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Abstract

The �rst part of this dissertation is devoted to the systematic exposition of the
fundamentals of free probability theory.
The second part studies various aspects of the free Central Limit Theorem. The

particular contributions of this part are as follows: (a) The free Central Limit Theo-
rem holds for non-commutative random variables which satisfy a condition weaker
than freeness. (b) The speed of convergence in the free Central Limit Theorem is
the same as in the classical case, which is shown by an analogue of the Berry-Esseen
inequality. (c) An estimate on the support of free additive convolutions is established.
The third part investigates products of free operators. In particular, it studies the

growth in norm of products of free operators and gives an in�nite-dimensional ana-
logue of the Furstenberg-Kesten theorem about products of random matrices. This
part also introduces the Lyapunov exponents of products of free operators and ex-
presses them in terms of Voiculescu's S-transform. Finally, it gives the necessary and
suf�cient conditions for products of free unitary operators to converge in distribution
to the uniform law on the unit disc.
The fourth part of the dissertation introduces the concept of the free point process

and proves a theorem about the convergence of this process to the free Poisson mea-
sure. The free point processes are used to de�ne free extremes, which extend the
concept of the free maximum introduced earlier by Ben Arous and Voiculescu. A
theorem about the convergence of free extremes is proven, which is similar to the
corresponding theorem in the classical theory but results in a different set of limit
laws.
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1 Introduction
Free probability theory arose from the study of the following problems:
A) Consider the free group with k generators, F (k) ; and the corresponding group

algebra with complex coef�cients. The left action of this group algebra on L2 (F (k))
(i.e., the Hilbert space of square-summable functions on F (k)) makes this algebra an
algebra of operators. The closure of this algebra in the weak operator topology is a
von Neumann algebra of type II1, which we will denote asN (F (k)) :Many natural
operators in this algebra are non-compact. Since they cannot be approximated in
norm by �nite-dimensional operators, it is hard to study their spectral properties by
the usual approximation techniques. Can we �nd an ef�cient algorithm to compute
the spectral properties of these operators?
B) Suppose we approximate a self-adjoint operator A in N (F (k)) by �nite ma-

trices Mn where by approximation we mean that the spectral distributions of Mn

approach the spectral distribution of A as n ! 1: Can we measure how the quality
of approximation improves as n!1?
C) Von Neumann algebras of type II1 can be thought of as generalizations of

�nite mass measure spaces. In the classical case, we can upgrade measure theory
with the concept of independence and in this way obtain probability theory. Is there
an independence concept suitable for von Neumann algebras? Recall that all measure
spaces without atoms are isomorphic to each other. On the other hand, there is a
rich theory of how to classify measure-preserving transformations in measure spaces.
Consider two von Neumann algebras: N (F (k)) andN (F (l)) ;with k 6= l: They can
be thought of as two non-commutative measure spaces. Are they isomorphic? What
about transformations in a non-commutative measure space? What are conditions
under which they are isomorphic?
D) LetGq be a homogeneous tree of degree q; that is, a tree in which every vertex

is an end point of exactly q edges. Assume that these edges are labeled by integers
from 1 to q; and let pi be non-negative real numbers such that

Pq
i=1 pi = 1: Then

we can de�ne a random walk on the tree by the rule that a particle at a given vertex
travels along the edge i with probability pi: The transition matrix of this random
walk de�nes an operator on l2 (Gq) ; which can be thought of as a non-homogeneous
Laplace operator. What is the spectral measure of this operator?
The tree Gq is the Cayley graph of the free product Z2 � Z2 � ::: � Z2 with q

elements in the product. Similar questions can also be asked for random walks on
Cayley graphs of more general free product groups.
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E) Suppose fXng is a sequence of random n-by-n Hermitian matrices. Suppose
that their probability distributions are invariant under unitary transformations and that
the empirical distribution of the eigenvalues ofXn converges to a probability measure
� as n grows to in�nity: Let fYng be a similar sequence of independent matrices with
the empirical distribution of eigenvalues converging to a probability measure �. Is it
true that the empirical distribution of eigenvalues of Xn + Yn converges to a limit?
How can we compute the limit using only � and �?
From this list of problems it appears that there is a need to study in�nite-dimensional

objects that are, in a sense, limits of independent random matrices of growing dimen-
sion.
As a response to this need, a new �eld emerged on the border between opera-

tor algebra and probability theories. The �eld was christened free probability theory
by its creator, Dan Voiculescu. It developed into a complex theory, which in many
respects parallels the usual probability theory. Sums and products of freely inde-
pendent operators correspond to certain convolutions of their spectral measures, and
free probability studies the properties of these convolutions. The theory includes
analogues of characteristic functions, the Central Limit Theorem, the Law of Large
Numbers, and many other concepts from classical probability theory. However, the
limiting laws are different and their proofs proceed along quite different lines.
This theory has interesting connections with the theory of random matrices and

is used by engineers because it signi�cantly simpli�es many calculations associated
with random matrices. See Edelman and Rao (2005) for a review of applications
of random matrices and free probability in numerical analysis. Free probability is
also useful in statistics; see, for example, Rao et al. (2008). In another direction, an
interesting application of this theory to the theory of representations was discovered
by Biane (1998).
Another beautiful part of free probability theory is the theory of free entropy. In

free probability, in�nite-dimensional operators can be approximated by �nite dimen-
sional matrices where approximation is meant in the sense of convergence of their
spectral distributions. In many respects this is similar to a theory of approximation
of continuous probability measures by measures supported on �nite sets. In both
classical and free cases, there is a natural quantity that measures the quality of ap-
proximation and which is called entropy. What is especially surprising is that free
entropy is closely related to the concept of free independence. For example, free en-
tropy is addititive with respect to joining several freely independent variables in one
vector.
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The theory of free entropy is useful in the study of free operator algebras because
it provides a new way to approximate in�nite-dimensional operators and study the
quality of these approximations. These methods have led to breakthrough results in
operator theory (see Voiculescu (1990) and Haagerup and Thorbjornsen (2005)).
This text will be devoted mostly to an account of free probability theory from the

point of view of its similarity to classical probability theory. Almost no attention will
be paid to the theory of free entropy. Instead, the focus is on limit theorems for sums
and products of free random operators. The text will present some new results and
also give quantitative versions of some of the known limit theorems (that is, versions
that provide quantitative bounds on the speed of convergence).
Another focal point of this dissertation is the study of free point processes and

free extremes. These concepts are new and have a potential to explain why many
results in free probability theory are strikingly similar to the corresponding results in
classical probability theory.
In the following subsections of the introduction we brie�y outline the history of

the subject and indicate which results in this dissertation are new.

1.1 Historical remarks

Free probability theory was invented by Dan Voiculescu in the early 1980s when he
researched von Neumann algebras of type II1: The main motivation was to study the
properties of free products of these algebras. Voiculescu formulated an axiomatic
de�nition of what it means for two operators to be free. He pointed out the analogy
to the concept of independence in classical probability theory and suggested calling
free operators free random variables.
Even in the earliest of his papers, Voiculescu (1983), some fundamental results

were established. In particular, it was proved that the sums of free random variables
converge in distribution to the semicircle random law. As a next step, Voiculescu de-
veloped an analytic method for computation of moments of the sum and of the prod-
uct of two free random variables (1986 and 1987)1. An application of these methods
to questions in operator algebra theory was given in Voiculescu (1990). Extremely
fruitful for further progress of the theory was the realization that free probability is
connected with random matrix theory. In Voiculescu (1991) it was proved that the

1At about the same time similar formulas for additive free convolutions were independently de-
veloped by researchers who studied random walks on free products of discrete groups; see, e.g.,
McLaughlin (1986).
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Wigner random matrices of increasing dimension become asymptotically free and
this can be interpreted as the proper explanation for why the Wigner semicircle law
holds for the spectral distribution of large random matrices. An offspring of this real-
ization was a de�nition of free entropy in Voiculescu (1993) and Voiculescu (1994),
which explains how well in�nite-dimensional operators in type II1 algebras can be
approximated by �nite matrices. This was followed by a series of breakthrough re-
sults for von Neumann algebras (Voiculescu (1996a)).
Addition of free self-adjoint random variables induces a convolution of probabil-

ity measures which is quite different from the standard convolution. This new convo-
lution, named the free additive convolution, became an object of study by Bercovici,
Biane, Maassen, Pata, Speicher, Voiculescu himself, and others. It was found that
this concept is analogous in many respects to the usual convolution of probability
measures and closely related to certain classical problems of complex analysis. In
particular, the concept of free additive convolution was extended to unbounded prob-
ability measures, and many properties of this convolution were investigated. (see
Maassen (1992), Bercovici and Voiculescu (1992), Bercovici and Voiculescu (1993),
Bercovici and Pata (1996), Bercovici et al. (1999), Belinschi and Bercovici (2004),
Barndorff-Nielsen and Thorbjornsen (2005), and Ben Arous and Voiculescu (2006)).
These problems were also investigated for the free multiplicative convolution that

arises from products of free random variables. In particular, Bercovici and Voiculescu
(1992) classi�ed the free in�nitely-divisible laws for the measures on the real half-
line and on the unit circle. The progress here, however, has been less signi�cant than
for free additive convolution.
In another development, Speicher (1990) investigated the relation of free addi-

tive and multiplicative convolutions with combinatorics. He introduced a concept of
free cumulants and related this concept to a theory of non-crossing partitions. One
of the successes of this method was a proof of a certain free analogue of the multi-
variate CLT. Using Speicher's techniques and following some early contributions by
Voiculescu, Biane developed a theory of free stochastic processes.
The relationship between free probability theory and random matrices was also

actively investigated. For example, Ben Arous and Guionnet (1997) related free en-
tropy to the large deviation property for random matrices.

4



1.2 Summary of original contributions

Free multiplicative convolutions
While sums of free random variables and the corresponding limit theorems have

been thoroughly studied, the multiplication of free random variables has been less re-
searched. Let X1; : : : ; Xn be free and identically distributed operators in a von Neu-
mann algebra with trace (expectation) E:What are the properties of �n = Xn : : : X1

for large n?
First, I have proved that

lim
n!1

n�1 log k�nk =
1

2
log (E (X�

1X1)) :

This result is in agreement with a previous result by Cohen and Newman on the norm
of products of i.i.d. N �N random matrices, in the situation when N !1.
Next, assume that E (X�

1X1) = 1. In this case, I have proved that

lim
n!1

sup
1p
n
k�nk � c

p
v;

where v = E
�
(X�

1X1)
2�� 1 and c is a constant.

In order to understand the behavior of the singular values of the product �n in the
bulk, I have de�ned the Lyapunov exponents for products of free self-adjoint random
variables. To understand why this concept is helpful, consider the �nite-dimensional
situation. The sum of the logarithms of the k largest singular values of an operator A
can be computed as follows:

log �1 + log �2 + :::+ log �k = log sup
v1;:::;vk

vol (Av1; Av2; :::Avk) ;

where v1; :::; vk are orthonormal and vol (Av1; Av2; :::Avk) denote the volume of the
parallelepiped spanned by vectors Av1; :::; Avk: This suggests that we consider the
following limit:

lim
n!1

1

n
log sup

v1;:::;vk

vol (�nv1;�nv2; :::�nvk) :

In the theory of products of random matrices, it is proved that this limit exists
under a certain assumption on the distribution of matrix entries. Moreover the supre-
mum can be removed: under a mild assumption, the limit is the same for arbitrary
choice of the orthonormal vectors v1; :::; vk with probability 1:
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In the in�nite-dimensional case, we can de�ne an analogous expression:

lim
n!1

1

n
log sup

Pt

det (�nPt) ; (1)

where Pt is a t-dimensional subspace. Here det denotes a modi�cation (Lück's de-
terminant) of the in�nite-dimensional Fuglede-Kadison determinant and it allows
us to compute how a given operator changes the �volume element� of an in�nite-
dimensional subspace. This limit, if it exists, contains all the information about the
asymptotic behavior of the singular values of �n:
By analogy to the �nite-dimensional situation, I have studied the case when the

sup is removed and instead Pt is assumed to be free of all of Xi. So, I have de�ned
the integrated Lyapunov exponent function as follows:

F (t) = lim
n!1

1

n
log det (�nPt) : (2)

I have proved that this is a consistent de�nition and that the integrated Lyapunov
exponent exists for bounded free Xi. In addition, I have derived an explicit formula
which relates Lyapunov exponents to Voiculescu's S-transform:

F 0 (t) = �1
2
log (SX�X (�t)) ; (3)

where SX�X is the S-transform of X�X:

This formula allows me to infer a number of results about the Lyapunov expo-
nents, in particular, a formula for the largest Lyapunov exponent and the additivity
property of the Lyapunov exponents with respect to the operator product.
An example with a particular choice of Xi recovers the �triangle law� discov-

ered earlier by C. M. Newman in his work on Lyapunov exponents of large random
matrices.
The next natural step would be to prove that the limit in (1) exists and coincides

with the limit in (2). This would follow from a free probability version of the Os-
eledec theorem.
These results about Lyapunov exponents of in�nite-dimensional operators can be

considered a generalization of some of the results of Furstenberg, Kesten, and Os-
eledec regarding products of random matrices. The usual technique based on King-
man's sub-additive ergodic theorem does not work here because free operators do not
form an ergodic stochastic process. Instead, we have to use directly the de�nition of
freeness of operators.
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In a somewhat different project, I have studied products of free unitary opera-
tors. For this problem, I have derived a necessary and suf�cient condition for the
convergence of the spectral probability distribution of the product to the uniform dis-
tribution on the circle. The necessary condition for convergence is that the product
of expectations converges to zero. This condition fails to be suf�cient only if all of
the following statements hold: (i) exactly one of the operators has zero expectation,
(ii) this operator is not uniformly distributed, (iii) the product of the expectations of
the remaining operators does not converge to zero.

Free additive convolutions
Recently, there has been great progress in the theory of free additive convolu-

tions. (See, for example, papers by Bercovici, Biane, Maasen, Pata, Speicher, and
Voiculescu.) In particular, a theory of free in�nitely-divisible and stable laws has
been developed. Also, free versions of the Law of Large Numbers (�LLN�) and the
Central Limit Theorem (�CLT�) have been derived.
I have extended the free CLT to the situation when the operators are not free,

but �almost� free. In particular, I have devised an example of the situation when
operators are not free but the free CLT is still valid for their sequence. This example
takes a free group with an in�nite number of generators and adds certain relations.
Then it uses the method of short cancellations from combinatorial group theory to
infer a weakened version of freeness. Finally, the proof uses the Lindeberg approach
to the classic CLT to infer the free CLT from this weakened version of freeness.
My other work in this area is focused mostly on making the available results more

quantitative. In particular, it was known that the support of normalized free additive
convolutions converges to the interval (�2; 2). I have shown that for large n; the
support of the n-time free convolution is in

�
�2� cn�1=2; 2 + cn�1=2

�
and that this

rate is optimal.
I have also derived a free version of the Berry-Esseen estimate for the speed of

convergence in the CLT. The rate obtained in this result is n�1=2; the same as in the
classical case. An example shows that this rate cannot be improved without further
conditions.This result has been obtained independently and by a different method
than a similar result in Chistyakov and Gotze (2006), that also derived a free version
of the Berry-Esseen inequality.

Free point processes and free extremes
This part of the dissertation is joint work with Gerard Ben Arous, which was

inspired by the previous work of Ben Arous and Voiculescu (2006).
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Let Xi be a sequence of identically distributed free variables with the spectral
measure �: Ben Arous and Voiculescu introduced an operation of maximum which
takes any n-tuple of self-adjoint operators to another operator (possibly different
from each of the original operators). If X(n) = max1�i�n (Xi) ; then a natural ques-
tion is whether the sequence of the spectral distributions of

�
X(n) � an

�
=bn con-

verges for a certain choice of constants an and bn: Ben Arous and Voiculescu proved
that there are only three possible limit laws, which are different from the classical
limit laws. Surprisingly, the domains of attraction for these free limit laws are the
same as the domains of attraction for the three classical laws. In our work, we have
explained this puzzling fact.
In the classical case the convergence of extremes is closely related to the conver-

gence of point processes
Nn =

X
�(Xi�an)=bn

to a Poisson random measure. We have introduced a free probability analogue to the
concept of a point process. Namely, a free point processMn is a linear functional on
the space of bounded measurable functions, de�ned by the formula:

hMn; fi =
nX
i=1

f (Xi;n) ;

where Xi;n is an array of free random variables. In application to the theory of free
extremes, we use the array Xi;n = (Xi � an) =bn; where Xi is a sequence of free,
identically distributed variables with the spectral probability measure �:
We have also introduced a concept of weak convergence of a free point process

and proved that the free point process corresponding to the measure � converges if
and only if the classical free point process converges. Moreover, we have proved that
it converges to an object which was discovered by Voiculescu (1998) and extensively
studied by Barndorff-Nielsen and Thorbjornsen (2005), who called it the free Poisson
random measure.
Both the condition that ensures the convergence of a free point process and the

intensity of the resulting free Poisson measure are exactly the same as in the classical
case. It is this fact that is at the root of the phenomenon that the domains of con-
vergence for free and classical extremal convolutions are the same but the limit laws
are different. Indeed, while the classical and free point processes associated with a
measure � converge to similar objects under similar conditions, the limiting extremal
laws are built in a different way from the classical and free limit Poisson measures.

8



We have also applied free point processes to further develop the theory of free
extremes. In the classical case the k-th order extremal distribution F (k) (x) can be
de�ned as the probability that the corresponding random point process has no more
than k points in the interval [t;1) : This can be codi�ed as the following formula:

F (k) (x) = E
�
1[0;k]

�

Nn;1[t;1)

��	
;

where


Nn;1[t;1)

�
=:
Pn

i=1 1[t;1) (Xi;n) :

This de�nition has a straightforward generalization to the free case:

F
(k)
f (x) = E

�
1[0;k]

�

Mn;1[t;1]

��	
:

We call these distribution functions the k-th order free extremal convolution. More-
over, it turns out that it is possible to de�ne in a natural way an operator that has
F
(k)
f (x) as its spectral probability distribution. We call this operator the k-th order
free extreme. In particular, the 0-th order free extreme convolution corresponds to the
free extremal convolution of Ben Arous and Voiculescu.
Using the limit theorem for free point processes, it is possible to prove a limit

theorem for k-th order free extremal convolutions. We derive the explicit formulas
for the limit laws. The particular case of the 0-th order convolutions corresponds to
the limit law derived in Ben Arous and Voiculescu.

The rest of the dissertation is organized as follows. Part I explains the fundamen-
tals of free probability theory. In Sections 2 � 5 we give the basic de�nitions and
examples. In particular, we de�ne non-commutative probability spaces, free inde-
pendence, and free additive and multiplicative convolutions of probability measures.
One of the main tasks of free probability theory is the study of the properties of these
convolutions. As an initial step in this direction, we prove Voiculescu's addition and
multiplication theorems in Section 6.
Our main tools in the study of free convolutions are analytical properties of the

Cauchy transform and related functions. We collect them in Section 7 of Part I and
show applications in Section 8. This section discusses measures that are in�nitely-
divisible with respect to free convolution.
Part II is devoted to the free Central Limit Theorem for additive free convolutions.

