adjoint op-
erator A, then we define the eigenvalue function A4 (t) = inf {z : Fs (x) > 1 —t}.
The function A4 () is non-increasing and right-continuous.

Let us use notation A4 (£ — 0) to denote lim.|g A (f — ). Then the following
Lemma holds:

Lemma 205 [f' A and B are two bounded self-adjoint operators from a W*-probability
space A and if B is non-negative definite, then

Aavp (1) < Aa(t) + || B, and

<
< Aapp(t=0) <Aa(t=0)+|B].

Corollary 206 If B > 0, then 14, >> jiy, that is, Faip (x) < Fu (x) for each x.

Proof of Lemma 205: This results easily follows from an inequality in (Bercovici
and Li 2001) which states that if (a — £,a) C [0, 1], (b—¢€,b) C [0,1],and a+b < 1,
then

a+by a b
/ Mass (1) dt < / A (8 dt + / g (1) dt. (83)
a+b—e a—e b—e

QED.

By Corollary 206, for each n the distribution FY, is between the distribution
functions of )" u(X;,) and >"1" [ (X;,). As n grows, these two sequences of
distribution functions approach F), (x) and F (z), respectively. Therefore, every
limit point of I, 1s between I, and F}. The claim that F; is a distribution function
follows from the fact that both F;, and F; are distribution functions. QED.
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Now we want to show that £ (x) approaches FZ(N) (x) as N grows.
Recall that the Levy distance between two distribution functions is defined as
follows:

dr, (Fa, Fg) =supinf{s >0: Fg(x —s) —s < Fa(x) < Fp(x+s)+s}.

We can interpret this distance geometrically. Let I' 4 be the graph of function Fy,
and at the points of discontinuity let us connect the left and right limits by a (vertical)
straight line interval. Call the resultlng curve I'y. Similarly define I's. Let d be the
maximum distance between ' 4 and r g 1n the direction from the south-east to the
north-west, i.e., in the direction which is obtained by rotating the vertical direction
by 7/4 counter-clockwise. Then d;, (F4, Fig) = d/v/2.

Proposition 207 Let K be the sum of intensities of freely independent Poisson ran-
dom variables M), and let F, (x) and F, () be distribution functions of S_n_, cx M
and Zgil dp M, Then

dp (F, F,) < (2K +3VK + 1) sup (dp — cx) -
1<k<N

Remark: In our case, the finiteness of K will be ensured by the assumptions that
A is Radon and that f has a compact support.

For the proof of this proposition we need two lemmas. Lemma 208 provides
a bound on the norm of the sum of scaled Poisson random variables in terms of
the sizes of these variables, and Lemma 209 relates the Levy distance between two
random variables to the norm of their difference.

Lemma 208 Let M;, (i = 1,...,1) be freely independent Poisson random variables,
which have intensities \;, and let b; be non-negative real numbers. Assume that
i1 A < K andletb = sup,;, b;. Then

gb(2K+3\/E+1>.

Proof: Let X; be free self-adjoint random variables that have zero mean. Then
by an inequality from (Voiculescu 1986):

< max || X;|| +
1<i<r
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If Y, are free self-adjoint random variables with non-zero mean, and X; = Y; —
E (Y;) , then the previous inequality implies that

IN
|'M
e
=
+

IA
=
=
_l’_
5
IS
"
SH
=
_l’_

(84)

where d (Y;) is the diameter of the support of Y.

We will apply this inequality to Y; = b;M; and estimate each of the three terms
on the right-hand side of (84) in turn:

1) Since E (M;) = A;, and ) \; < K|, therefore > ., b, E (M;) < bK.

2) The diameter of the support of b;M; is less or equal to b; (
b(1+2VE +K).

3) Since Var (M;) = \;, therefore 1/, Var (b;M;) < bV/K.

In sum, [|S°7_, biM;|| < b <2K +3VE + 1) . QED.