We give the original proof by Voiculescu in Section 10 and certain extensions in
Sections 11, 12, and 13.
Part III is devoted to limits of products of free random variables and multiplicative

convolutions. In Section 14, we �nd the growth rate of the norm of the products.
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The results from this section are made more precise in Section 15. In Section 16
we introduce and study the properties of Lyapunov exponents of a sequence of free
random variables. And in Section 17 we prove a limit theorem for products of free
unitary operators.
Part IV is devoted to the convergence of free point processes and free extremes.
The original contributions are in Sections 11 � 19.
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Part I

Fundamentals of Free Probability
What is a probability space? Formally, it is a collection of random variables with an
expected value functional. However, the most important block in building a proba-
bility theory is an appropriate concept of independence of random variables. In the
following sections we will introduce the de�nitions of these basic concepts for free
probability theory. Here is a brief and informal overview.
We will de�ne non-commutative random variables as linear operators on a Hilbert

space and the expected value functional as a linear functional on these operators
which is similar to the trace functional on matrices.
What should be our notion of non-commutative independence? Consider oper-

ators given by two different generators in a representation of an (algebraically) free
group. These operators are our model of non-commutative independence. We will
say that two operators are freely independent if expectations of their products be-
have similarly to expectation of products in this model situation. The most important
result here is that it is possible to compute the distribution of a sum and a product of
two freely independent self-adjoint random variables. This can be done with the help
of certain analytic transforms similar to the Fourier transform in the classical case.

2 Non-Commutative Probability Space
Space and Expectation
A non-commutative probability space (A; E) is aC�-algebraA and a linear func-

tional E de�ned on this algebra. An algebra A is a C�-algebra if 1) it is an algebra
over complex numbers; 2) it is closed under an involution �; that is, if X 2 A,
then X� 2 A and (X�)� = X; 3) it has a norm with the following properties:
kXY k � kXk kY k and kX�Xk = kXk2 ; and 4) it is closed relative to convergence
in norm. The algebraA is unital if it contains the identity element I . If the algebra is
closed in the weak topology, then it is called aW �- or a von Neumann algebra.
Intuitively, C� algebras are non-commutative generalizations of the algebra of

bounded continuous functions on a compact topological space. And von Neumann
algebras are generalizations of the algebra of measurable functions.

11



The linear functional E is called an expectation2. We will use the notation E
to emphasize the analogy with the expectation in classical probability theory. An
expectation is assumed to have the following properties:

1. E (I) = 1 (If the algebra is not unital, then we require that limn!1E (In) = 1;

where In is any approximate identity.)

2. E (X�) = E (X), and

3. X > 0 implies that E (X) > 0.

If an additional property is satis�ed that says that X � 0 and E (X) = 0 imply
X = 0; then the expectation is called faithful. If E is continuous with respect to
weak convergence of operators than it is called normal. (A theorem from operator
algebra theory says that the expectation is always continuous with respect to norm
convergence.) Finally, if E (XY ) = E (Y X), then the expectation is called tracial,
or simply a trace. Many of the results of non-commutative probability theory hold
without assuming any of these additional properties of the expectation.
Let us give some simple examples of non-commutative probability spaces.

Example 1

A usual probability space (
;A;�) can be considered as a non-commutative prob-
ability space. LetA be the algebra of all measurable functions on 
; and let E be the
usual integral with respect to the measure �:

E (f) =

Z



f (!) d� (!) :

Then (A; E) is a non-commutative probability space, although the adjective non-
commutative is not very appropriate, since A is a commutative algebra.

Example 2

Consider an algebra of n by n matrices: A = Mn (C) : De�ne E as the usual
trace normalized by n�1:

E (X) = n�1Tr (X) :

Then (A; E) is a �nite-dimensional non-commutative probability space.
2In operator algebra theory it is usually called a state. It is curious that Segal introduced the term

�state� with the following comment: �[W]e use the term `state' to mean ... � more commonly, this is
called an expectation value in a state...� (See Segal (1947).)

12



Example 3

Consider all trace-class operators acting on a complex separable Hilbert space
H: (An operator X is trace-class if eigenvalues of jXj form a summable sequence.)
These operators form an algebra A and we can take the trace as the functional E.
Then (A; E) is almost a non-commutative probability space. Unfortunately A is
not norm closed, so this algebra is not a C�-algebra and does not qualify under our
de�nition as a non-commutative probability space.

Example 4

Now let us consider the algebra of all bounded linear operators acting on H: Fix
a trace-class operator � and de�ne the expectation as E (X) =: tr (�X) : Then this
algebra is a non-commutative probability space. However, the expectation is not
tracial.

Example 5

Let A be a von Neumann algebra of type II1 and E be the trace of this algebra.
Then (A; E) is a non-commutative probability space. In this example, the expec-
tation is tracial, and the algebra is closed not only in norm but also in the weak
topology.
One useful technique to obtain a new non-commutative probability space is by

building a matrix from the elements of another non-commutative probability space.
So if A is a non-commutative probability space with the expectation E then we can
construct Mn (A) as A 
Mn (C) and take E 
 trn as the expectation in this new
non-commutative probability space. If E is tracial then E 
 trn is also tracial.

Variables, Moments, and Measures
We will call elements from an algebra A (non-commutative) random variables.

In the usual probability theory, a random variable can be characterized by its distri-
bution function, moments, or characteristic function. In non-commutative probabil-
ity theory, the easiest and the most general way to characterize random variables is
through their moments. The joint moment map of random variables A1; :::; An is the
linear map from non-commutative polynomials with complex coef�cients to complex
numbers, induced by taking the expectation:

mA1;::An(P ) = E (P (A1; :::; An)) :

13



The joint moments of degree k are expectations of the monomials that have degree k:
Two collections of variables, say (X1; :::; Xn) and (Y1; :::; Yn) ; are called equiva-

lent if they have the same joint moment maps. In this case we will write (X1; :::; Xn) �
(Y1; :::; Yn) : These variables are star-equivalent if (X1; X

�
1 ; :::; Xn; X

�
n) and (Y1; Y �

1 :::; Yn; Y
�
n )

are equivalent. Then we will write (X1; :::; Xn) � (Y1; :::; Yn) : For self-adjoint ran-
dom variables Xi and Yi these concepts coincide.
Note that equivalent random variables can come from essentially different oper-

ator algebras. If random variables are from the same algebra we can calculate their
sum and product. The equivalence relation is invariant relative to these operations.

Proposition 6 If X1; Y1 2 A and X2; Y2 2 B and (X1; Y1) � (X2; Y2) ; then i)
X1 + Y1 � X2 + Y2; and ii) X1Y1 � X2Y2:

Proof: Both claims follow from expansion of the expressions for the moments.
For example,

E
�
(X1 + Y1)

k
�
=

X
E
�
X i1
1 Y

j1
1 :::X

ik
1 Y

jk
1

�
=

X
E
�
X i1
2 Y

j1
2 :::X

ik
2 Y

jk
2

�
= E

�
(X2 + Y2)

k
�
:

QED.
Clearly, this result can be generalized to a larger number of variables.
We also want to de�ne convergence in distribution of vectors of random variables.

Suppose we have a sequence of vectors of random variables: X(i) =
�
X
(i)
1 ; :::; X

(i)
n

�
;

whereX(i)
k 2 (Ai; Ei) : Suppose also that we have a vector of variables x = (x1; :::; xn) ;

where xk 2 (A; E) : Then we will say that X(i) converges in distribution to x if for
every k > 0 the joint moments of X(i) of degree less than k converge to the corre-
sponding joint moments of x of degree less than k:
For some applications it is important to generalize the concept of freeness to

operator-valued random variables. We give here a sketch of the generalization. A
non-commutative B-valued probability space (A;B; E) is a C�-algebra A, its C�-
subalgebra B, and a linear functional E; which is de�ned on the algebra A and takes
values in the sub-algebra B: It is assumed thatE is a conditional expectation. That is,
E maps positive de�nite operators to positive de�nite operators, and if B 2 B then
E (B) = B:

14



Here is a typical example. Suppose that (A; E) is a usual non-commutative prob-
ability space. Then we can de�ne a non-commutative probability space with values
in the algebra of n-by-n matricesMn We will denote this algebra as (Mn 
A,En).
These are matrices with elements of the algebra A as matrix entries. We de�ne the
Mn-valued expectation En component-wize. That is, the ij element of En (A) is
E (Aij) :

Now let us consider the question whether we can de�ne a distribution function
for a non-commutative random variable. Let X be a self-adjoint random variable
(i.e., a self-adjoint operator from an algebra A). We can write X as an integral over
a resolution of identity:

X =

Z 1

�1
�dPX (�) ;

where PX (�) is an increasing family of commuting projections. Then we can de�ne
the spectral probability measure of an interval (a; b] as follows:

�X f(a; b]g = E [PX (b)� PX (a)] :

Then we can extend this measure to all measurable subsets. We will call �X the
spectral probability measure of operator X; or simply its spectral measure.
Alternatively we can de�ne fX (t) asE (exp (itX)) and then prove by the Bochner

theorem that fX is a characteristic function of a probability measure.
For Example 1, the spectral measure of a real-valued random variable f coincides

with the usual distribution measure of this random variable:

�f f(a; b]g = � f! : f (!) 2 (a; b]g :

For Example 2, the spectral measure of an n-by-n Hermitian matrix X is supported
on the set of its eigenvalues. Each eigenvalue �i has the mass m=n; where m is the
multiplicity of this eigenvalue.
This concept can be generalized to the case of unitary operators, in which case we

will have measures de�ned on the unit circle:We can write a spectral representation
for every unitary operator:

X =

Z �

��
ei�dPX (�) :

Then if (a; b] � (��; �] ; we de�ne the measure �X by the same formula as before:

�X f(a; b]g = E [PX (b)� PX (a)] :

15



In this case it is natural to interpret this measure as a measure on the unit circle instead
of a measure on the interval (��; �] :

3 Free Independence

3.1 De�nition and properties

A natural requirement for independence of random variables A and B is that

E (P (A)Q (B)) = E (P (A))E (Q (B))

for arbitrary polynomials P andQ:But what aboutE (ABAB) ; for example? Should
it be E (A2)E (B2) as in the case when A and B are commutative? Or perhaps it
should be E (A)2E (B)2 ; as if the �rst and the second occurence of variables A and
B were completely independent each from the other?
Inspired by examples that arise in the theory of free group algebras, Dan Voiculescu

suggested a particular concept of independence, which proved to be especially fruit-
ful. He called this concept freeness. We de�ne it for subalgebras of a given algebra
A:
LetA1;:::;An be sub-algebras of algebraA; and letAi denote an arbitrary element

of algebra Ai:

De�nition 7 Sub-algebras A1;:::;An (and their elements) are said to be free, if the
following condition holds:
For every sequence Ai1 :::Aim ; if E

�
Ais
�
= 0 and is+1 6= is for every s; then

E
�
Ai1 :::Aim

�
= 0:

Variables X and Y are called free if the sub-algebras generated by fI; X; X�g
and fI; Y; Y �g are free.
Remark: The de�nition of freeness can be generalized to the case of B-valued

probability spaces in a straightforward way, if by E we understand the conditional
expectation E : A ! B. In this case we typically assume that B � Ai � A, and in
this case the de�nition is literally the same.
An important property of the concept of freeness is that it allows to compute

all the joint moments of a set of free random variables in terms of the moments of
individual variables.
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Theorem 8 Let A1; :::;Am be free sub-algebras of A; and let A1; :::; An be a se-
quence of random variables, Ak 2 Ai(k); such that i(k) 6= i(k + 1): Then

E (A1:::An) =
nX
r=1

X
1�k1<:::<kr�n

(�1)r�1E (Ak1) :::E (Akr)E
�
A1::: bAk1 ::: bAkr :::An� ;

(4)
where ^ denotes terms that are omitted.
Conversely, if this equality holds for every sequence of elements A1:::An from the
sub-algebras A1; :::;Am; then these sub-algebras are free.

Remark: Note that on the right-hand side the expectations are taken from prod-
ucts that have no more than n � 1 terms. So a recursive application of this formula
reduces computation of a joint moment to computation of a polynomial in the mo-
ments of the individual variables.
Proof: This formula is simply an expansion of the following relation:

E [(A1 � E (A1) I) ::: (An � E (An) I)] = 0; (5)

which holds by the de�nition of the free relation. Conversely, if formula (5) holds
for any A1; :::; An then the algebras A1; :::;Am are by de�nition free. QED.
So, for the example that started this section, it is easy to calculate:

E (ABAB) = E
�
A2
�
E
�
B2
�
�
�
E
�
B2
�
� E (B)2

� �
E
�
A2
�
� E (A)2

�
:

So if we use �2X to denote the variance, i.e., the centered second moment, �2X =:

E (X2)� E (X)2 ; then we can write:

E (ABAB)

E (A2B2)
= 1� �2A�

2
B

E (A2)E (B2)
:

Since this ratio is a measure of how non-commutativity affects calculation of mo-
ments, we can see that the effect of non-commutativity is larger if both variables
have large relative variance, that is, if �2A=E (A2) and �2B=E (B2) are both close to 1:
For B-valued expectations the formula in the previous theorem does not hold

because the scalars from B do not commute with operators from A: However what
is true is that we still can compute the joint moments from individual moments. To
convince the reader, we show this calculation for the expectation E (A1A2A1A2) ;
where A1 2 A1 and A2 2 A2; and it is assumed that A1 and A2 are free. Let
E (A1) = B1 and E (A2) = B2: Then

E ((A1 �B1) (A2 �B2) (A1 �B1) (A2 �B2)) = 0
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by de�nition of freeness. On the other hand, we can write the expression on the
left-hand side as

E (A1A2A1A2)� E (B1A2A1A2)� E (A1B2A1A2)� :::

= E (A1A2A1A2)� E (A02A1A2)� E (A001A2)� :::;

where A02 = B1A2 2 A2 and A001 = A1B2A1 2 A1: From this expression it is clear
thatE (A1A2A1A2) can be expressed in terms of a sum of expectations of monomials
that have a length of no more than three. Then it is clear that we can apply induction.
We collect here some basic facts about freeness.

Proposition 9 If A1;A2; :::;Am are free, then A2; :::;Am are free.

Proof: Evident from de�nition. QED

Proposition 10 If A1;A2; :::;Am are free and B � A1; then B;A2; :::;Am are free.

Proof: Any variable from B is also a variable from A1 and consequently the
relation in the de�nition of free independence holds. QED.

Proposition 11 LetA1;A2; :::;Am be free andB be an algebra generated byA1; :::;Ak�1:
Then B;Ak; :::;Am are free.

Proof: Any element from B is a polynomial of elements fromA1; :::;Ak�1:With-
out loss of generality we can choose these elements to have zero expectation. Write,
for example,

B =
X

I=(i1;:::;in)

�IAi1Ai2 :::Ain ;

where Ait belongs to one ofA1; :::;Ak�1; it 6= it+1; and all of Ait have zero expecta-
tions. SinceA1; :::;Ak�1 are free, the fact that E(B) = 0 implies that the constant in
this sum is zero. Therefore, each product like BAkAk+1B:::As; such that operators
Ak; ... ; As are taken from the algebras Ak; :::;Am and all of Ak; ... ; As have zero
expectation, can be expanded to a sum that has the following form:X

I=(i1;:::;in)

�IAi1Ai2 :::Ain

where consecutive Ait are from different algebras and where all of them have zero
expectations. Since the algebras A1;A2; :::;Am are assumed to be free, the expecta-
tion of this sum is zero and consequently we can conclude that B and Ak; :::;Am are
free. QED.
We have the following analogue of Proposition 6 for free random variables:
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Proposition 12 Suppose that A1; A2 2 A; and B1; B2 2 B, where A and B are
free sub-algebras. If A1 � A2 and B1 � B2; then i) (A1; B1) � (A2; B2) ; ii)
A1 +B1 � A2 +B2; and iii) A1B1 � A2B2:

Proof:
i) By Theorem 8 each joint moment of Ai and Bi can be reduced to a polyno-

mial in moments of Ai and moments of Bi: Let [I; J ] denote a sequence of indices
(i1; j1; :::; in; jn) with elements which are non-negative integers, and letmA1;B1 [I; J ]

denote the joint moment that corresponds to this sequence. That is, let

mA1;B1 [I; J ] =: E
�
Ai11 B

j1
1 :::A

in
1 B

jn
1

�
:

Let alsomX (k) =: E
�
Xk
�
: Then we can write

mA1;B1 [I; J ] = P[I;J ](mA1(k1);mB1(k2); :::;mA1(kn�1);mB1(kn))

= P[I;J ](mA2(k1);mB2(k2); :::;mA2(kn�1);mB2(kn))

= mA2;B2 [I; J ] ;

where P[I;J ] denotes the polynomial that computes this joint moment of free A and
B in terms of their individual moments and where the second line holds by the as-
sumption that A1 � A2 and B1 � B2:

ii) and iii) follow from i) and Proposition 6. QED.
Let us now introduce a useful class of free variables. We will say that a unitary

operator U is Haar-distributed if its spectral distribution is the uniform distribution
on the unit circle.
Haar-distributed unitaries are very useful because we can use them to build col-

lections of free self-adjoint random variables with prescribed spectral distributions.
All we need is one self-adjoint variable, X; with a given spectral distribution and
a sequence of Haar-distributed unitaries that are free from each other and from the
variable X:

Proposition 13 Suppose that i) the expectation is tracial, ii) X; U1; ...., Un are free,
iii) X is self-adjoint, and iv) U1, ..., Un are unitary and Haar-distributed. Suppose
also that h1 (x) ; ..., hn (x) are real-valued Borel-measurable functions of real argu-
ment. Then the variables Xi = U�i hi (X)Ui are free.

Proof: Note that f (X) = U�i f (hi (X))Ui: So we need to prove that

E
�
U�i(1)f1

�
hi(1) (X)

�
Ui(1) ::: U

�
i(s)fs

�
hi(s) (X)

�
Ui(s)

�
= 0 (6)
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if E
�
U�i(k)f1

�
hi(k)

�
Xi(k)

��
Ui(k)

�
= 0 and i (k + 1) 6= i (k) for each k:

Note thatE (Ui) = E (U�i ) = 0 by the assumption that theUi are Haar-distributed.
Also, since expectation is assumed tracial, we have

0 = E
�
U�i(k)f1

�
hi(k) (X)

�
Ui(k)

�
= E

�
f1
�
hi(k) (X)

�
Ui(k)U

�
i(k)

�
= E

�
f1
�
hi(k) (X)

��
:

Therefore,
E
�
f1
�
hi(k) (X)

��
= 0;

and this implies (6) because X and all Ui are assumed free. QED.
How can we construct free sub-algebras? Examples show that certain natural

constructions do not work. For example, let B1 and B2 be free sub-algebras of A.
Then we can build matrix algebras Mn (A) and Mn (Bi) with natural inclusions
Mn (Bi) � Mn (A) : However, Mn (B1) and Mn (B2) are not necessarily free sub-
algebras ofMn (A) : For example,�

A11 A12
A21 A22

��
I 0

0 �I

�
=

�
A11 �A12
A21 �A22

�
:

Suppose that the expectation of the operator A on the left-hand side is 0; i.e.,
E (A11) + E (A22) = 0: This does not imply that the trace of the operator on the
right-hand side is zero, i.e., in general E (A11)� E (A22) 6= 0:
Subalgebras Mn (B1) and Mn (B2) are Mn (C)-free with respect to the condi-

tional expectation E 
 In but sometimes we want more. The next section gives a
method to construct free subalgebras from two algebras A1 and A2:

3.2 Free products of probability spaces

If we have two non-commutative probability spaces, (A1; E1) and (A2; E2) ; then
we can de�ne their free product (A1 � A2; E1 � E2) : The algebras A1 and A2 can
be identi�ed with two free subalgebras of A1 � A2 and both E1 and E2 are then
restrictions of E1 �E2 to the corresponding subalgebra: This free product of algebras
was �rst de�ned in Avitzour (1982).
Suppose A1 and A2 are two unital �-algebras. The algebra A1 � A2 is con-

structed as follows. Let S be the set of all sequences a1a2:::an; where ak 2 Ai(k) and
i (k) 6= i (k + 1) : Let S also contain the identity element. Let L (S) be the algebra of
all �nite linear combinations of elements of S:We can easily de�ne � operation and
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multiplication on basis elements and then extend these operations to L (S) by linear-
ity. In particular, (a1:::an)� = a�n:::a

�
1 and (a1:::an) (b1:::bn) = R1 (a1::::anb1:::bn) ;

whereR1 is the reduction operator. It is clear how to de�neR1: First we de�ne one-
step reduction R which leaves a sequence unchanged if no two neighboring elements
are from the same algebra, or replace it with a reduced sequence if there are two
neighboring elements from the same algebra. The reduced sequence is obtained in
two steps. First, we have all two neigboring elements from the same algebra replaced
with their product, and second we remove all identity elements from the sequence
unless the sequence consists only of identity elements in which case the sequence
is replaces with identity. The repetition of the one-step reduction converges for any
initial sequence and the result is called complete reduction and denoted R1 (:).

Theorem 14 With the two operations de�ned above L (S) is an algebra, closed with
respect to �-operation.

We call this �-algebra A1 �A2 and de�ne the expectation E1 �E2 on elements of
A1 � A2 by the following construction. Let a1:::an is a reduced representation of a
monomial element fromA1�A2: Clearly, it is enough to de�neE1�E2 on monomials
and extend it then to linear combinations of monomials by linearity. Since there is no
linear dependence relations among monomials this de�nition is goint to be consistent.
On monomials we de�ne E1 � E2 using formula from Theorem 8. Namely, de�ne
E1 � E2 (I) = 1 and let

E1�E2 (a1:::an) =
nX
r=1

X
1�k1<:::<kr�n

(�1)r�1E (ak1) :::E (akr)E (a1:::bak1 :::bakr :::an) :
(7)

At this stage the only reduction that we allow on the right is that any two neighboring
elements from the same algebra are replaced with their product. This de�nes E1 �E2
recursively for all sequences a1:::an where ai are from alternating algebras (Ak(i) 6=
Ak(i+1)) provided that we have not identi�ed the units, that is, that the sequences like
a1IA1a3 with a1; a3 2 A2 are considered different from (a1a3) : To show that the
de�nition makes sense for algebras with identi�ed units, it is suf�cient to prove that

E1 � E2(a1:::ak�1IA1ak+1:::an) = E1 � E2(a1::: (ak�1ak+1) :::an): (8)

This is subject of the following lemma.

Lemma 15 Relation 8 is true.
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From this lemma it follows that E1 � E2 is a well de�ned linear functional on
A1�A2: By de�nitionE1�E2 (I) = 1: The question is whetherE1�E2 is positive and
what other properties of E1 and E2 are preserved under taking the free products. In
answering these questions it is useful to have the following decomposition ofA1�A2:

Proposition 16 Let A0i be the elements of Ai that has zero expectation. Then as a
linear space A1 � A2 has the following representation:

A1 � A2 = C + A01 + A02 + A01 
 A02 + A02 
 A01 + :::

= C +
M1

n=1

M
k1;:::;kn

On

i=1
Aki :

Theorem 17 Linear functional E1 � E2 is positive on the algebra A1 � A2:

This theorem implies that E1 � E2 is a state. Therefore, we can de�ne a norm
on A1 � A2. We just use the GNS construction to represent A1 � A2 and then take
the usual operator norm as the de�nition of the norm in the algebra. The completion
of A1 � A2 with respect to this norm is the C�-algebra A1 � A2; and the expectation
E1 �E2 can be extended to the whole of the algebraA1 �A2: Further, the completion
of this algebra of linear operators with respect to weak topology gives theW �-algebra
A1 � A2:

Another interesting property of the free product is as follows:

Theorem 18 If E1 and E2 are traces then E1 � E2 is a trace.

3.3 Circular and semicircular systems

A special place in free probability theory belongs to so-called circular and semicircu-
lar systems. They have a role similar to the role of independent multivariate Gaussian
variables in classical probability theory. A vector of operators (X1; :::; Xn) forms a
semicircular system if the variables are free and self-adjoint, and if each of them has
the semicircle distribution, i.e., if the distribution function for the probability spectral
measure associated with Xi is given by the formula

FXi (t) =
1

2�

Z t

�1

q
4� �2�[�2;2] (�) d�:

It is easy to compute the moments of this distribution. First, we can check that
the total mass is 1 by using the substitution � = sin': Then, to compute moments,
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we can use integration by parts. The odd moment are evidently zero by symmetry.
For the even, note that

m2k = :
1

2�

Z 2

�2
t2k
p
4� t2dt =

1

2�

Z 2

�2

p
4� t2

d
�
t2k+1

�
2k + 1

=
1

2�

1

2k + 1

Z 2

�2

t2k+2p
4� t2

dt: (9)

Next, note the following identity:

4x2k � x2k+2p
4� x2

= x2k
p
4� x2:

Let us integrate from �2 to 2 and apply (9). Then we get:

4 (2k � 1)m2k�2 � (2k + 1)m2k = m2k;

and, consequently, we have the following recursion

m2k =
2 (2k � 1)
k + 1

m2k�1

with the initial conditionm0 = 1: It is easy to check that the solution is

m2k =
1

k + 1

�
2k

k

�
:

Further, we can de�ne the moment-generating funciton:

GX (z) =:
1

z
+

1X
n=1

E (Xn)

zn+1
=
1

z
+

1X
k=1

1

k + 1

�
2k

k

�
1

z2k+1
: (10)

To give an analytic formula for this function we look at the function: f (u) =p
1� 4u2: For small u; we can develop f (u) in power series:

f (u) = 1�
1
2

1!
4u2 +

1
2

�
1
2
� 1
�

2!

�
4u2
�2 � 1

2

�
1
2
� 1
� �

1
2
� 2
�

3!

�
4u2
�3
+ :::

= 1� 2u2 �
1X
k=2

2k (2� 1) (2� 2� 1)::: (2 (k � 1)� 1)
k!

u2k

= 1� 2u2 � 2
1X
k=2

1

k

(2� 1) 2(2� 2� 1) (2� 2) ::: (2 (k � 1)� 1) (2 (k � 1))
(k � 1)! (k � 1)! u2k

= 1� 2u2 � 2
1X
k=1

1

k + 1

�
2k

k

�
u2k+2:
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Therefore,
1� f (u)

2u
= u+

1X
k=1

1

k + 1

�
2k

k

�
u2k+1:

Comparing this with (10), we conclude that

GX (z) =
1�

p
1� 4z�2
2z�1

=
z �

p
z2 � 4
2

:

Another useful concept is that of a circular system. A vector (X1; :::; Xn) forms
a circular system if algebras generated by fXi; X

�
i g are free, and each of the vectors

(Y1; :::; Yn) and (Z1; :::; Zn) forms a semicircular system, where Yk = 1p
2
(Xk +X�

k)

and Zk = 1p
2
(Xk � iX�

k) :

3.4 Asymptotic and approximate freeness

In �nite-dimensional algebras the operators cannot be free, unless they are multi-
ples of identity. The reason is that the concept of free independence imposes in�-
nitely many conditions that cannot be satis�ed by a �nite number of entries of �nite-
dimensional matrices.
Consider two real symmetric matrices of order two. Suppose that they both have

zero traces. We can choose the basis in such a way that one of them is diagonal. Then
we can write these matrices as follows:

A =

�
� 0

0 ��

�
and B =

�
x y

y �x

�
:

Suppose also that � 6= 0: Then if we impose the condition that trAB = 0; then it
must be true that x = 0: If we further require that tr (ABAB) = 0; then we can infer
that y = 0 and therefore B = 0:
However, as a substitute of true freeness we can de�ne concepts of asymptotic

and approximate freeness for �nite-dimensional matrices.
Suppose that (Ai; Ei) is a sequence of non-commutative probability spaces and

Xi and Yi are random variables from Ai: Suppose thatXi and Yi converge in distrib-
ution to operators x and y, respectively, which belong to probability spaces (Ax; Ex)
and (Ay; Ey) ; respectively. Consider the free product (Ax � Ay; Ex � Ey), and let x
and y be free operators in this product.

De�nition 19 The sequences Xi and Yi are called asymptotically free if (Xi; Yi)

converge in distribution to (x; y) : In more detail, we require that for any " and any
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sequence (n1; :::; nk), there exists such i0 that for i � i0; the following inequality
holds: ��Ei �Xn1

i Y
n2
i :::X

nk�1
i Y nk

i

�
� E (xn1yn2 :::xnk�1ynk)

�� � ":

Two sequences of subalgebras, A(1)i and A(2)i ; are called asymptotically free if they
are generated by asymptotically free operators Xi and Yi:

At the cost of more complicated notation, this de�niton can be generalized to the
case of more than two variables and to the case of subsets of variables 
(i)r where
each 
(i)r � Ai:
Intuitively, what this de�nition aims to capture is the notion that as the index of

Ai grows, the joint moments of Xi and Yi converge to the joint moments that these
variables would have if they were free. Typically, we will apply this de�nition in
cases when Ai are algebras of random matrices of increasing dimension.
Now let us describe the concept of approximate freeness. Let Xi denote �nite-

dimensional operators, or in other words, k-by-k matrices. More generally, let 
i
denote sets of such �nite dimensional operators and let X = (X1; :::; Xs) denote an
s-component vector of operators from 
i; that is, Xi 2 
i for each i = 1; :::; s:
Recall that for every non-commutative polynomial P in s variables and any set

of s free random variables Y1; :::; Yn; we can calculate E [P (Y )] as a polynomial of
individual moments of Yi:We can formally write this as

E [P (Y )] = fP (m(Y1); :::;m (Ys)) ;

wherem (Y ) denotes the moment sequence of variable Y:

De�nition 20 Sets of operators 
i with i = 1; :::; s are called (N; ")-approximately
free, if for any non-commutative polynomial P in s variables and of a degree that
does not exceed N; it is true that

jE (P (X))� fP (m (X1) ; :::;m (Xs))j � "

for every X = (X1; :::; Xs) such that Xi 2 
i:

Approximate freeness is a tool to establish asymptotic freeness. Suppose we
can �nd a sequence of matrices (Xi; Yi) which are (Ni; "i)-approximately free. If
Ni ! 1 and "i ! 0 as i ! 1; then we conclude that sequences of Xi and Yi are
asymptotically free.
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Suppose that A is the algebra of unitary n-by-n matrices. It is intuitively clear
that if N and " are �xed, then the set of matrix pairs (X;Y ) which are (N; ")-
approximately free becomes in some sense larger as n grows. Indeed, it becomes
easier to satisfy the �xed number of conditions in De�nition 20. For example, if � is
the Haar measure on A�A; normalized to have the unit total mass, then we can ex-
pect that the mass of the set of (X; Y ) ; such that X and Y are (N; ")-approximately
free, approaches 1 as n grows to in�nity.

3.5 Various constructions of freely independent variables

In this section we study how to construct new free random variables from already ex-
isting ones. These results are from Nica and Speicher (1996) and Voiculescu (1996b),
and we formulate them without proof.

Theorem 21 Let P1; : : : ; Pn be a family of projections, which are orthogonal to each
other (i.e., P �i = Pi; PiPj = �ijPi). Let c be the standard circular variable and
suppose that fP1; : : : ; Png and fc; c�g are free. Then (1) variables c�P1c; : : : ; c�Pnc
are free, and (2) each of c�Pic is a free Poisson variable with the parameter �i =
E (Pi) :

The statements of this theorem are valid if instead of the circular c we use the
standard semicircular variable s; or the standard quartercircular variable b (i.e. b =p
s�s).
Can we use other variables instead of c; b; s; for example, the standard free Pois-

son m = s�s? Or, the free Poisson with parameter � > 1? Or, more generally, any
random variable x; which does not have an atom at zero? This is not clear at this
moment.
Here is another useful result

Theorem 22 LetX1; :::; Xn; P be free self-adjoint random variables in non-commutative
probability space (A; E), and suppose that P is a projection. Then PX1P; : : : ; PXnP

are free in
�
PAP;E (P )�1E (�)

�
:

Remark: this theorem generalizes a similar results for the case when we use a
free unitary U instead of the projection P: Again, one immediate question is whether
this result holds for other classes of operators beside unitaries and projections.
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4 Example I: Group Algebras of Free Groups
Consider a countable group G with the counting measure �: Let H = l2 (G; �) be
the Hilbert space of square-summable functions on G: De�ne the left action of G on
H by (Lgf) (h) = f (gh) and let A be the algebra of all �nite linear combinations
of Lg. We can close this algebra with respect to the operator norm topology and then
we get a C�-algebra, C� (G) ; or we can close A with respect to weak topology and
then we get a von Neumann algebra, N (G). De�ne the expectation functional on
algebraA as E (L) = h�e; L�ei ; where �e is the characteristic function of the set that
consists of the unit of G: In other words, if L =

P
g2G agLg; then E (L) = ae.

This expectation is faithful, continuous in both strong and weak topology, and
tracial. It can be used to de�ne the scalar product on algebra A by the formula
(L1; L2) =: E (L

�
1L2) = hL1�e; L2�ei : If we complete A with respect to this scalar

product, then we get a Hilbert space (or �Hilbert algebra�), which we denote as
H� (G) : If C�-algebras generalize algebras of continuous functions on a compact
topological space and W �-algebras generalize bounded measurable functions, then
Hilbert algebras generalize L2-summable functions.
The operatorsLg form a complete orthonormal basis in the Hilbert algebraH� (G).

In particular, we can represent each element from this Hilbert algebra as an in�nite
series

P
g xgLg with square-summable coef�cients xg:

Example 23 Von Neumann algebra of a free group

Suppose Fk is a free group with k generators. Then N (Fk) is a von Neumann
algebra of the free group. It is still an open question whether these algebras are
isomorphic for different k:
Suppose G is a free product of groups G1 and G2, and A is an algebra gener-

ated by G: Consider subalgebras A1 and A2 generated by elements Lg; with g from
correspondingly G1 and G2:

Theorem 24 Subalgebras A1 and A2 are free.

Proof: Indeed, consider a product Z = X1Y1:::XnYn where Xi 2 A1 and Yi 2
A2: Suppose that E (Xk) = 0 and E (Yk) = 0 for every k = 1; :::; n: The condition
E (Xk) = 0 means that Xk =

P
x
(k)
g Lg where g 2 G1 and g 6= e: Similarly,

E (Yk) = 0 means that Yk =
P
y
(k)
g Lg where g 2 G2 and g 6= e: This implies that

Z =
P
z
(k)
g Lg where g 2 G and g 6= e: This claim holds because the subgroups
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G1 and G2 are free. Therefore, E (Z) = 0: Since this holds for any product Z =

X1Y1:::XnYn; the freeness condition is veri�ed. QED.
In particular, let G be a free group generated by elements g1; :::; gn; and Gi be

subgroups generated by elements gi; respectively. LetA andAi be group algebras of
G and Gi; respectively. Then subalgebras Ai are free.

Example 25

Consider the random variable X = Lg�1 + Lg: This variable is self-adjoint and
we can calculate E

�
Xk
�
as 0 if k is odd and as

�
k
k=2

�
if k is even. Indeed consider a

random walk on integers that starts at time t = 0 from x = 0 and at each time step
can either go up by 1 or down by �1: Then E

�
Xk
�
is equal to the number of paths

that at time t = k end at x = 0: Clearly, the number of such paths is zero if k is odd
and it is equal to the number of ways we can choose the k time steps, at which the
random walk goes up, i.e.,

�
k
k=2

�
.

If we de�ne the moment-generating function of X is as follows:

GX (z) =:
1

z
+

1X
k=1

E
�
Xk
�

zk+1
;

then it is clear that for X = Lg�1 + Lg; we have

GX (z) =
1

z
+

1X
k=1

�
2k

k

�
1

z2k+1
:

Can we �nd a probability distribution that corresponds to these moments? Con-
sider a probability measure with the following distribution function:

F (x) =
1

�

Z x

�1

�[�2;2] (t)p
4� t2

dt:

Using substitution t = 2 sin'; it is easy to check that

1

�

Z 2

�2

dtp
4� t2

= 1;

so F (x) is a valid probability distribution function.
Next, note that

1

�

Z 2

�2

�
4t2k�2 � t2k

�
p
4� t2

dt =
1

�

Z 2

�2
t2k�2

p
4� t2dt

=
1

�

1

2k � 1

Z 2

�2

t2kp
4� t2

dt;
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where, in order to get the second equality, we integrated by parts. Consequently, if

mk =:
1

�

Z 2

�2

tkp
4� t2

dt;

thenmk = 0 for odd k and for even k we get the following recursion:�
1 +

1

2k � 1

�
m2k = 4m2k�2;

or
m2k =

2 (2k � 1)
k

m2k�1:

with the initial conditionm0 = 1:

It is easy to check that the recursion is satis�ed by m2k =
�
2k
k

�
: Therefore, this

probability distribution has the desired moments.
The distribution function can be computed explicitly as

F (x) =
1

�
arcsin

�x
2

�
+
1

2
:

For this reason, this distribution is called the arcsine law.
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Consider the random variable Y = Lg. This variable is unitary and E
�
Y k
�
= 0

for every integer k > 0: Since Y is unitary, we can conclude that is ia a Haar-
distributed unitary. Its moment-generating function is simply GY (z) = z�1:

One dif�culty with free group algebras is that it is dif�cult to construct a vari-
able with a given sequence of moments or with a given spectral distribution. This
dif�culty is partially resolved in the example that we discuss in the next section.