+vh)© <

Lemma 209 Let A and B be two bounded self-adjoint operators from a W*-probability
space A and assume that B — A > 0. Then

dp (Fa, Fg) < ||B — A

Proof: Let F4 and F'g be distribution functions, and A4 and Ag be the corre-
sponding A-functions. Then we claim that

dr (Fa, Fg) < sup |4 (t) — Mg (t)|. (85)
0<t<1

Indeed, let the graphs of functions A 4 and A\g be denoted as A 4 and A g, respectively.
Connectmg the left and right limits at the points of discontinuity gives us the curves
A 4 and A p. It is easy to see that these curves can be obtained from curves r 4 and
I'; (i.e., the graphs of F4 () and Fj (z) with connected limits at the points of dis-
continuity) by rotating them around the point (0, 1) counter-clockwise by the angle
7/2 and then shifting the result of the rotation by vector (0, —1) . It follows that the
distance d, which was used in the definition of the Levy distance can also be defined
as the maximum distance between A 4 and A g in the direction from the south-west to
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the north-east, i.e., in the direction which is obtained by rotating the vertical direction
by /4 clockwise.
Since A4 (f) and Ap (t) are non-increasing functions, therefore

d < V2 sup A4 (t) = Ap (t)].

0<t<1

This implies d, (Fla, Fp) < supg<;<; [Aa (t) — A (t)].
Inequality (85) and Lemma 205 imply the statement of the lemma.
QED.
Now we can prove Proposition 207:
Proof of Proposition 207: Let X = E]kvzl (dy, — cx) M. By Lemma 208,

IX| < b(2K+3¢K+1) ,

where b = sup, <y (dr, — ¢x) and K is the sum of the intensities of M. By Lemma
2009, this implies that

dL(Fl,Fu)gb(MMﬁH).

QED.
Using Proposition 207, we can proceed to the proof of Theorem 188. By Propo-
sition 199, we know that if V is fixed and n — oo, then

and

n N
ZUN (Xin) d Zdz‘N)M (AIEN)) 7

1=1 k=

[y

where M is a free Poisson random measure with intensity A (dz) . Let the distribu-
tions of the right-hand sides be denoted as Fj~ and F),~.

By Corollary 206, Fi~ is a decreasing sequence and F,~ is an increasing se-
quence of distribution functions. In addition, Fj~ (z) > F,~ (x) for every N and x.
Since the sum of intensities of variables M AffN) is less than A (D) < oo by as-
sumption, therefore Proposition 207 is applicable and we can conclude that the Levy
distance between Fjn and F,~ converges to zero as N — oo. Consequently, these
two distributions (weakly) converge to a limit distribution function as N — oo.
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Moreover, by the definition of the integral with respect to a free Poisson random
measure, this limit equals the distribution function of [ f (x) M (dz).

In addition, by Proposition 204 every limit point of the sequence of F,, is be-
tween Fjv and F,~ for every N, and therefore the sequence of ', also converges to
the distribution function of [ f (z) M (dz). QED.

This completes the proof of Theorem 188.

19 Free Extremes

19.1 Definition of order statistics

Let us start with a heuristic motiviation of the definitions to follow. Let X1, ..., X,, be
Hermitian positive-definite matrices and ¢ be a real positive number. For each X; we
can define a linear subspace V; (t) spanned by eigenvectors of X; with eigenvalues
which are less or equal to t. Alternatively, we can think about V; (¢) as a space of
directions, which operators X' dilate by less or equal to ¢ for every integer n > 1.
The intersection of these subpaces, V° (¢) , is the subspace of the directions, such that
whatever direction v € V° (¢) and whatever n > 1 are given, none of operators X
dilates the direction v by more than ¢" times. The subspaces V° (¢) are increasing
with ¢ and using the spectral resolution theorem we can associate an operator [ ¢
dPyo ) (t) with this family of subspaces. This operator is natural to call the maximum
of X1, ..., X,,. The spectral distribution function of this operator evaluated at ¢ equals
the dimension of the subspace V° () . This distribution function is the extremal (not
necessarily free) convolution of distribution functions of X7, ..., X, in the sense of
(Ben Arous and Voiculescu 2006).

When we try to apply this reasoning and define the 2-nd order statistic instead
of the maximum, we run into a difficulty. Indeed, in this case it is natural to look
at vectors v for which there is exactly one of X; that has the property that for some
n, the operator X dilates v by more than " times. If V! (¢) denotes this set of
directions, then we can write this set algebraically as

<ﬂ Vi (t)> N(H\V; (1))

JF

n

vt =1

=1

Y

where H is the space where X; acts. A slightly different possibility would be to
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define this set as

n

Vi) =

=1

(ﬂ v <t>> (v <t>L)]
J#1
Unfortunately, whichever of these two definitions we use, V! () is not a linear sub-
space, so we can neither use the spectral resolution theorem, nor calculate its dimen-
sion.

One natural way out of this difficulty is to consider the linear span of the set
V1 (t). We prefer a similar but an analytically easier alternative. First, we define the
sum of projections on subspaces WW; (£) = V; (¢)". Let us call this sum Y (¢) . Note
that if this sum of projections evaluated at a vector v equals zero, then x belongs to
NV; (t) = V9 (t). Moreover, it is intuitively clear that if this sum is evaluated at v
and the result of this evaluation, (v, Y (¢) v) , is small, then either v belongs to V; (%)
for the majority of ¢, or v deviates outside of many V; (¢) but only by a very small
amount. In the first case, only a small number of operators X; are such that for some
n, the operator X dilates v by more than ¢". In the second case there can be many
such X; but then X dilate v by not much more than ¢".

This suggest introducing the set of directions on which the sum of projections
on subspaces W; (¢) is small. The great advantage of this new set is that it is a
linear space and we can both measure its dimension and apply the spectral resolution
theorem.

Now, after this intuitive introduction, we turn to a rigorous definition.

Let X1, ..., X,, be freely independent self-adjoint random variables and let X;
have the distribution F;. Define projections P; (t) = 1) (X;) and consider the
variable

ACE WL

Definition 2. For every real k > 0, we say that F™ (t|k) =: E [1jo 4 (Y, (t))] is
the distribution function of k-th order statistic of the sequence X;...X,,, and that it
is the k-th order free extremal convolution of distributions F;.

We need to check that this is a consistent definition, and that F(™) (¢|k) is indeed
a distribution function for each k£ > 0.

For convenience we will omit index n in the following argument.

It is easy to see that /' (¢|k) is non-decreasing in t. Indeed, let ' > t. Then for
each i, P; (1) < P; (t), and therefore, Y (t') < Y (t). It follows that 194 (Y (') >
ik (Y (t)) , and therefore F' (t'|k) > F (t|k).
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This function is also right-continuous in . First, note that if¢,, | t, then P; (¢,,) 4,

P; (t). Since operators P; are freely independent for diffferent ¢, this implies that
Y (tm) Ly (t) as t,, | t. Indeed, the operators Y (¢,,) and Y (¢) are uniformly
bounded (||Y (¢,,)|| < nand ||Y (¢)|] < n), and the moments of the distribution of
Y (t,,) converge to the corresponding moments of the distribution of Y (¢) .

Let the distribution functions of Y (¢,,) and Y (¢) be denoted as G,, () and
G (), respectively. Then E [l (Y (tn))] = G (k) and E [l (Y (¢)] =
G (k) . The convergence Y (t,,) Ly (t) implies that G, (k) — G (k) as m — oo,
for all k£ at which G (k) is continuous. We will prove that, moreover, even if G (x)
has a jump at x = k, then the sequence G,, (k) still converges to G (k). At this
point of the argument, it is essential that ¢,,, converges to ¢ from above and therefore
G (k) > G (k).

Indeed, by seeking a contradiction, suppose that G, (k) does not converge to
G (k). Take € such that G,, (k) — G (k) > ¢ for all m, and take &’ > k such that
(1) k" is a point of continuity of G (z), and (2) G (k') — G (k) < ¢/2. Such ¥
exists because G (x) is right-continuous. Since G, (k) is increasing, we conclude
that G,,, (k') — G (k') > ¢/2 for all m. But this means that G,,, (z) does not converge
to G (z) at a point of continuity of G (x) , namely, at k’. This is a contradiction, and
we conclude that G, (k) converges to G (k) for all k.