5 Example II: Algebras of Creation and Annihilation
Operators in Fock Space

5.1 Operators in Fock space as non-commutative random vari-
ables

De�nition 27 Let H be a separable complex Hilbert space and �x a vector � 2 H:

The Fock space T (H) is the following Hilbert space:

T (H) = C� +H +H 
H +H 
H 
H + :::
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The �xed vector � is often called the vacuum vector. If ei is a basis of H then
elements � and ei1 
 ::: 
 ein form a basis of T (H): We will write the basis el-
ements as ei1ei2 :::ein to lighten notation. In this basis the scalar product in T (H)
is determined by linearity and the following rules: h�; �i = 1, h�; ei1 :::eini = 0;

hei1 :::ein ; ej1 :::ejmi = 0 if n 6= m; and hei1 :::ein ; ej1 :::ejni = �i1j1 :::�injn : In other
words, � and ei1 :::ein form an orthonormal basis of T (H) :
Let us �x a basis of H: For each vector ek in this basis we de�ne an operator ak

acting on T (H), namely, ak(�) = ek; ak(ei1ei2 :::ein) = ekei1ei2 :::ein : This operator
is called a (left) creation operator. Its adjoint is called a (left) annihilation operator:
a�k(�) = 0; ak(ei) = �ki�; and a�k(ei1ei2 :::ein) = �ki1ei2ei2 :::ein for n � 2:
The terminology came from physics where the Fock space is used in quantum

models of light propagation (see, e.g. Klauder- .... (...)).
Let A be an algebra of all polynomials of the operators ak and a�k; and eA is its

closure in the weak topology. Then eA is a W � non-commutative probability space
with the expectation given by E(X) = h�;X�i :
This expectation is not tracial: E (a�kak) = 1 but E (aka�k) = 0:
We will consider random variables of the following form:

X =
nX
i=1

x�i (a
�
k)
i +

1X
i=0

xi (ak)
i ;

where xi denotes a summable sequence (x0; x1; :::):We will call them Toeplitz ran-
dom variables. because they have some similarities to Toeplitz matrices.

5.2 Free independence of Toeplitz random variables

Theorem 28 If k 6= l then ak and al are free.

Proof: Without loss of generality, let k = 1 and l = 2: Consider polynomials of
a1 and its adjoint a�1; and of a2 and its adjoint a�2: Expanded, they have the following
form:

Pr =
nX
k=1

x
(r)
�k (a

�
1)
k + x

(r)
0 +

mX
k=1

x
(r)
k (a1)

k

and

Qr =
nX
k=1

y
(r)
�k (a

�
2)
k + y

(r)
0 +

mX
k=1

y
(r)
k (a2)

k :
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If E (Pr) = 0; then x
(r)
0 = 0: Similarly, if E (Qr) = 0; then y

(r)
0 = 0: Assume that

x
(r)
0 = y

(r)
0 = 0: Then it is easy to see by induction that Q1P1Q2P2:::QnPn� is the

sum of terms that have the form ek2f; where k � 1; and P1Q2P2:::QnPn� is the sum
of terms that have the form ek1f; where k � 1. Indeed, suppose we have already
proved this for P1Q2P2:::QnPn� and know that all terms of this product start with
ek1f; where k � 1: Then the terms of Q1 that have the form

Pn
k=1 y

(1)
�k (a

�
2)
k will

produce zero when they multiply terms of the form ek1f; and the terms of Q1 that
have the form

Pm
k=1 y

(1)
k (a2)

k will produce the terms of the form ek2f with k � 1:
Consequently, the product Q1P1Q2P2:::QnPn� has a constant term equal to zero

and therefore:
h�;Q1P1Q2P2:::QnPn�i = 0:

By a similar argument, we can write

h�; P1Q2P2:::QnPn�i = 0

and similar identities for products that end inQn: This implies the free independence
of X and Y: QED.

Let Ak denote a subalgebra of A, generated by ak and a�k only.

Corollary 29 If k 6= l; then the subalgebras Ak and Al are free.

5.3 Representability by Toeplitz random variables

Toeplitz random variables are useful because it is relatively easy to construct a Toeplitz
variable with a given moment sequence. We will say that operator X represents op-
erator Y if X � Y; that is, if X and Y have the same moment sequence: E

�
Xk
�
=

E
�
Y k
�
for all k � 1:We will also say thatX represents the moment sequence fmng

if E (Xn) = mn for each n:
We know that if A and B are free, then moments of A + B are determined by

moments of A and B: In this case, if eA and eB represent A and B; respectively, andeA and eB are free, then eA+ eB represents A+B:

Lemma 30 For any number sequence m1; ..., mn; ..., there is a unique number se-
quence, xi; such that the operator X =: a +

P1
i=0 xi (a

�)i represents fmng, i.e.,
E (Xn) = mn for each n: In particular for any operator Y; there is a unique opera-
tor X = a+

P1
i=0 xi (a

�)i that represents Y:
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Proof: Let

X = a+

mX
k=0

xk (a
�)k ;

and for consistency de�ne x�1 = 1: Consider the expansion of Xn�: It consists of
terms of the form

" (i1; ::; in)xi1xi2 :::xine
�i1�:::�in ;

where " (i1; ::; in) is either 0 or 1 depending on the sequence i1; :::; in; and we use the
notational conventions e0 =: � and ek =: 0 if k < 0. Here xin denotes the coef�cient
before (a�)in (or a; if in = �1) in the �rst copy ofX that operated on �; xin�1 denotes
the coef�cient before (a�)in�1 in the copy ofX that operated onX� after that, and so
on. The coef�cient xi1 comes from the copy of X that operated on Xn�1�:

If we look at the consequitive sums i1; i1 + i2; :::; i1 + i2 + ::: + in; then we
can note that " (i1; ::; in) = 0 whenever a sum from this sequence is positive. This
positivity means that more annihilation than creation operators acted till this moment
and the effect of this sequence of operators on the vacuum vector must be zero.
A particular example of this situation arises if a speci�c term in the expansion has

xik ; with ik � n as one of its elements: Then �(i1 + ::: + in) < 0 because is � �1
for all other s 6= k: Therefore, e�(i1+:::+in) = 0 and the scalar product of this term
and � is zero.
Next consider the situation when a particular term has xik ; with ik = n� 1: Then

the only possibility that i1 + ::: + in � 0 is that is = �1 for all s 6= k:Moreover, in
this case " (i1; ::; in) is not zero if and only if k = 1: In other words, if ik = n� 1 for
some ik then k must equal 1 (that is, the coef�cient xn�1 must come from the copy
ofX that operated last) and then we must have i2 = i3 = ::: = in = �1: Only in this
case we have i1+ :::+ ir � 0 for all r � n and " (i1; ::; in) = 1: In this case, the term
that we are considering must be xn�1x�1:::x�1x�1� = xn�1� and the scalar product
of this term with � is xn�1:
The remaining terms have all ik < n � 1: Therefore, they will not have xn�1 as

the element of the multiple xi1xi2 :::xin : Hence, we can conclude that

EXn = h�;Xn�i = xn�1 + Pn (x0; :::; xn�2) ;

where Pn is a polynomial. Therefore, we can proceed inductively. Coef�cient x0
is uniquely determined by the moment m1 = EX: Coef�cient x1 is uniquely de-
termined by the moment m2 = E (X2) and by the coef�cient x0. Coef�cient x2 is
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uniquely determined by the moment m3 = E (X3) and by a polynomial of coef�-
cients x0 and x1; and so on. Coef�cient xn�1 is uniquely determined by the moment
mn = E (Xn) and a polynomial of coef�cients x0; x1; :::; and xn�2. QED.
Warning: Note that anX that represents Y is not necessarily strongly equivalent

to Y: That is, in general, even if E
�
Xk
�
= E

�
Y k
�
for all k; this does not imply that

E
�
(X�)k

�
= E

�
(Y �)k

�
:

Example 31

ConsiderX = a+a�: This variable is self-adjoint. To computeE
�
Xk
�
; note that

the constant in the expansion of (a+ a�)k can be expressed in terms of the number
of paths in a certain random walk. Namely, consider the random walk of a particle
on the lattice of integers. At time t = 0 the particle starts at x = 0; and at each later
time step it can either go up by 1 (if the creation operator acts), or down by 1 (if the
annihilation operator acts). We are interested in the number of such paths that end
at time t = k at x = 0: and that are always greater than or equal to zero. This is a
classical combinatorial problem and the answer can be found in Feller (...). Clearly,
if k is odd, then the number of paths is 0; and it turns out that if k is even, then it
equals (k=2 + 1)�1

�
k
k=2

�
.

For convenience of the reader we repeat here the argument. Let us consider an
equivalent problem: We are looking for a number of paths such that x (t = 0) = 1;
x (t = k) = 1; and that x (t) � 1 for all t : 0 � t � k: Then we �rst note that the
total number of paths from (t = 0; x = 1) to (t = k; x = 1) is 0 if k is odd and

�
k
k=2

�
if k is even. On the other hand the number of paths that go from (t = 0; x = 1) to
(t = k; x = 1) and touch or cross the line x = 0 equals the total number of paths
that go from (t = 0; x = �1) to (t = k; x = 1) : This is simply re�ection principle.
Therefore, we can compute this number as 0 for odd k and

�
k

k=2�1
�
for even k: Indeed

if q is the number of down movements and p is the number of up movements, then
p� q = 2; and p+ q = k: Therefore, q = k=2� 1; and the number of ways to choose
these down movements is

�
k

k=2�1
�
:

Hence if k = 2n then the number of paths that go from(t = 0; x = 1) to (t = k; x = 1)

and do not drop below x = 1 equals�
2n

n

�
�
�
2n

n� 1

�
=

1

n+ 1

�
2n

n

�
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Therefore the moment-generating function for this example is

GX (z) =
1

z
+

1X
n=1

1

n+ 1

�
2n

n

�
1

z2n+1
(11)

Note that this function is different from the moment-generating function of the ran-
dom variable in Example 25. Therefore, the variables a + a� and g + g�1 are not
equivalent, or in other words, a+ a� does not represent g + g�1:

On the other hand, comparing (11) with formula (10) on page 23, we can conclude
that a+ a� has the semicircle distibution.

Example 32

Consider Y = a: Then Y is an isometry. It is not unitary because it is not invert-
ible. Clearly E

�
Y k
�
= 0 for every k > 0; and the moment-generating function of

Y k is GY (z) = z�1: Comparing this with Example 26, we note that a represents the
Haar-unitary random variable g:

5.4 Additivity of Toeplitz random variables

Let a Toeplitz variable, X; be associated with a vector x = (x1; :::; xn; ::) and some
creation operator a2:

X = a2 +
mX
k=0

xk (a
�
2)
k :

Similarly, let Y belong to the same Fock space and be associated with a vector y and
a different creation operator a3:

Y = a3 +

mX
k=0

yk (a
�
3)
k

Finally, let Z be a Toeplitz variable (possibly from a different Fock space) associated
with the vector x+ y:

Z = a1 +
mX
k=0

(xk + yk) (a
�
1)
k

Theorem 33 Z represents X + Y; i.e. Z � X + Y:
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Proof: Let us write:

X + Y � (a2 + a3) +
mX
i=0

xi (a
�
2)
i +

mX
i=0

yi (a
�
3)
i ;

Z � a1 +

mX
i=0

xi (a
�
1)
i +

mX
i=0

yi (a
�
1)
i :

Let us consider (a2 + a3) as a single symbol. Then there is an evident correspondence
between elements in these sums. This correspondence is as follows

(a2 + a3) ! a1;

xi (a
�
2)
i ! xi (a

�
1)
i ; and

yi (a
�
3)
i ! yi (a

�
1)
i :

If we write an expansion of (X + Y )n in terms of (a2 + a3) ; a
�
2; and a�3, then we

can use this correspondence to write an expansion of Zn in terms of a1 and a�1: For
example, (a2 + a3)x3 (a

�
2)
3 (a2 + a3) y7 (a

�
3)
7 corresponds to a1x3 (a�1)

3 a1y7 (a
�
1)
7 :

Therefore we need only to prove the equality of the expectations of these products,
e.g., 


�; (a2 + a3)x3 (a
�
2)
3 (a2 + a3) y7 (a

�
3)
7 �
�
=


�; a1x3 (a

�
1)
3 a1y7 (a

�
1)
7 �
�
:

Note that the following identities hold:

a�2 (a2 + a3) = a�1a1 = I; and
a�3 (a2 + a3) = a�1a1 = I;

Therefore, whenever a2 + a3 is on the right of either a�2 or a�3; we can cancel it out as
well as the corresponding pair of a1 and a�1: From this it follows that we need only to
prove the equality of the following expectations, where a2 + a3 is on the left of all
a�2 and a�3, and the corresponding terms a1 are on the right of all a�1:D

�; (a2 + a3)
n (a�2)

k1 (a�3)
k2 :::�

E
=
D
�; (a1)

n (a�1)
k1 (a�1)

k2 :::�
E
:

However, it is evident that both are 1 if and only if k1 = k2 = ::: = n = 0; and 0
otherwise. QED.
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6 Addition and Multiplication Theorems

6.1 Addition

6.1.1 Motivation

We know from Theorem 8 that we can calculate every joint moment of free random
variables A and B from their individual moments. Consequently, we can express
E (A+B)k as a polynomial of EAi and EBj for i; j � k: This method, however, is
not ef�cient and does not provide much insight. It is natural to seek a more ef�cient
algorithm for computation of E (A+B)k :

We are interested in E (A+B)k for several reasons. First, let G be a countable
group. Consider an operator

A =
X
g2G

agLg;

where Lg are right shift operators as in Section 4, and let us impose an additional
restriction that ag are non-negative and that

P
ag = 1. Then we can interpret ag as

probabilities and A as a random walk on the group G. Then E
�
Ak
�
has a natural

interpretation as a probability of the return to the identity element after k steps. Now,
suppose that G is a free group with two generators, g and h; and that we have two
probability distributions, � and �; which assign probabilities to powers of g and h;
respectively. That is, �

�
gk
�
= ak and �

�
hl
�
= bl; where k and l are arbitrary

integers, and ak and bk are positive numbers such that
P
ak = 1 and

P
bl = 1:

We de�ne a random walk on the free group G by the following process. At each
moment of time we throw a die and decide whether we use a power of g or a power
of h: If we decide to use a power of g; then we use gk with probability ak and if
we decided to use a power of h then we use hl with probability bl: For this random
walk, what is the probability of return to the unit element after k steps? The answer
depends on our ability to calculate the following quantity:

E

�
A+B

2

�k
;

where
A =

X
k2Z

akLgk ; and B =
X
l2Z

blLhl :

In free probability, operators A and B are prototypical free random variables and we
arrive at the calculation of the k-th moment of (A+B).
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Second, suppose that free operators A and B are self-adjoint and that �A are �B
are their spectral distributions. Then A + B is also self-adjoint and its distribution
�A+B depends only on �A and �B: We will call this distribution the additive free
convolution of �A and �B and denote it as �A��B: It is natural to ask about properties
of this new operation on probability measures. Note that the moments of �A � �B
are given by E (A+B)k :

For comparison, consider the case when G is the commutative free group gen-
erated by g and h: Then A =

P
k akLgk is a sum of commuting unitary operators.

Therefore, the spectral measure of operator A =
P

k akLgk is well de�ned and it is
the image of the uniform measure on the unit circle under the map ei� ! fA

�
ei�
�
;

where fA (z) is the symbol of operator A :

fA (z) =
X
k

akz
k:

Let �A be the resulting measure on the complex plane. Similarly, de�ne �B for
B =

P
k bkLhk . Then A and B have the same set of eigenspaces, and therefore the

spectral distibution of the sum is well de�ned and is easy to compute. The result is
simply the additive convolution of the measures �A and �B :

�A+B (dw) =

Z
z2C

�A (dw � z)�B (dz) :

In the non-commutative case we can de�ne the free additive convolution.

De�nition 34 Let � and � be the spectral probability measures of free self-adjoint
random variables A and B; respectively. Then the spectral probability measure of
A+B is called the free additive convolution of measures � and �; and denoted ���.

In the case of the non-commutative free group of two generators, even if the
operators A and B are self-adjoint they do not have the same set of eigenspaces
and it is dif�cult to compute the spectral distribution of the sum from the spectral
distributions of the summands. It is amazing that there exists an analytical way to
perform this computation. Let us describe this procedure.

6.1.2 Cauchy transform and K-function

De�nition 35 We call the moment-generating function of a random variable X , or
the Cauchy transform of X; the expectation of the resolvent of X:

GX (z) = E
�
(z �X)�1

�
:
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In the case that we consider most often, X is a bounded operator. Therefore,
GX (z) is de�ned in the area fz : jzj > kXkg : The Cauchy transform is holomorphic
in this area and maps 1 to 0: Moreover, for all suf�ciently large z; the Cauchy
transform is univalent and we can de�ne the functional inverse of GX (z) :

De�nition 36 We call the K-function of X the functional inverse of the Cauchy
transform of X:

GX (KX (z)) = KX (GX (z)) = z:

For bounded random variables, the function KX (z) is well-de�ned in a neigh-
borhood of 0 and has a simple pole at 0:
It is easy to compute the expansion of the Cauchy transform at z =1:

GX (z) =
1

z
+

1X
k=1

E
�
Xk
�

zk+1
:

Here are the �rst terms of the Laurent series for the K-function of X:

KX (z) =
1

z
+ E (X) +

�
E
�
X2
�
� E (X)2

�
z + :::

If KX (z) = z�1 +
P1

k=0 ckz
k; then it is easy to see that ck can be expressed as

polynomials of E (X) ; :::; E
�
Xk+1

�
: Later, we will give an analytic expression for

these coef�cients.

Example 37 Zero and scalar operators

If a random variable X = 0; then its K-function is simply z�1: More generally,
if X = cI; where I is the identity operator, then

GcI (z) =
1

z � c
;

and
KcI (z) =

1

z
+ c:

Example 38 Semicircle distribution

For a self-adjoint random variable X that has the semicircle distibution as its
spectral probability distribution (see de�nition of the semicircle distribution at page
22) it is easy to compute its K-function:

KSC (z) = z�1 + z:
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Example 39 Marchenko-Pastur distribution

One other distribution plays important role in free probability theory. It has the
following K-function:

KMP (u) =
1

u
+

�

1� u
:

This distibution is called theMarchenko-Pastur distribution because this distribution
was discovered by Marcenko and Pastur (1967). They discovered this distribution as
a limit eigenvalue distribution for a so-called Wishart matrices. Consider a rectangu-
lar n-by�m matrix X with independent Gaussian entries that have zero expectation
and variance equal to 1=n: Consider matrix Y = X 0X . This matrix is called the
Wishart matrix with parameters (n;m). Suppose that n andm grow to in�nity but in
such a way that n=m approaches a limit � > 0:Marchenko and Pastur discovered that
the distibutions of eigenvalues of this matrix converges to a distribution that depends
on the parameter �: This distribution is called the Marchenko-Pastur distribution.
Let us compute the shape of this distribution. Inverting the K-function we get:

GMP (z) =
1� �+ z �

q
(1� �+ z)2 � 4z
2z

:

It follows that the continous part of this distribution is concentrated on the interval��
1�

p
�
�2
;
�
1 +

p
�
�2�

and the density is

fMP (x) =

q
4x� (1� �+ x)2

2�x
:

In addition, if � < 1; then there is also an atom at zero with the probability weight
1� �:

This distribution is also called the free Poisson distribution because it can be
obtained as a limit of free additive convolutions of Bernoulli distributions, and in
the classical case a similar sequence of convolutions would converge to the Poisson
random variable.
There are two other functions directly related to the K-function, which appear

often in the literature.