Finally, as t — oo, P; (1) 2, 0. Therefore Y (1) <20, and Lo (Y (1)) ENYS
Hence F' (t|k) — 1 and we conclude that F’ (¢|k) is a valid distribution function.

Consider now the special case when k = 0. In this case F(™) (¢|0) is the dimension
of the nill-space of Y (), which equals to the dimension of the intersection of the
nill-spaces of P; (t) =: 1) (X;). It is easy to see that this coincides with the
definition of the free extremal convolution of the distributions F; (x), which was
introduced in (Ben Arous and Voiculescu 2006).

19.2 Limits of the distributions of free extremes

Now let us investigate the question of the limiting behavior of the distributions F(™) (¢|k)
when n — oo. The limits are described in Theorem 191.
Proof of Theorem 191: For each n we re-define:

Yn (t) = Z 1(t,oo) ( b ¢ ) = <Mn> 1(t,oo)> )
i=1 n

where M, is the free point process associated with the triangular array (X; — a,,) /b,.
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The bracket <Mn, l(t,oo)> converges in distribution to a random variable C;, which
is a free Poisson random variable with the intensity A (¢) = —logG (¢). Then,
in order to calculate the limit of F\") (t) for n — oo, we only need to calculate
Eljo 4 (Cy), that is, the distribution function of C} at k. Let us denote the distribu-
tion function of C; as G (z) ,

For k < 0, we have G, (k) = 0. For k = 0,

R e
For k > 0,
G, (0), ifk<<1— )\(t))Q,
Gilk) = § GO)+ [, sy pe (€. ifk;e{(l— @) (1 A(t)>2],
1 ifk><1+ /\(t)>2.
wher
" ¢4& (1 A(1) +©)?
25 '

Then, we compute G, (k) = F (t|k) as a function of ¢ for a fixed k. Let A\™* (x)
denote the solution of the equation \; = x.

For k = 0: . " \ 1(1>
- , it < A ,
FW@I{ 1= A(t), ift>A"1(1).
For k € (0,1):
( 0, i< A <(1+¢E)2
— f<’“ Sy n@dsitte {xl((w@) ),xlu) |

MO+ S e (©de it (rex w7 (- vE) )|
L=A(), ift>)\_1(<1_\/g>2>‘
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For £ > 1, we have:

F(tk) =

Combinining these cases, we obtain the following equation:

F(tlk) =

QED.

¢

\

(

0, it < A <(1 + \/E)z) |
f{l_ sapm@de e (14 vE) ) ot ),
MO+ [ sy e (€ d6 if(teA() (( ﬂ)Q),
)
)

A
1, ift >\~ (
0, ift <\~ 1< 1

f(klm)zpt (€) de, if i € { ( 1+ T,

+f( A(t) pe (§) dg, if (te)\ (1), A~ 1(( \/E)Q) |
—A(t) 1) (K), 15 ] (<1 ) \/E>2) |

ay).x

Example 210 Distributions from the domain of attraction of ®* law

Consider the case of convergence to the law &, when the constants a,, and b,, are
chosen in such a way, that the limit law is G (z) = exp (—z~*) for z > 0.Then we
can conclude that the limit distribution of the k order statistic is given as follows:

F(t]k) =

where

0. ift < (1+ f) o
Sl oy e () de ift {(1 + \/E> , 1] ,
N
11—t + f(kl,t_upypt (§)dg, ift e (17 ((1 - VE) ) ] )
1—t"1p5) (k)| ift > ((1 - \/E>2> _W,

V- (-t ¢y
2m€ .

Dt (f) =
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We illustrate this result for some particular values of v and k.
Consider k£ = 0. Then

— 0, ift <1,
F(#0) = { 1—tv, ift>1.

This is the Type 2 (“Pareto™) limit distribution in Definition 6.8 of (Ben Arous and
Voiculescu 2006).

It is interesting to note that if & > 1, then for all sufficiently large ¢, F (t|k) = 1.
This can be interpreted as saying that the scaled & order statistic is guaranteed to be
less than ¢, for a suffiiciently large k. In another interpretation, this result means that
for our choice of scaling parameters a,, and b,, and for every k > 1,

<k

Z ]' (b'nt“l‘an) (Xz)
=1

if t and n are sufficiently large.

A similar situation occurs in the classical case if the initial distribution (i.e. the
distribution of X;) is bounded from above. In this case the limit distribution is also
bounded from above. In contrast, in the free probability case this situation occurs
even if the initial distribution is unbounded from above. Our previous example shows
that this situation occurs even if the initial distribution has heavy tails.
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A Appendix: Distributions and Their Transforms

Semicircle
Density & atoms %MX[_M] (x)
Cauchy transform 1 (z — /22 — 4)
K-function > +z
S-transform not defined
Moments Mo = %H(%f), Mok11 = 0.
Cumulants ci=1,¢,=0fori#1

Marchenko-Pastur
. dz—(1—A+x)?
Density & atoms %X[(kﬁ)?(uﬁﬂ (x)
and an atom at 0 with mass (1 — \) if A < 1

1-Az—1/(1=-2+2)%—4z
2z

Cauchy transform

K-function % + 1 iz
1
S-transform pwes
Moments
Cumulants ¢; = A forall 7.
Bernoulli

Density & atoms  Atom at 0 with probability ¢, and
atom at 1 with probability p.

Cauchy transform ﬁ

14+2—4/(1—2)+4pz

K-function 5
S-transform 1tz

q+z
Moments m; = q for all ¢
Cumulants

Arcsine

. X[—2,2](t)

Density & atoms = T
Cauchy transform \/,2;7_4
K-function V1 +422
S-transform not defined
Moments m, = (°F) ifn=2k;=0ifn =2k +1
Cumulants
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Index

addition formula, 40
additive free convolution, 37
annihilation operator, 30
arcsine law, 29

Bai’s theorems, 57

Bernoulli random variable
K-function, 68

Berry-Esseen inequality, 90

Cauchy transform, 37
characterization, 55
uniform convergence, 57

Central Limit Theorem, 74

circular system, 24

CLT, see Central Limit Theorem
convergence in distribution, 14

creation operator, 30
cyclic representation, 125
cyclic vector, 125

domain of attraction, 66

expectation, 12
faithful, 12
normal, 12
tracial, 12

Fock space, 29
free additive convolution, 37
free independence, 16

free multiplicative convolution, 48

free product, 20
freeness, 16
approximate, 25

asymptotic, 24

Haar-distributed unitary operator, 19
in free group algebra, 29
represented by Toeplitz r.v., 34

Herglotz’ representation, 54

infinitely-divisible distribution
additive, 63
multiplicative, 69

joint moment, 14
joint moment map, 13

K-function, 38
estimate on coefficients, 62

Lagrange’s inversion formula, 58
multivalued case, 63

Marchenko-Pastur distribution, 39
Cauchy transform, 39
compound, 64
convergence of free additive convo-
lutions, 68
K-function, 39
multiplication formula, 48

Nevanlinna’s representation, 55
non-commutative probability space, 11
bounded operators algebra, 13

commutative probability space, 12

finite von Neumann algebra, 13
free products, 20

matrix algebra, 12
operator-valued, 14
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Toeplitz operators, 30

Perron-Stieltjes inversion formula, 56

Poisson distribution, see Marchenko-Pastur
distribution

Poisson distribution (free), 68

Poisson kernel, 69

Poisson transform, 69

R-transform, 39
random variables, 13
equivalent, 14
star-equivalent, 14
representation
of a moment sequence by an opera-
tor, 31
of operator by another operator, 31

S-transform, 48
Schwarz’ formula, 54
semicircle distribution, 22
Cauchy transform, 24
K-function, 38
Toeplitz operator representation, 34
semicircular system, 22
Y.-function, 68
spectral probability measure, 15
superconvergence, 105
symbol of a Toeplitz operator, 41

Toeplitz random variables, 30
trace, 12

vacuum vector, 30
Voiculescu transform, 40
von Neumann algebra
N (Fy), 27
of free group, 27
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