De�nition 40 The function RX (z) = KX (z)� z�1 is called the R-transform of the
random variable X:
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The funciton RX (z) is holomorphic around z = 0: Its usefulness stems from the
fact that RX+Y (z) = RX (z) +RY (z) :We will prove this fact in the next section.

De�nition 41 Let FX (z) = 1=GX (z) and FX (z)
(�1) is the functional inverse of

FX (z) in an open set of the upper half-plane, which includes in�nity. Then 'X (z) =
FX (z)

(�1) � z is called the Voiculescu transform of the random variable X:

The de�nition of Voiculescu transform is especially useful when the random vari-
able X is not bounded. In the case when X is bounded, 'X (z) = RX (z

�1) =

KX (z
�1)� z: Again the main property of this function is that 'X+Y (z) = 'X (z)+

'Y (z) :

Note that if X is self-adjoint and � is its spectral probability measure, then the
K-function, R-transform, and Voiculescu transform depend only on �: We will say
that these functions are the K-function, R-transform, and Voiculescu transform of
the measure �:

6.1.3 Addition formula

Theorem 42 (Voiculescu's Addition Formula)
Let Y1 and Y2 be two free bounded non-commutative random variables with the
Cauchy transforms GY1 (z) and GY2 (z) ; and let KY1 (z) and KY2 (z) be two cor-
respondingK-functions. If Y3 = Y1+ Y2 then theK-function of Y3 can be computed
as

KY3 (z) = KY1 (z) +KY2 (z)�
1

z
:

This theorem plays a central role in the theory of additive free convolutions. Ini-
tially, the theorem was proved by Voiculescu using the Helton-Howe formula for
traces of commutators of Toeplitz operators. Then it was simpli�ed by Haagerup,
who avoided using the Helton-Howe formula. Both Voiculescu and Haagerup worked
with bounded random variables. Later, Maassen generalized the Voiculescu addition
formula to the case of unbounded operators with �nite variance, and Bercovici and
Voiculescu further generalized these concepts to the general case of unbounded ran-
dom variables. This development was especially important as it allowed the transfer
of a large body of classical results about in�ntitely-divisible measures to the case of
additive free convolutions.
Here we will prove the theorem only for bounded random variables.
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6.1.4 Proof #1

Consider the following random variable:

X = a+
1X
k=0

xk (a
�)k ;

where a and a� are the creation and annihilation operators acting on the Fock space.
De�ne the symbol of X as

KX (z) = z�1 +

1X
k=0

xkz
k:

Lemma 43 The symbolKX (z) is theK-function ofX in the sense of De�nition 36:

Proof: Since GX (z) = E
�
(z �X)�1

�
; our task is to show that

E
�
(K (z)�X)�1

�
= z:

We start with computing how K (z)�X acts on

wz =: � +
1X
n=1

zne
n:

(The series is well de�ned for jzj � 1:) Note that

awz = e+
1X
n=1

zne
n = (wz � �) =z;

and

a�wz = z� +
1X
n=2

zne
(n�1) = zwz:

Therefore,

Xwz =
wz � �

z
+

 1X
k=0

xkz
k

!
wz = K (z)wz �

�

z
:

In other words,
(K (z)�X)wz = �=z:
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Now, recall that K (z) has a pole at z = 1. That means that for all z in a suf�ciently
small circle around 0; we have jK (z)j � kXk : Consequently, operator K (z) � X

is invertible, and we can write:

(K (z)�X)�1 � = zwz:

Hence,

E
�
(K (z)�X)�1

�
=



�; (K (z)�X)�1 �

�
= h�; zwzi = z:

QED.
Proof of Voiculescu's addition theorem:
Let A and B be arbitrary free random variables with the Cauchy transforms

GA (z) and GB (z) : Let the corresponding K-functions be KA (z) and KB (z) and
de�ne the Toeplitz variables X and Y as the variables that have these functions as
their symbols. Then by Lemma 43, X and Y have the same K-functions as A and
B: Therefore they have the same Cauchy transforms and the same moments, and
therefore X and Y represent A and B, respectively. Consequently X + Y repre-
sents A + B. In particular, X + Y has the same K-function as A + B: But by
Theorem 33, X + Y is equivalent to the Toeplitz variable Z that has the symbol
KZ (z) = KA (z)+KB (z)� z�1: Hence, bothX+Y and A+B have aK-function
equal to KZ (z) = KA (z) +KB (z)� z�1: QED.
Alternatively, we could avoid using Theorem 33 and prove the following lemma

directly.

Lemma 44 Let X = a1 +
P1

k=0 xk (a
�
1)
k and Y = a2 +

P1
k=0 yk (a

�
2)
k. Then

GX+Y

�
KX (z) +KY (z)�

1

z

�
= z:

Proof: We need to prove that

E

"�
KX (z) +KY (z)�

1

z
�X � Y

��1#
= z:

First, we investigate how KX (z) +KY (z)� z�1 �X � Y acts on

�z =: � +

1X
n=1

zn (e1 + e2)
n ;
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where (e1 + e2)
n is a short notation for the sum of tensor products of e1 and e2

obtained from expansion of the tensor product (e1 + e2)

n : (The series for �z is

well-de�ned for jzj < 1=2:)
First, note that

(a1 + a2) �z =
1X
n=0

zn (e1 + e2)
n+1 =

�z � �

z
;

and

(a�1)
k �z = (a

�
2)
k �z = zk� +

1X
n=1

zn+k (e1 + e2)
n = zk�z:

This implies that

(X + Y ) �z =
�z � �

z
+

�
KX �

1

z

�
�z +

�
KY �

1

z

�
�z;

and therefore that �
KX (z) +KY (z)�

1

z
�X � Y

�
�z =

�

z
:

If z is suf�ciently small, such that jKX (z) +KY (z)� z�1j > kXk+ kY k ; we can
invert the operator on the left of the previous equality and get:�

KX (z) +KY (z)�
1

z
�X � Y

��1
� = z�z:

Therefore,

E

�
KX (z) +KY (z)�

1

z
�X � Y

��1
=

*
�;

�
KX (z) +KY (z)�

1

z
�X � Y

��1
�

+
= h�; z�zi = z:

QED.

6.1.5 Proof #2

This proof was found by researchers who studied random walks on free products of
discrete groups (see: Figa-Talamanca and Steger (1994)). It was found at about the
same time as Voiculescu's proof but is less well known. Recently this proof was
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revived by Lehner (1999) The advantage of this proof is that it does not require the
machinery of the operators acting on Fock space.
Let X and Y are two free operators. Let RX (z) = (z �X)�1 and RY (z) =

(z � Y )�1 ; i.e.,RX (z) andRY (z) are resolvents of operatorsX and Y; respectively.
The the Cauchy transforms are simply expectations of these resolvents: GX (z) =
E (RX (z)) and GY (z) = E (RY (z)) : We are interested in computing GX+Y (z) ;
so we start with a calculation of RX+Y (z) ; that is, of (z � (X + Y ))�1 : It is based
on the following Proposition:

Proposition 45 Let (I �X)�1 = I+SX , (I � Y )�1 = I+SY ; and (I � (X + Y ))�1 =

I + SX+Y . Then

SX+Y =
1X
n=1

X
i1 6=i2 6=::: 6=in

Si1Si2 :::Sin ; (12)

where ik take values X or Y:

Proof: First, we claim that

I +
1X
n=1

X
i1 6=i2 6=::: 6=in

Si1Si2 :::Sin =

�
I � SX

I + SX
� SY
I + SY

��1
: (13)

Indeed, we can split the epxreission on the left-hand side of (13) into 4 parts:

h1i = I + SXSY + SXSY SXSY + :::

=
I

I � SXSY
;

h2i = SX + SXSY SX + SXSY SXSY SX + :::

=
I

I � SXSY
SX ;

h3i = SY SX + SY SXSY SX + SY SXSY SXSY SX + :::

= SY
I

I � SXSY
SX ; and

h4i = SY + SY SXSY + SY SXSY SXSY + :::

= SY
I

I � SXSY
:

In words, h1i are those terms that start with SX and end with SY (and also I); h2i are
those that start with SX and end with SX ; h3i are those that start with SY and end
with SX ; and h4i are those that start with SY and end with SY .
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Now we can compute:

h1i+ h2i =
I

I � SXSY
(I + SX) ;

h3i+ h4i = SY
I

I � SXSY
(I + SX) ; and

h1i+ h2i+ h3i+ h4i = (I + SY )
I

I � SXSY
(I + SX) : (14)

On the other hand, we can compute

I � SX
I + SX

� SY
I + SY

= (I + SX)
�1 (I + SX) (I + SY ) (I + SY )

�1

� (I + SX)
�1 SX (I + SY ) (I + SY )

�1

� (I + SX)
�1 (I + SX)SY (I + SY )

�1

= (I + SX)
�1 (I � SXSY ) (I + SY )

�1 :

Consequently,�
I � SX

I + SX
� SY
I + SY

��1
= (I + SY )

I

I � SXSY
(I + SX) (15)

Comparing (14) and (15), we conclude that (13) holds.
Note that by assumption SX (I + SX)

�1 = X and SY (I + SY )
�1 = Y: There-

fore, �
I � SX

I + SX
� SY
I + SY

��1
= (I � (X + Y ))�1 = I + SX+Y :

Hence,

SX+Y =
1X
n=1

X
i1 6=i2 6=::: 6=in

Si1Si2 :::Sin :

QED.
To use the property from the de�nition of free probabilities we would like SX and

SY to have zero expectation. For this purpose it is useful to reformulate the previous
proposition in a slightly different form, which is less beautiful but easier to apply in
our case

Proposition 46 Let two functions fX (z) and fY (z) are given and suppose that
fX (z) = z�1 +O (1) and fY (z) = z�1 +O (1) for small z: Suppose also that

(fX (z)�X)�1 = z (I + SX (z)) ;
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(fY (z)� Y )�1 = z (I + SY (z)) ;

and �
�z�1 + fX (z) + fY (z)� (X + Y )

��1
= z (I + SX+Y (z))

for some operator-valued functions SX (z) ; SY (z) ; and SX+Y (z) : Then

SX+Y (z) =
1X
n=1

X
i1 6=i2 6=::: 6=in

Si1 (z)Si2 (z) :::Sin (z) ; (16)

where ik take values X or Y:

Proof: We can still apply formula (13) and write

I+
1X
n=1

X
i1 6=i2 6=::: 6=in

Si1 (z)Si2 (z) :::Sin (z) =

�
I � SX (z)

I + SX (z)
� SY (z)

I + SY (z)

��1
:

(17)
Next, we calculate SX (z) (I + SX (z))

�1 = 1�zfX (z)+zX and SY (z) (I + SY (z))
�1 =

1� zfY (z) + zY: Therefore,�
I � SX (z)

I + SX (z)
� SY (z)

I + SY (z)

��1
=
1

z

�
�1
z
+ fX (z) + fY (z)� (X + Y )

��1
:

In combination with (17), this gives:

1

�1
z
+ fX (z) + fY (z)� (X + Y )

= z

 
I +

1X
n=1

X
i1 6=i2 6=::: 6=in

Si1 (z)Si2 (z) :::Sin (z)

!
:

(18)
QED.
Now we can prove the addition formula. Indeed, take fX (z) = KX (z) ; that is,

the functional inverse of the Cauchy transform, and de�ne SX (z) as in the previous
proposition:

z (I + SX (z)) =
I

KX (z)�X
:

This is possible because KX (z) = z�1 + O (1) near zero. Then, taking the expecta-
tion on both sides and using the de�nition of the Cauchy transform, we can write:

E [z (I + SX (z))] = E
I

KX (z)�X
= GX (KX (z)) = z:

It follows that E (SX (z)) = 0 for every z, for which SX (z) is de�ned. Similarly,
E (SY (z)) = 0: Also SX (z) and SY (z) are free.
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Then we take expectation on both sides of (18) and use the main property of free
variables to obtain:

E
1

�1
z
+KX (z) +KY (z)� (X + Y )

= z:

It follows that the functional inverse of the Cauchy transform for X + Y is equal to
�z�1 +KX (z) +KY (z) : That is,

KX+Y (z) = �z�1 +KX (z) +KY (z) :

QED.

6.2 Multiplication

If X and Y are free, we can consider their product XY: The moments of XY are
determined uniquely by moments of X and Y: Below we will see that there is an
ef�cient way to calculate them. Before this we want to address a question if we
can de�ne a concept of free multiplicative convolution similar to the concept of free
additive convolution. Let X and Y be two free self-adjoint random variables with
the spectral probability measures � and �: The dif�culty is that even though X and
Y are self-adjoint their product is in general not self-adjoint and so we can de�ne
its spectral probability measure. Moreover, apparently there is no guarantee that the
moments of the product XY correspond to moments of a probability measure on the
real line.
However, at least in the case of non-commutative probability space with tracial

expectation, the following results holds.

Theorem 47 Let X and Y be positive self-adjoint variables in a non-commutative
probability space with tracial expectation. Then the k-th moments of random vari-
ables XY; Y X; X1=2Y X1=2; Y 1=2XY 1=2 are the same:

E
�
(XY )k

�
= E

�
(Y X)k

�
= E

��
X1=2Y X1=2

�k�
= E

��
Y 1=2XY 1=2

�k�
for any integer k � 0:

The proof is obvious from the de�nition of the tracial expectation. Note that for
this result we do not even need freeness of variables X and Y:
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Since X1=2Y X1=2 is self-adjoint, this theorem shows that in non-commutative
probability spaces with tracial expectation, moments of the product XY equals mo-
ments of a probability distribution on the real line. This probability distribution
equals the spectral probability distribution of both X1=2Y X1=2 and Y 1=2XY 1=2: In
view of this we introduce the following de�nition.

De�nition 48 Let � and � be the spectral probability measures of free positive self-
adjoint random variables A and B; respectively. Then the spectral probability mea-
sure of A1=2BA1=2 is called the free additive convolution of measures � and �; and
denoted �� �.

For calculation of moments of the product XY , we introduce the S-transform. .
It was also invented by Voiculescu. Here is how it is de�ned.
Let A be bounded operator in a non-commutative probability space. De�ne

 A (z) = E

�
1

1� zA

�
� 1 =

1X
k=1

E
�
Ak
�
zk: (19)

If E (A) 6= 0; then in a suf�ciently small neigborhood of 0; an inverse of  A (z) is
de�ned, which we denote as  �1A (z) : The S-transform is de�ned as

SA (z) =

�
1 +

1

z

�
 �1A (z) : (20)

In other words, from (19) and (20) the de�ning functional relation for S (z) is as
follows:

E

 
1

1� z
1+z

SA (z)A

!
= 1 + z: (21)

Now, let us write out several �rst terms in the power expansions for  (z) ;
 �1 (z) ; and S (z) : Assume for simplicity that E (A) = 1:

 (z) = z +m2z
2 +m3z

3 + :::;

 �1 (z) = z �m2z
2 �

�
m3 � 2m2

2

�
z3 + :::;

S (z) = 1 + (1�m2)z +
�
2m2

2 �m2 �m3

�
z2 + :::

The main theorem regarding the multiplication of free random variables was
proved by Voiculescu. The original proof by Voiculescu (1987) was very compli-
cated. We give here Haagerup's simpli�ed version (1997).

48



Theorem 49 (Voiculescu's multiplication formula) SupposeX and Y are bounded
free random variables. Suppose also that E (X) 6= 0 and E (Y ) 6= 0: Then

SXY (z) = SX (z)SY (z) :

Proof: Consider the following random variables: X = (1 + a1) f (a
�
1) and Y =

(1 + a2) g (a
�
2) ; where a1 and a2 are two creation operators, a�1 and a�2 are corre-

sponding annihilation operators, and f (z) and g(z) are two functions analytical near
z = 0 and such that f(0) 6= 0 and g (0) 6= 0: The variables X and Y are clearly free.
The claim is that:

1. Every variable A with E (A) 6= 0 can be represented as (1 + a) f (a�) ; where
f (a�) is an appropriate function; and

2.
SX =

1

f (z)
; SY =

1

g (z)
; and SXY =

1

f (z) g (z)
:

For the �rst claim, recall that by Lemma 30, p. 31, every bounded random vari-
able A can be represented by a Toeplitz random variable of the following form:
a + g (a�) ; where g (z) is a function analytic in a neighborhood of z = 0: Then
we can de�ne

f (z) =
1 + zg (z)

1 + z
:

Note that this implies that: 1) f (z) is analytic in a neigborhood of z = 0 and the
constant term in its Taylor expansion equals 1, and 2)

g (z) =
(1 + z) f (z)� 1

z
:

Then we can write:

(1 + a) f (a�) = f (a�) + a+
f (z)� 1

z

����
z=a�

= a+
zf (z) + 1f (z)� 1

z

����
z=a�

= a+ g (a�) :

Therefore, every random variableA can be represented by a Toeplitz random variable
of the form (1 + a) f (a�).
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Now let us turn to the second claim. To calculate SX (z) (and prove that SX (z) =
1=f (z)), we will aim to �nd such a state !z that for some function h (z) ; the operator
h (z)�X annihilates !z; i.e., (h (z)�X)!z = r (z) �;where � is the vacuum vector
and r (z) is some other function. Then !z=r (z) = (h (z)�X)�1 � and we can
calculate E

�
(h (z)�X)�1

�
as h�; !zi =r (z) : This clearly will allow us to compute

SX (z) :

Thus, we are looking for a quasi-eigenstate !z that has the following de�ning
property:

X!z = h (z)!z � r (z) �:

It turns out that !z = � +
P1

n=1 z
nen1 is exactly what we need. (We can also write

!z = (1� za1)
�1 �:) First, it is easy to see that the following two formulas hold:

a1!z =
1

z
(!z � �) ; and

a�1!z = z!z:

The second formula implies that f (a�1)!z = f (z)!z: Therefore,

X!z = (1 + a1) f (z)!z

= f (z)

�
!z +

1

z
(!z � �)

�
= f (z)

�
1 + z

z
!z �

1

z
�

�
; (22)

which has the desired form.
Therefore, �

f (z)
1 + z

z
�X

�
!z =

f (z)

z
�:

Since f (0) 6= 0; the operator on the right-hand side is invertible for all suf�ciently
small z and we have

!z =

�
f (z)

1 + z

z
�X

��1
f (z)

z
�

=

�
1� z

(1 + z) f (z)
X

��1
1

1 + z
�:

Therefore,

E

�
1� z

(1 + z) f (z)
X

��1
= h�; (1 + z)!zi = 1 + z:
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Comparison with (21) shows that SX (z) = 1=f (z) : The proof for SY (z) is
similar.
A harder problem is to �nd a quasi-eigenstate forXY = (1+a1)f (a�1) (1 + a2) g (a

�
2) :

It turns out that an appropriate state is

�z = (1� z (a1 + a2 + a1a2))
�1 �

= � +

1X
n=1

zn (e1 + e2 + e1e2)
n :

First, we have

a�2�z =

1X
n=1

zn (e1 + e2 + e1e2)
n�1 = z�z;

and therefore
g (a�2)�z = g (z)�z;

and
(1 + a2) g (a

�
2)�z = g (z) (1 + a2)�z:

Next, we note that

a�1�z = (1 + e2)
1X
n=1

zn (e1 + e2 + e1e2)
n�1

= z (1 + a2)�z:

This implies that
a�1 (1 + a2)�z = a�1�z = z (1 + a2)�z;

and therefore
f (a�1) (1 + a2)�z = f (z) (1 + a2)�z:

Altogether we get

XY �z = (1 + a1) f (a
�
1) (1 + a2) f (a

�
2)�z

= f (z) g (z) (1 + a1) (1 + a2)�z:

However,

(1 + a1) (1 + a2)�z = �z +

1X
n=1

zn (e1 + e2 + e1e2)
n+1

= �z +
�z � �

z

=
z + 1

z
�z �

1

z
�:
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Therefore,

XY �z = f (z) g (z)

�
z + 1

z
�a �

1

z
�

�
:

This equation has exactly the same form as equation (22). Therefore we can re-
peat the arguments that we made after equation (22) and conclude that SXY =

1= (f (z) g (z)) : This implies that SXY = SXSY : QED.
Here is an application of the multiplication formula. For a probability distribution

on the real line, �; we intoduce the following notation:

E (�) =

Z
td� (t) ; and

Var (�) =

Z
t2d� (t)� (E�)2 :

Theorem 50 Suppose that �i are probability distributions such that E (�i) = 1: Let

�(n) = �1 � :::� �n

Then Var
�
�(n)

�
=
Pn

i=1Var (�i) :

Proof: Let Xi be self-adjoint variables with distributions �i: Then EX2
i =

m
(i)
2 > 1:We can write

SXi (z) = 1 + (1�m
(i)
2 )z + ::::

Then
S�n (z) =

Yn

i=1
SXi (z) = 1 +

Xn

i=1

�
1�m

(i)
2

�
z + :::

From this we can conclude that E (�2n) = 1 �
Pn

i=1

�
1�m

(i)
2

�
; or E (�2n) � 1 =Pn

i=1

�
m
(i)
2 � 1

�
: In other words, Var

�
�(n)

�
=
Pn

i=1Var (�i). QED.
This interesting observation does not have an analogue in the case of multiplica-

tion of classical random variables.

7 Analytical Properties of Cauchy's Transforms and
Their Functional Inverses

Themain tools for investigating free convolutions of probability measures are Cauchy
transforms and their functional inverses. It is important to know answers to the fol-
lowing questions:
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1) Are Cauchy transforms in one-to-one correspondence with probability mea-
sures?
2) How can we compute a probability measure from its Cauchy transform?
3) How are properties of Cauchy transforms related to properties of correspond-

ing probability measures?
4) How is the convergence of Cauchy transforms related to the convergence of

probability measures?
3) Which analytical properties distinguish Cauchy transforms among all other

analytic functions?
We can ask similar questions about functional inverses of Cauchy transforms. In

addition, we have a very important question about the relation of properties of the
Cauchy transform to properties of its functional inverse. In this section we compile
answers to these questions.
We will call a function holomorphic at a point z if it can be represented by a

convergent power series in a suf�ciently small disc with the center at z:We call the
function holomorphic in an open domain, D; if it is holomorphic at every point of
the domain. Here D may include f1g ; in which case it is a part of the extended
complex plane C [ f1g with the topology induced by the stereographic projection
of the Riemann sphere on the extended complex plane.
The integral representation of the Cauchy transform shows that the Cauchy trans-

form of every probability measure, G (z) ; is a holomorphic function in

C+ = fz 2 Cj Im z > 0g

and
C� = fz 2 Cj Im z < 0g :

If in addition the measure is assumed to be supported on interval [�L;L] ; then the
Cauchy transform is holomorphic in the area 
 : jzj > L;where it can be represented
by a convergent power series of z�1 :

eG(z) = 1

z
+
m1

z2
+
m2

z3
+ :::: (23)

Heremk denote the moments of the measure �:

mk =

Z 1

�1
tk� (dt) :

In particular, G (z) is holomorphic at f1g :
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In general, for an unbounded probability measure, series (23) is not convergent.
In this case, the main tool for the study of properties of the Cauchy transform is the
so-called Nevanlinna representation. We repeat the statement and refer for a proof to
the book by Akhieser (1961).

7.1 Properties of Cauchy transforms

Representation formulas and characterization
The basis for the analysis of the Cauchy transform of a non-necessarily bounded

probability measure is the Nevanlinna representation theorem. The theorem charac-
terizes the analytic functions that map the upper half-plane to itself. The formula is
the natural outgrowth of the remarkable Schwarz formula that represents a function
analytic in a neighborhood of a disc through the values of its real part on the boundary
of the disc.

Theorem 51 (Schwarz' formula) Suppose f (z) is a function analytic in the disc
jzj < 1: Then there exists a real C such that for any z in the disc jzj < R < 1; the
following formula holds:

f (z) = iC +
1

2�

Z �

��

Rei� + z

Rei� � z
u (R; �) d�;

where u (R; �) = Re f
�
Rei�

�
:

The proof is very ingenious. First, the Cauchy formula is adjusted by adding a
(non-analytic) function so that the kernel in this formula is real on the circle with
radius R: By taking the real part, it follows that the real part of f (z) inside this circle
equals to the integral of the real part.of f (z) on the circle against the kernel. Then
we �nd an analytic function that has this kernel as its real part on the circle. If we
substitute this function as the new kernel we obtain the representation of f (z) as the
integral of Re f (z) against this new kernel. We wil skip the details.
From the Schwarz formula it is easy to get the following theorem:

Theorem 52 (Herglotz' Representation) Let f (z) be a function, analytic inside
the unit disc and taking values in the upper half-plane. Then f (z) has a unique
representation of the form

f (z) = C +
i

2�

Z �

��

ei� + z

ei� � z
d� (�) ; (24)
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where � (�) is a non-decreasing real-valued function of �nite variation and C is a
real constant. Conversely, if (24) holds then f (z) is an analytic map of the unit disc
to the upper half-plane.

And next a change of variables gives the characterization of functions that are
analytic in the upper half-plane and map the upper half-plane to itself. Akhieser calls
these functions the Nevanlinna class.

Theorem 53 (Nevanlinna's Representation) Function f (z) is an analytic map of
the upper half-plane to itself if and only if it has a unique representation of the form

f (z) = �z + � +

Z 1

�1

1 + uz

u� z
d� (u) : (25)

where � (u) is a non-decreasing function of �nite variation, � and � are real and
� � 0.

An important property of the Cauchy transforms that follows from the Nevanlinna
representation is as follows.

Theorem 54 The following statements are equivalent.
i) A function, G(z); is the Cauchy transform of a probability measure on R;
ii) G (z) is a holomorphic function mapping C+ (the open upper half-plane) to C�

(the open lower half-plane) and

lim
y!1

iyG (iy) = 1; (26)

iii) G (z) is a holomorphic function mapping C+ to C� and

lim
z!1; z2��

zG (z) = 1; (27)

where �� = fz 2 C+jRe z < � Im zg :

Remark: The notation z ! 1; z 2 �� means that z approaches 1 along any
sequence of values of z that belong to ��: We will say that z approaches 1 in the
set ��:
For proof, see Proposition 5.1 in Bercovici and Voiculescu (1993).
The Perron-Stieltjes inversion formula
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Theorem 55 Measure � (B) can be recovered from its Cauchy transform G (z) by
the formula

� (B) = � 1
�
lim
"#0

Z
B

ImG (x+ i") dx;

which is valid for all Borel B such that � (@B) = 0:

For proof of this theorem, see Akhieser (1961). A simple concequence of the
Perron-Stieltjes inversion formula is the following result, which we will need later.

Lemma 56 Suppose that
1) G (z) is the Cauchy transform of a compactly supported probability distribution,
�, and
2) G (z) is holomorphic at every z 2 R; jzj > L:

Then the support of � lies entirely in the interval [�L;L] :

Proof: From assumption 1) we infer that in some neighborhood of in�nity G (z)
can be represented by the convergent power series (23) and thatG(z) is also holomor-
phic everywhere inC+ andC�. Therefore, using assumption 2) we can conclude that
G (z) is holomorphic everywhere in the area jzj > L; including the point at in�nity.
It follows that the power series (23) converges everywhere in the area jzj > L: Since
this power series has real coef�cients we can conclude that G(z) is real for z 2 R;

jzj > L: Also, since G(z) is holomorphic and therefore continuous in jzj > L; we
can conclude that lim"#0 ImG(z + i") = 0: Then the Stieltjes inversion formula im-
plies that � ([a; b]) = 0 for each pair of a and b which belong to jxj > L and such that
� (a) = 0 and �(b) = 0: It remains to prove that this impies that � fjxj > Lg = 0:
For this purpose, note that the set of points x 2 R, for which �(x) > 0 is at most

countable. Indeed, let S be the set of all x for which �(x) > 0:We can divide this set
into a countable collection of disjoint subsets Sk;where k are all positive integers and
Sk =

�
xjk�1 � � fxg > (k + 1)�1

	
: Clearly, every Sk is either empty or contains

a �nite number of points x: Otherwise, we could take an in�nite countable sequence
of xi;k 2 Sk; and we would get (by countable additivity and monotonicity of �)
that � (Sk) �

P
i � (xi;k) = +1: By the monotonicity of � we would further get

� (R) = +1;which would contradict the assumption that � is a probability measure.
Therefore, S is a countable union of �nite subsets Sk and hence countable.
From the countability of S we conclude that the set of points x; for which � (x) =

0 (i.e., Sc), is dense in the set jxj > L: Indeed, take an arbitrary non-empty interval
(�; �) : Then (�; �) \ Sc 6= ;; since otherwise (�; �) � S and therefore S would
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be uncountable. Hence Sc is countable. This fact and the countable additivity of
� implies that � (fjxj > Lg) = 0: Indeed, using the denseness of Sc we can cover
the set fjxj > Lg by a countable union of disjoint intervals [a; b]; where � (a) = 0

and �(b) = 0: For each of these intervals, � ([a; b]) = 0; and therefore countable
additivity implies that � (fjxj > Lg) = 0: Consequently, � is supported on a set that
lies entirely in [�L;L] : QED.
Convergence of Cauchy transforms and weak convergence of probability

measures

Theorem 57 If �n ! � weakly, then G�n(z) ! G� (z) uniformly on compact sub-
sets.

ProofWrite��G�n(z)�G� (z)
�� = ����Z 1

z � t
d�n (t)�

Z
1

z � t
d� (t)

���� :
Since (z � t)�1 is bounded and continuous in t for every z 2 C+; we can conclude
that this difference converges to zero for every z 2 C+:Moreover, the family fz (t) =
(z � t)�1 is equicontinuous for z in a compact subset of C+: This implies that the
convergence of the difference to zero is uniform in z in a compact subset of C+:
QED.
Usually we are interested in the opposite direction. For this, we cite the following

theorems that relate the closeness of two Cauchy transforms with the closeness of the
corresponding probability distributions. These theorems were proved by Bai (1993).
The �rst is for arbitrary probability distributions on R; and the second is for the
distributions on R that have compact support.

Theorem 58 ((Bai (1993))) Consider probability measures with distribution func-
tions F and G and let their Cauchy transforms be GF (z) and GG (z) ; respectively.
Let z = x+ iy: Then

sup
x
jF (x)� G (x)j � 1

� (2 � 1)

�Z 1

�1
jGF (x+ iy)�GG (x+ iy)j dx

+
1

y
sup
x

Z
juj�2yc

jG (x+ u)� G(x)j du
�
;

where c and  are related by the following equality

 =
1

�

Z
jxj<c

1

1 + x2
dx >

1

2
:
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Theorem 59 (Bai (1993)) Let probability measures with distribution functions F
and G be supported on a �nite interval [�B;B] and let their Cauchy transforms
be GF (z) and GG (z) ; respectively. Let z = u+ iv: Then

sup
x
jF (x)� G (x)j � 1

� (1� �) (2 � 1)

�Z A

�A
jGF (z)�GG (z)j du (28)

+
1

v
sup
x

Z
jyj�2vc

jG (x+ y)� G(x)j dy
�
;

where A > B; � = 4B
�(A�B)(2�1) < 1;  > 1=2; and c and  are related by the

following equality
 =

1

�

Z
juj<c

1

1 + u2
du:

7.2 Lagrange's formulas for the functional inverse

Here we list and prove very useful results about functional inverses of holomor-
phic functions. By function holomorphic in a domain D we mean function which
is bounded and differentiable in D: These formulas are originally due to Lagrange
(see �Nouvelle Methode pour Resoudre les Equations Litterales par le Moyen des Se-
ries� (1770) on pp. 5-73 in Lagrange (1869)) and the most typical inversion formula
is as follows:

Lemma 60 (Lagrange's inversion formula)
Suppose f is a function of a complex variable, which is holomorphic in a neighbor-
hood of z0 = 0 and has the Taylor expansion

f(z) = a1z +
1X
k=2

akz
k;

with a1 6= 0 and converging for all suf�ciently small z: Then the functional inverse
of f (z) is well de�ned in a neighborhood of 0 and the Taylor series of the inverse is
given by the following formula:

f�1 (u) =
u

a1
+

1X
k=2

�
1

k
res
z=0

1

f(z)k

�
uk;

where resz=z0 denotes the Cauchy residual at point z0. Alternatively, we can write:

f�1 (u) =
u

a1
+

1X
k=2

�
1

2�ik

I


dz

f(z)k

�
uk;
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where  is such a circle around 0; where f has only one zero.

For the modern proof see Markushevich (1977), Theorems II.3.2 and II.3.3, or
Whittaker and Watson (1927), Section 7.32. We also need the following modi�cation
of the Lagrange formula, which says how to invert a function in a neigborhood of
in�nity.

Lemma 61 Suppose G is a function of a complex variable, which is holomorphic in
a neighborhood of z0 =1 and has the expansion

G(z) = a0 +
a1
z
+
a2
z2
+ :::;

converging for all suf�ciently large z; where a1 6= 0: De�ne g(z) = G(1=z): Then
the functional inverse ofG (z) is well de�ned for large z: The inverse is meromorphic
in a neighborhood of 0 and Laurent's series of the inverse is given by the following
formula:

G�1 (w) =
a1

w � a0
+
a2
a1
�

1X
n=1

�
1

n

1

2�i

I
@

dz

z2 (g(z)� a0)
n

�
(w � a0)

n ;

where  is a closed disc around 0 in which g(z) has only one zero:

Proof: Let  be a disc around 0 in which g(z) has only one zero. This disk exists
because g (0) = 0; and g (z) is analytical in a neighborhood of 0 and has a non-zero
derivative at 0: Let

rw =
1

2
inf
z2@

jg (z)j :

Then rw > 0 by our assumption on :We can apply Rouche's theorem and conclude
that the equation g (z)� w = 0 has only one solution inside  if jw � a0j � rw: Let
us �x such a w that jw � a0j � rw. Inside , the function

g0(z)

z (g(z)� w)

has a pole at z = 1=G�1(w) with the residual G�1(w) and a pole at z = 0 with the
residual a1= (a0 � w). Consequently, we can write:

G�1 (w) =
1

2�i

I
@

g0(z)dz

z (g(z)� w)
+

a1
w � a0

:
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The integral can be re-written as follows:I
@

g0(z)dz

z (g(z)� a0 � (w � a0))
=

I
@

g0(z)

z (g(z)� a0)

1

1� w�a0
g(z)�a0

dz

=

1X
n=0

I
@

g0(z)dz

z (g(z)� a0)
n+1 (w � a0)

n :

For n = 0 we calculate

1

2�i

I
@

g0(z)dz

z (g(z)� a0)
=
a2
a1
;

Indeed, the only pole of the integrand is at z = 0 and it has order two. The corre-
sponding residual can be computed from the series expansion for g(z):

resz=0
g0(z)dz

z (g(z)� a0)
=

d

dz

z2 (a1 + 2a2z + :::)

z (a1z + a2z2 + ::)

����
z=0

=
d

dz

1 + (2a2=a1) z + :::

1 + (a2=a1) z + ::

����
z=0

=
a2
a1
:

For n > 0 we integrate by parts:

1

2�i

I
@

g0(z)dz

z (g(z)� a0)
n+1 = �

1

2�i

1

n

I
@

dz

z2 (g(z)� a0)
n :

QED.
Most often we will use this Lemma to invert the Cauchy transform of a probability

distribution and so we formulate a Corollary:

Corollary 62 Suppose G is a function of a complex variable, which is holomorphic
in a neighborhood of z0 =1 and has the expansion

G(z) =
1

z
+
a1
z2
+ :::;

converging for all suf�ciently large z: De�ne g(z) = G(1=z): Then the functional
inverse of G (z) is well de�ned in a neighborhood of 0 and Laurent's series of the
inverse is given by the following formula:

G�1 (w) =
1

w
+ a1 �

1X
n=1

�
1

n

1

2�i

I
@

dz

z2g(z)n

�
wn;

where  is a closed disc around 0 in which g(z) has only one zero:
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Here is another modi�cation of the Lagrange inversion formula. This time it says
how to invert a function near the point where it has a simple pole.

Lemma 63 Suppose f is a function of a complex variable, which is meromorphic in
a neighborhood of z0 = a and has the expansion

f(z) =
c�1
z � a

+ c0 + c1 (z � a) + :::;

converging for all z suf�ciently close to a:: Then the functional inverse of f (z) is
well de�ned in a neighborhood of1 and Laurent's series of the inverse is given by
the following formula:

f�1 (u) = a+
1X
n=1

�
1

n

1

2�i

I
@

f (z)n dz

�
un;

where  is a closed disc around a in which 1=f(z) has only one zero (at z = a).

Proof: The proof is similar to the proof of the previous Lagrange formulas. First,
let g (z) = 1=f (z) and w = 1=u: Then g (z) maps z = a to w = 0: Note that for all
suf�ciently small w

zg0 (z)

g (z)� w

has the only pole at z = g�1 (w) and the residual is g�1 (w) : Then we can write:

g�1 (w) =
1

2�i

Z
@

zg0 (z)

g (z)� w
dz

=
1

2�i

Z
@

" 1X
k=0

zg0 (z)

g (z)k+1
wk

#
dz

= a+
1X
k=1

"
1

2�i

1

k

Z
@

dz

g (z)k

#
wk;

where we used integration by parts.
Therefore,

f�1 (u) = a+
1X
k=1

�
1

2�i

1

k

Z
@

f (z)k dz

�
1

uk
:

QED.
The Lagrange inversion formula can be illustrated by the following application,

in which we estimate the power series coef�cients of a K-function.
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Lemma 64 Suppose that the measure � is supported on interval [�L;L] ; andK (z)
denotes the functional inverse of its Cauchy transformG (z) : Then the Laurent series
of K (z) converge in the area 
 =

�
z : 0 < jzj < (4L)�1

	
: Write these series as

K (z) =
1

z
+

1X
k=0

bkz
k:

Then
jbkj �

2L

k
(4L)k :

Proof: Let us apply Lemma 61 to G (z) with circle  having radius (2L)�1 :We
need to check that g(z) =: G (1=z) has only one zero inside this circle. It holds
because

g(z) = z
�
1 + a2z

2 + a3z
3 + :::

�
;

and inside jzj � (2L)�1 we can estimate:��a2z2 + a3z
3 + :::

�� � L2
�
1

2L

�2
+ L3

�
1

2L

�3
+ ::: =

1

2
; (29)

and an application of Rouche's theorem shows that g (z) has only one zero inside this
circle.
Another consequence of the estimate (29) is that on the circle jzj = (2L)�1

jg (z)j � jzj =2 = 1= (4L) :

By Lemma 61 the coef�cients in the series for the inverse of G (z) are

bk =
1

2�ik

I
@

dz

z2g(z)k
;

and we can estimate them as

jbkj �
2L

k
(4L)k : (30)

This implies that the radius of convergence of power series for K (z) is at least
(4L)�1 : QED.

Corollary 65 Suppose that the measure � is supported on interval [�L;L] and b0
and b1 denote its �rst and second moments. Then for all z; such that jzj � (2L)�1 ;
the following inequality holds:����K (z)� 1z � b0 � b1z

���� � 8Lz2:
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Finally, we can also invert a �unction at a neighbourhood of a critical point. In
this case the inverse will be multivalued.

Lemma 66 (Lagrange's inversion formula) Suppose f is a function of a complex
variable, which is holomorphic in a neighborhood of z0 and has the Taylor expansion

f(z) = w0 + ak (z � z0)
k +

1X
n=k+1

an (z � z0)
n ;

with ak 6= 0 and converging for all suf�ciently small z: Then the functional inverse of
f (z) is a multi-valued analytic function in a neighborhood of w0 that has a branch
point at w0 and it can be represented by the following series:

f�1 (w) = z0 +
1X
n=1

�
1

n
res
z=z0

 (z)n
�
(w � w0)

n=k ;

where resz=z0 denotes the Cauchy residual at point z0, and  (z) denote any single-
valued branch of the function 1= [f (z)� w0]

1=k :

For the proof see Theorem II.3.6 in Markushevich (1977).

8 Free In�nitely Divisible Distributions

8.1 Additive in�nitely divisible distributions

8.1.1 Characterization

The measure � is in�nitely-divisible if for any n it can be represented as

� = �1=n � :::� �1=n;

where � denotes free additive convolution and there are n terms in the sum.
Analytically, this property means that the Voiculescu transform of the measure �

is n-divisible for every n: (See page 41 for the de�nition of the Voiculescu transform).
That is, if '� (z) denotes the Voiculescu transform of measure �; then '� (z) =n
must be the Voiculescu transform of a probability measure for every n: Here are two
examples:

Example 67 Semicircle distribution
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The Voiculescu transform of the semicircle distribution is

'SC (z) = KSC

�
1

z

�
� z =

1

z
:

This function is clearly n-divisible because 1= (zn) can be obtained simply by rescal-
ing of the original measure.

Example 68 Marchenko-Pastur distribution

The Voiculescu transform of the Marchenko-Pastur distribution is:

'MP (z) = KMP

�
1

z

�
� z

=
�z

z � 1 :

Again, it is evident that this function is n-divisible: 'MP (z) =n is simply the Voiculescu
transform of another Marchenko-Pastur distribution with parameter �=n:

Example 69 Compound Marchenko-Pastur distribution

It is easy to check that 'aX (z) = a'X (z=a) : Therefore, the Marchenko-Pastur
distribution with parameter � and scaled by a; has the following Voiculescu transform

' (z) =
a�z

z � a
:

This distribution is also evidently in�nitely-divisible, as well as the sum of a �nite
number of such distributions, which has the Voiculescu transform:

' (z) =
nX
i=1

biz

z � ai
: (31)

If the following integral is well de�ned and corresponds to a Voiculescu transform of
a probability distribution, then this distribution is also in�nitely-divisible:

' (z) =

Z 1

�1

sz

z � s
d� (s) ; (32)

where � (s) is an non-decreasing function of s: We can call this probability distri-
bution a compound Marchenko-Pastur distribution. Intuitively, we can think about
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this distribution as the superposition of the Marchenko-Pastur distributions that have
size a = s and intensity � = s: The amplitude (density) assigned to each of these
distributions is given by d� (s) : For example, if we write (31) in this formula then
� (s) has jumps at ai and the size of the jump is bi=ai:
This example motivates the following theorem:

Theorem 70 (Bercovici-Voiculescu (1993)) (1) A probability measure is in�nitely
divisible if and only if it has an analytic coninuation de�ned everywhere on C+ with
values in C� [R:
(2) An analytic function ' : C+ ! C� is a continuation of '� for in�nitely divisible
� if and only if

lim
jzj!1;z2��

' (z) =z = 0

for some � > 0:
(3) The following representation holds for '� when � is an in�nitely divisible proba-
bility measure:

'� = �+

Z 1

�1

1 + sz

z � s
d� (s) ; (33)

where � is real and d� is a �nite measure

Remark: Note that

1 + zs

z � s
=

�
sz

z � s
� s

1 + s2

�
1 + s2

s2
;

so what we did in passing from the compound Marchenko-Pastur distribution (32) to
representation (33) is introducing certain normalization that handle the convergence
in the case of very small jumps s:
A similar formula in the classical case is the famous Levy-Khintchine-Kolmogorov

formula (see Section 18 on page 75 in Gnedenko and Kolmogorov (1959)). If f (t)
is the characteristic funtion of a (classically) in�nitely-divisible representation, then

log f (t) = iat+

Z 1

�1

�
exp (itu)� 1� itu

1 + u2

�
1 + u2

u2
d� (u) ;

where d� is a �nite measure.
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8.1.2 Stable laws

Consider sums of identically distributed free random variables that have the following
form:

S(n) = X
(n)
1 + :::+X

(n)
kn
:

In other words we consider sums of rows in an object which is called a triangular
array. A triangular array is a table of random variables that consists of in�nite number
of rows that have a �nite but variable length. We assume that the length of the rows,
kn; increases as we go down the table, that is, as n grows. The question is when the
distributions of sums converge a particular probability distribution. We will assume
that the variables are self-adjoint and ask when the spectral distributions of sums S(n)

weakly converge to a particular distribution.
We can write a problem in a different form. Let variables X(n)

i all have the spec-
tral distribution �n:We write kn � �n for the free convolution of kn distributions �n;
i.e.

kn � �n =: �n � : : :� �n| {z }
kn-times

;

where we have kn summands in the sum and � sign denotes free convolution.
The question is when kn � �n ! � for a �xed distribution �: In this case we say

that a sequence (kn; �n) belongs to the domain attraction of the in�nitely divisble �:
Slightly adjusting the arguments in the section about in�nitely divisible distributions
we can show that � must be an in�nitely divisible distribution. Essentially we need
only to use division by kn instead of division by n and use the assumption that kn !
1:

Therefore we can write the '-function of � as

'� (z) = �+

Z 1

�1

1 + zt

z � t
d� (t) :

It turns out that the conditions for a probability distribution to be in the domain of
attaction of an in�nitely divisible law has exactly the same form in the free probability
case as in the classical case. In particular, that means that if a sequence of kn classical
convolutions of measure �n with itself converges to the normal law as n!1; then
the sequence of kn free additive convlutions of �n converges to the semicircle law.
Similarly, if the sequence of kn classical convolutions of measure �n converges to
the point measure, then the sequence of kn free additive convolutions of �n also
converges to the point measure. This means that at least for identically distributed
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summands the conditions for the Cental Limit Theorem and the Weak Law of Large
Numbers are essentially the same in free probability case as in the classical case.
This correspondence of the free and the classical cases is puzzling and we will

give an explanation in Section 18.

Theorem 71 (Bercovici-Pata (1999)) kn � �n ! � if and only if the following two
conditions are satis�ed:
(1)

kn
t2

1 + t2
d�n (t)! d� (t) ;

where the convergence is in the sense of weak convergence, and
(2)

kn

Z 1

�1

t

1 + t2
d�n (t)! �:

Note that the conditions in this theorem are exactly the same as the conditions in
the classical case.

Example 72 Convergence to Semicircle (Wigner) Law

Let ! be the semicircle distribution. When does kn ��n ! !? For the semicircle
distribution we have � = c�0: Therefore, the conditions are that

kn
t2

t2 + 1
�n ! c�0;

and that
1Z

�1

kn
t

t2 + 1
d�n (t)! 0:

Example 73 Convergence to free Poisson (Marchenko-Pastur) Law

Consider a sequence of free random variables with the Bernoulli distribution,
i.e. with the distribution that puts weight p on 1 and q = 1 � p on 0. Let in our
triangular array the distribution of X(n)

i changes from raw to raw. Namely, let we
have n summands in the n-th row and let the distribution for X(n)

i is Bernoulli with
parameter pn = �=n: Do the sums of these random variables converge to a limiting
distribution?
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Let us write the relevant functions for the Bernoulli distribution. First, the Cauchy
transform is

GB (z) =
1

z
+

p

z2
+

p

z3
+ :::

=
1

z

z � q

z � 1 :

From this, we can calculate the K-transform:

KB (u) =
1 + u+

q
(1� u)2 + 4up

2u
:

If we take convolution of n Bernoulli variables with parameter pn we get the follow-
ing K-function:

Kn (u) =
2� n (1� u) + n

q
(1� u)2 + 4upn

2u
:

If pn = �=n; then

Kn (u) =
1

u
+

�

1� u
+ o (1) ;

where o (1) is with respect to n ! 1: Therefore, the sums converge to the distribu-
tion with the K-function

KMP (u) =
1

u
+

�

1� u
:

We can recognize this distribution as the Marchenko-Pastur distribution, which
we de�ned at page 39. This distibution is a free analogue of the Poisson distribution
because in the classical case the sums of a similar sequence of independent Bernoulli
random variables converge to the Poisson random variable.

8.2 Multiplicative in�nitely divisible distributions

8.2.1 Measures on the unit circle

Recall that the main tool in the analysis of free multiplicative convolution is the S-
transform as it was de�ned in (20), p. 48. It is also convenient to de�ne a related
function (�-function):

� (u) = S

�
u

1� u

�
:
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Let us useMT to denote the set of probability distributions on the unit circle, and
M�
T to denote those of them that have non-zero expectation: � 2 M�

T if and only if
� 2MT and

R
z d� (z) 6= 0:

An element � ofMT is called in�nitely divisble if for any n it can be represented
as a free convolution of n identical measures �n:

� = �n � :::� �n| {z }
n-times

;

where � denotes free multiplicative convolution and there are n terms in the prod-
uct. We want to characterise the in�nitely-divisible measures in terms of their S-
transforms.
One other useful way to characterize measures on the unit circle is through their

Poisson transforms. Recall that the Poisson transform of a measure � supported on
the unit circle is de�ned as

U� (z) =:

Z �

��
P (r; ! � �) d� (�) ;

where z = rei! and P (r; �) is the Poisson kernel:

P (r; �) =
1

2�

1� r2

1� 2r cos � + r2
:

(Here we have identi�ed measures on the unit circle and on the interval [��; �):
� (d�) = � f� : j�j = 1 and arg � 2 d�g).

Theorem 74 The Poisson transforms U�j (z) of measures �i converge to the Poisson
transform U� (z) of measure � uniformly on compact subsets of the unit disc if and
only if �j weakly converges to �.

Proof: Indeed, if �j ! �, then by the second theorem in Section I.D.1 of Koosis
(1998), U�j (z) ! U� (z), where convergence is uniform on compact subsets of
the unit disc. To make the reverse implication, note that the family of probability
measures on the circle is tight, i.e., compact. Therefore, the only way in which

�
�j
	

can fail to converge is when there are two subsequences of
�
�j
	
that converge to

different limits. Suppose that �0 and �00 are those two different limits. Then by the
�rst part of the proof and by assumption about U�j (z) ; they must have the same
Poisson integral: U�0 (z) = U�00 (z) : In other words, there exists a signed measure
of �nite variation (�0 � �00) ; which does not vanish identically and whose Poisson
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transform equals 0. This is impossible. (For instance, the impossibility follows from
the last theorem in Section I.D.2 of Koosis (1998).) QED.
Note in particular that a particular consequence of this Theorem is that the mea-

sures on the unit disc are in one-to-one correspondence with their Poisson transforms.
It turns out that  -functions are closely related to the Poisson transform. Indeed,

for the measures on the unit circlel, we can re-write the de�nition of the  -function
as follows:

 � (z) =

Z
j�j=1

d� (�)

1� z�
� 1:

Since
Re

1

1� �z
=

1� r cos (! � �)

1� 2r cos (! � �) + r2
;

where � = e�i� and z = rei!; therefore,

Re
1

1� �z
=
1

2
+ �P (r; ! � �)

Hence,
U� (z) =

1

�
Re � (z) +

1

2�
: (34)

This implies in particular, (1) that  -functions are in one to one correspondence with
the measures on the unit circle, and (2) that the uniform convergence of  -functions
on subsets of the unit disc is equivalent to the convergence of the corresponding
measures. In turn, this implies also that the analogous properties hold for the S-
transforms.

Theorem 75 If S�i (u) converges to a function S (u) uniformly inside the unit disc
then �i weakly converges to a measure � and S (u) is the S-transform of this measure.

Now let us turn to the question of in�nitely divisible measures inMT :

Theorem 76 If the expectation of in�nitely divisible measure is zero than it must be
the uniform measure on the unit circle.

Proof: In this case, � = �� � and � must have zero expectation. But in this case
it is easy to check that the de�nition of freeness implies that all moments of � equals
zero, and this implies that the measure is uniform. QED.
It is useful to give examples of in�nitely divisible measures fromM�

T .
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Example 77 For every � > 0; the function

S (z) = exp

�
�

�
z +

1

2

��
is the S-transform of an in�nitely divisible measure fromM�

T :

Indeed, we only need to check that for every � > 0; the function exp (� (z + 1=2))
is an S-transform of a measure fromM�

T : Let " = �=n and de�ne �" = (�� + ��) =2;

where � =
p
1� " + i

p
": The we can compute that the S-transform of �" is as

follows:
S" (z) = 1 + "�

�
z +

1

2

�
+O

�
"2
�
:

Then it is easy to see that �n" denote the measure �" convolved n-times with itself,
then the S-transform of �n" converges to S (z) = exp

�
�
�
z + 1

2

��
. By Proposition 75

we can conclude that the limit is S-transform of a probability distribution from MT

and it is easy to see that its expectation is not zero.

Example 78 For every � > 0 and t 2 R; the function

S (z) = exp

�
�

z + 1
2
+ it

�
is the S-transform of an in�nitely divisible measure fromM�

T :

We proceed as in the previous example. Let " = �=n and de�ne �" = (1� ") �1+

"�� ; where

� = �
1
2
� it

1
2
+ it

:

(Note that j�j2 = 1.) The S-transform of this measure is

S" (z) = 1 + "
�

z + 1
2
+ it

+O
�
"2
�
:

Then the S-transform of the n-time convolution of �" with itself converges to

exp
�
� (z + 1=2 + it)�1

�
:

Therefore this convolution converges to a probability measure from M�
T with the

desired S-transform.
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It can be seen that in terms of the �-function, this examples can be represented in
a uniform way. Namely, in both cases the �-function can be represented as

� (z) = exp

�
�
1 + �z

1� �z

�
(35)

for some � > 0 and � 2 T = fz : jzj = 1g :

Theorem 79 Ameasure � 2M�
T is in�nitely divisible if and only if� (z) = exp (u (z))

where u (z) is a function, which is analytic in the unit disc and such thatReu (z) � 0
if z 2 fz : jzj < 1g :

For proof, see Bercovici and Voiculescu (1992).

8.2.2 Measures on R+

The in�nitely-divisible measures on R+ are de�ned similarly to in�nitely-divisible
measures on the unit circle. A measure on R+ is in�nitely-divisible if and only if for
any positive integer n we can �nd a measure �n on R+; such that

� = �n � :::� �n| {z }
n-times

;

where� denotes free multiplicative convolution and there are n terms in the product.
We restrict our attention here to compactly-supported measures. As in the previ-

ous section de�ne
�� (z) = S�

�
z

1� z

�
:

The basic example of in�nitely divisible distribution on the unit circle is given in
the following Lemma:

Lemma 80 For every � > 0 and every t 2 R+; the function

� (z) = exp

�
��z
1� tz

�
is the �-transform of some probability measure � compactly supported on R+:

The main theorem about multiplicatively in�nitely-divisible measures is as fol-
lows.
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Theorem 81 A measure � is in�nitely-divisible if and only if �� (z) = exp (u(z))

where u (z) has the following representation in the area RnR+

u (z) = ��
Z 1

�1

z

1� tz
d� (t) ;

where � is real and � is a �nite measure.

For proof, see Bercovici and Voiculescu (1992).

9 Notes
For basic facts of operator algebra theory the reader can consult Bratteli and Robin-
son (1987). An introduction to quantum probability, which includes discussion of
non-commutative probability spaces can be found in Parthasarathy (1992). The free
probability came into the existence in Voiculescu (1983). Its �rst systematic descrip-
tion can be found in Voiculescu et al. (1992). An updated treatment of free probabil-
ity theory that emphasizes its relation to random matrices is in Hiai and Petz (2000).
Another textbook treatment of free probability that emphasize combinatorical aspect
is in Nica and Speicher (2006)
The results about additive and multiplicative in�nitely-divisible distributions are

from Bercovici and Voiculescu (1993) and Bercovici and Voiculescu (1992), respec-
tively. The domains of attractions and stable laws are studied in Bercovici et al.
(1999).
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Part II

Limit Theorems for Sums of Free
Operators
10 CLT for Bounded Variables
In classical probability theory, one the most important theorem is the Central Limit
Theorem (CLT). It has an analogue in non-commutative probability theory. First we
formulate it for bounded random variables.

Theorem 82 Let self-adjoint r.v. Xi; i = 1; 2; :::; be free. Assume that E(Xi) = 0,
kXik � L and limn!1 [E (X

2
1 ) + :::+ E (X2

n)] =n = 1: Then measures associated
with r.v. n�1=2

Pn
i=1Xi converge in distribution to an absolutely continuous measure

with the following density:

�(x) =
1

2�

p
4� x2�[�2;2] (x) :

This result was proven in Voiculescu (1983) and later generalized in Maassen
(1992) to unbounded identically distributed variables that have a �nite second mo-
ment. Another generalization can be found in Voiculescu (1998) and Pata (1996).
Proof of Theorem 82: We know that

KSn (z) =
nX
i=1

KXi (z)� (n� 1) z�1

Consequently,

KSn=
p
n (z) =

1p
n

nX
i=1

KXi

�
zp
n

�
� (n� 1) z�1:

Note that by Lemma 64, p.62, the power series for KXi

�
zp
n

�
converges in jzj �

p
n= (4L) : Moreover, using Corollary 65 and the condition that E(Xi) = 0 we can

write:

KSn=
p
n (z) =

1

z
+

 
1

n

nX
i=1

E
�
X2
i

�!
z +

1p
n

nX
i=1

vi

�
zp
n

�
;
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where for jzj �
p
n= (2L) we can estimate jvi (z=

p
n)j � 8Lz2=n: Therefore�����KSn=

p
n (z)�

1

z
�
 
1

n

nX
i=1

E
�
X2
i

�!
z

����� � 1p
n
8Lz2

for all z; such that jzj �
p
n= (2L) :

Therefore,
KSn=

p
n (z)�

1

z
! z; as n!1;

and the convergence is uniform on the compact subsets of C: This implies that

GSn=
p
n (z)! G� (z) ; as n!1;

with the uniform convergence on the compact subsets. and this in term implies that
the spectral distribution of Sn=

p
n converges to the semicircle distribution. QED.

11 CLT, Proof by Lindeberg's Method
Freeness is a very strong condition imposed on operators and it is of interest to �nd
out whether the Central Limit Theorem continues to hold if this condition is some-
what relaxed. This problems calls for a different proof of the non-commutative CLT
because the existing proofs are based either on addivity of R-transform or on vanish-
ing of mixed free cumulants, and both of these techniques are inextricably connected
with the concept of freeness.
In this paper we give a proof of free CLT that avoids using either R-transforms

or free cumulants. This allows us to give a generalization of the CLT to random
variables that are not necessarily free but satisfy a weaker assumption. An example
shows that this assumption is strictly weaker than assumption of freeness.
The proof that we use is a modi�cation of the Lindeberg proof of the classical

CLT (Lindeberg (1922)). The main difference is that we use polynomials instead of
arbitrary functions from C3c (R) ; and that more ingenuity is required to estimate the
residual terms in the Taylor expansion formulas.
We will say that a sequence of zero-mean random variablesX1; :::; Xn; ::: satis�es

Condition A if:

1. For every k; E (XkXi1 ::: Xir) = 0 provided that is 6= k for s = 1; :::; r:

2. For every k � 2; E (X2
kXi1 ::: Xir) = E (X2

k)E (Xi1 ::: Xir) provided that
is < k for s = 1; :::; r:
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3. For every k � 2;

E
�
XkXi1 ::: XipXkXip+1 ::: Xir

�
= E

�
X2
k

�
E
�
Xi1 ::: Xip

�
E
�
Xip+1 ::: Xir

�
provided that is < k for s = 1; :::; r:

Intuitively, if we know how to calculate every moment of the sequenceX1; :::; Xk�1;

then using Condition A we can also calculate the expectation of any product of ran-
dom variables X1; :::; Xk that involves no more than two occurences of variable Xk.
Part 1 of Condition A is stronger than is needed for this calculation, since it involves
variables with indices higher than k: However, we will need this additional strength
in the proof of Lemma 93 below, which is essential for the proof of the main result.

Proposition 83 Every sequence of free random variables X1; :::; Xn, ::: satis�es
Condition A.

This proposition can be checked by direct calculation that uses Proposition 8.
We will also need the following fact.

Proposition 84 Let X1:::Xl be zero-mean variables that satisfy Condition A(1), and
let Yl+1; :::; Yn be zero-mean variables which are free from each other and from the
algebra generated by variables X1; :::; Xl: Then X1; :::; Xl; Yl+1; :::Yn satis�es Con-
dition A(1).

Proof: Consider the moment E (XkAi1 :::Ais) ; where Ait is either one of Yj or
one of Xi but with the exception that it can never be equal to Xk: Then we can use
the fact that Yj are free and write

E (XkAi1 :::Ais) =
X
�

c�E
�
XkXi1(a):::Xir(�)

�
;

where none ofXit(�) equalsXk: Then, using the assumption thatXi satisfy Condition
A(1), we conclude thatE (XkAi1 :::Ais) = 0:AlsoE (YkAi1 :::Ais) = E (Yk)E (Ai1 :::Ais) =

0; provided that none of Ait equals Yk: In sum, the sequence X1; :::; Xl; Yl+1; :::Yn
satis�es Condition A(1). QED.
While freeness of random variables Xi is the same concept as freeness of the

algebras that they generate, Condition A deals only with variables Xi only, and not
with algebras that they generate. For example, it is conceivable that a sequence fXig
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satisfy condition A but fX2
i � E (X2

i )g do not. In particular, this implies that Con-
dition A requires checking a much smaller set of moment conditions than freeness.
Below we will present an example of random variables which are not free but satisfy
Condition A.
Recall that the standard semicircle law �SC is the probability distribution on R

with the density ��1
p
4� x2 for x 2 [�2; 2]; and 0 otherwise. We are going to prove

the following Theorem.

Theorem 85 Suppose f�ig is a sequence of self-adjoint random variables that sat-
is�es Condition A; and such that every �i has the moments of all orders, E�i = 0;

E�2i = �2i ; and that for every k � 0; the kth absolute moments of �i are uniformly
bounded, i.e. E j�ij

k � �k for all i: Suppose also that sN = (�21 + :::+ �2N)
1=2

are such that sN=
p
N ! s > 0 as N ! 1. Then the spectral measure of

SN = (�1 + :::+ �N) =sN converges in distribution to the semicircle law �SC :

The contribution of this theorem is twofold. First, it shows that the semicircle
central limit holds for a certain class of non-free variables. Second, it gives a proof
of the free CLT which is different from the usual proof through R-transforms. It
does not give improvement in conditions over a version of the free CLT which is
formulated in Section 2.5 in Voiculescu (1998). (Note that the condition

P
' (a2i )!

1 in the statement of the theorem appears to be a typo and the condition is actually
n�1

P
' (a2i )! 1:)

11.1 Example

Let us present an example that suggest that Condition A is strictly weaker than free-
ness condition.
Let F be the free group with a countable number of generators fk; k = 1; :::

Consider the set of relations R = ffkfk�1fkfk�1fkfk�1 = eg ; where k � 2; and
de�ne G = F=R; that is, G is the group with generators fk and relations generated
by relations from R:

Here is a couple of useful consequences of these relationships:
1) fk�1fkfk�1fkfk�1fk = e:

(Indeed, e = f�1k (fkfk�1fkfk�1fkfk�1) fk = fk�1fkfk�1fkfk�1fk:)
2) f�1k�1f

�1
k f�1k�1f

�1
k f�1k�1f

�1
k = e and f�1k f�1k�1f

�1
k f�1k�1f

�1
k f�1k�1 = e:

We are interested in the structure of the group G. For this purposes we will
study the structure of R, which is a subgroup of F generated by elements of R and
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their conjugates. We will represent elements of F by words, that is by sequences of
generators. We will say that a word is reduced if does not have a subsequence of the
form fkf

�1
k or f�1k fk: It is cyclically reduced if it does not have the form of fk:::f�1k

or f�1k :::fk: We will call a number of elements in a reduced word w its length and
denote it jwj : A set of relations R is symmetrized if for every word r 2 R; the set R
also contains its inverse r�1 and all cyclically reduced conjugates of both r and r�1:
For our particular example, a symmetrized set of relations is given by the follow-

ing list:

R =

�
fkfk�1fkfk�1fkfk�1; fk�1fkfk�1fkfk�1fk;

f�1k�1f
�1
k f�1k�1f

�1
k f�1k�1f

�1
k ; f�1k f�1k�1f

�1
k f�1k�1f

�1
k f�1k�1

�
;

where k are all integers � 2:
A word b is called a piece (relative to a symmetrized set R) if there exist two

elements of R; r1 and r2; such that r1 = bc1 and r2 = bc2: In our case, each
fk and f�1k with index k � 2 is a piece because fk is the initial part of relations
fkfk�1fkfk�1fkfk�1 and fkfk+1fkfk+1fkfk+1; and f�1k is the initial part of the rela-
tions f�1k f�1k�1f

�1
k f�1k�1f

�1
k f�1k�1 and f

�1
k f�1k+1f

�1
k f�1k+1f

�1
k f�1k+1: There is no other pieces.

Now we introduce a condition of small cancellation for a symmetrized set R:

Condition 86 (C 0 (�)) If r 2 R and r = bc where b is a piece, then jbj < � jrj :

Essentially, the condition says that if two relations are multiplied together, then a
possible cancellation must be relatively small. Note that if R satis�es C 0 (�) then it
satis�es C 0 (�) for all � � �:

In our example R satis�es C 0 (1=5) :
Another important condition is the triangle condition.

Condition 87 (T ) Let r1; r2; r3 be three arbitrary elements of R such that r2 6= r�11
and r3 6= r�12 Then at least one of the products r1r2, r2r3; or r3r1 is reduced without
cancellation.

In our example, Condition (T ) is satis�ed.
If s is a word in F; then s > �R means that there exists a word r 2 R such that

r = st and jsj > � jrj : An important result from small cancellation theory that we
will use later is the following theorem:
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Theorem 88 (Greendlinger's Lemma) Let R satisfy C 0 (1=4) and T: Let w be a
non-trivial, cyclically reduced word with w 2 R. Then either
(1) w 2 R;
or some cyclycally reduced conjugate w� of w contains one of the following:
(2) two disjoint subwords, each > 3

4
R; or

(4) four disjoint subwords, each > 1
2
R:

This theorem is Theorem 4.6 on p. 251 in Lyndon and Schupp (1977).
Since in our example R satis�es both C 0 (1=4) and T; we can infer that the con-

clusion of the theorem must hold in our case. For example, (2) means that we can
�nd two disjoint subwords of w; s1 and s2; and two elements of R, r1 and r2; such
that ri = siti and jsij > (3=4) jrij = 9=2: In particular, we can conclude that in this
case jwj � 10: Similarly, in case (4), jwj � 16: One immediate application is that G
does not collapse to the trivial group. Indeed, all fi are not zero.
Let L2 (G) be the functions of G that are square-summable with respect to the

counting measure. G acts on L2 (G) by left translations:

(Lgx) (h) = x (gh) :

Let A be the group algebra of G: The action of G on L2 (G) can be extended to the
action ofA on L2 (G) :De�ne the expectation on this group algebra by the following
rule:

E (h) = h�e; Lh�ei ;

where h; i denotes the scalar product in L2 (G) : Alternatively, the expectation can be
written as follows:

E (h) = ae;

where h =
P

g2G agg is a representation of a group algebra element h as a linear
combination of elements g 2 G: The expectation is clearly positive and �nite by
de�nition. It is also tracial because g1g2 = e if and only if g2g1 = e:

If Lh =
P

g2G agLg is a linear operator corresponding to the element of group
algebra h =

P
g2G agg, then its adjoint is (Lh)

� =
P

g2G agLg�1 ; which correspond
to the element h� =

P
g2G agg

�1:

Consider elements Xi = fi + f�1i : They are self-adjoint and E (Xi) = 0: Also
we can compute E (X2

i ) = 2: Indeed it is enough to note that f 2i 6= e; and this holds
because insertion or deletion of an element from R changes the degree of fi by a
multiple of 3: Therefore, every word equal to zero must have the degree of every fi
equal to 0 modulo 3.
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Proposition 89 The sequence of variables fXig is not free but it satis�es Condition
A.

Proof: The variablesXk are not free. ConsiderX2X1X2X1X2X1: Its expectation
is 2; because f2f1f2f1f2f1 = e and f�12 f�11 f�12 f�11 f�12 f�11 = e; and all other terms
in the expansion ofX2X1X2X1X2X1 are different from e: Indeed, the only terms that
are not of the form above but still have the degree of all fi equal to zero modulo 3 are
f2f

�1
1 f2f

�1
1 f2f

�1
1 and f�12 f1f

�1
2 f1f

�1
2 f1; but they do not equal zero by application

of Greendlinger's lemma. Therefore, E (X2X1X2X1X2X1) = 2: This contradicts
the de�nition of freeness of variables X2 and X1:

Let us check Condition A. For A1, consider E (fkfi1 :::fin) ; where k 6= is; and
is 6= is+1 for every s: It is enough to check that this expectation equals 0. Indeed
fkfi1 :::fin 6= e: This can be seen from the fact that an insertion or deletion of a rela-
tion can change the degree of fk only by 3. Therefore E (fkfi1 :::fin) = 0: A similar
argument works for E

�
f�1k fi1 :::fin

�
= 0 and more generally for the expectation of

every element of the form f "kf
n1
i1
:::fn2in ; where " = �1 and ns are integer.

Similarly, we can prove that E
�
f�2k fn1i1 :::f

n2
in

�
= 0 and this suf�ce to prove A2.

For A3 we have to consider elements of the form f "1k fi1 :::fipf
"2
k fip+1 :::fiq As-

sume that neither fi1 :::fip nor fip+1 :::fiq can be reduced to e: Otherwise we can use
property A2. The claim is that E

�
f "1k fi1 :::fipf

"2
k fip+1 :::fiq

�
= 0: This is clear when

"1 and "2 have the same sign because of the fact that relation change the degree of
the element fk by a multiple of 3: A more dif�cult case is when "1 = 1 and "2 = �1:
(The case with opposite signs is similar.) However, in this case we can conclude
that fkfi1 :::fipf

�1
k fip+1 :::fiq 6= e by application of Greendlinger's lemma. Indeed,

the only subwords that this word can contain, which would also be subwords of an
element of R, are subwords of length 1 and 2. But these subwords fail to satisfy the
requirement of either (2) or (4) in Greendlinger's lemma. Therefore, we can con-
clude that fkfi1 :::fipf

�1
k fip+1 :::fiq 6= e and A3 is also satis�ed. Thus Condition A

is satis�ed by random variables X1; :::; Xk; ::: in algebra A; although these variables
are not free. QED.

11.2 Proof of the main result

Outline of Proof: Our proof of the free CLT proceeds along the familiar lines of
the Lindeberg method. We take a family of functions and evaluate an arbitrary func-
tion from this family on the sum SN = X1 + ::: + XN: The goal is to compare
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Ef (SN) with Ef
�eSN� ; where f are functions from a suf�ciently large family,eSN = Y1+ :::+YN and Yi are independent semicircle variables chosen in such a way

that Var (SN) = Var
�eSN� : To estimate ���Ef (SN)� Ef

�eSN����, we substitute the
elements in SN with the semicircle free random variables, one by one, and estimate
the corresponding change in the expected value of f (SN). After that, we show that
the total change, as all elements in the sum are substituted with semicircle random
variables, is asymptotically small as N !1: Finally, tightness of the selected fam-
ily of functions allows us to conclude that the distribution of SN must converge to
the semicircle law as N !1:

The usual choice of functions f are functions from C3c (R) ; that is, functions
with continuous third derivative and compact support. In non-commutative setting
this family of functions is not appropriate because the usual Taylor series formula is
dif�cult to apply. Intuitively, it is dif�cult to develop f (X + h) in power series of h if
variablesX and h do not commute. Since the Taylor formula is crucial for estimating
the change in Ef (SN), we will still use it but restrict the family of functions to
polynomials.
To show that the family of polynomials is suf�ciently rich for our purposes, we

use the following Proposition:

Proposition 90 Suppose there is a unique d.f. F with the moments
�
m(r); r � 1

	
:

Suppose that fFNg is a sequence of d.f., each of which has all its moments �nite:

m
(r)
N =

Z 1

�1
xrdFN :

Finally, suppose that for every r � 1 :

lim
n!1

m
(r)
N = m(r):

Then FN ! F vaguely.

See Theorem 4.5.5. in Chung (2001) for a proof.
Since the semicircle distribution is bounded and therefore is determined by its

moments (see Corollary to Theorem II.12.7 Shiryaev (1995)), we only need to show
that the moments of Sn converge to moments of the semicircle distribution.
Proof of Theorem 85: De�ne �i as a sequence of random variables that are

freely independent among themselves and also from all �i: Suppose also that �i have
semicircle distributions with E�i = 0 and E�2i = �2i :We are going to use as known
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the fact that the sum of free semicircle random variables is semicircle, and therefore,
the spectral distribution of (�1 + :::+ �N) =

�
s
p
N
�
converges in distribution to the

semicircle law �SC with zero expectation and unit variance. Let us de�ne Xi =

�i=sN and Yi = �i=sN :We will proceed by proving that moments of X1 + ::: +XN

converge to moments of Y1 + :::+ YN and applying Proposition 90. Let

�f = Ef (X1 + :::+XN)� Ef (Y1 + :::+ YN) ;

where f (x) = xm:Wewant to show that this difference approaches zero asN grows.
By assumption, EYi = EXi = 0 and EY 2

i = EX2
i = �2i =s

2
N :

The �rst step is to write the difference �f as follows:

�f = [Ef (X1 + :::+XN�1 +XN)� Ef (X1 + :::+XN�1 + YN)]

+ [Ef (X1 + :::+XN�1 + YN)� Ef (X1 + :::+ YN�1 + YN)]

+ [Ef (X1 + Y2:::+ YN�1 + YN)� Ef (Y1 + Y2:::+ YN�1 + YN)] :

We intend to estimate every difference in this sum. Let

Zk = X1 + :::+Xk�1 + Yk+1 + :::+ YN : (36)

We are interested in
Ef (Zk +Xk)� Ef (Zk + Yk) :

We are goint to apply the Taylor expansion formula but �rst we de�ne directional
derivatives. Let f 0Xk (Zk) be the derivative of f at Zk in the direction Xk; de�ned as
follows:

f 0Xk(Zk) = limt#0

f (Zk + tXk)� f(Zk)

t
:

The higher order directional derivatives can be de�ned recursively. For example,

f 00Xk (Zk) =:
�
f 0Xk
�0
Xk
(Zk) = lim

t#0

f 0Xk (Zk + tXk)� f 0Xk(Zk)

t
:

For polynomials this de�nition is equivalent to the following de�nition:

f 00Xk(Zk) = 2 limt#0

f (Zk + tXk)� f(Zk)� tf 0Xk(Zk)

t2
:

Example 91 Operator directional derivatives of f (x) = x4
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Let us compute f 0X (Z) and f 00X (Z) for f (x) = x4: Using de�nitions we get

f 0X (Z) = Z3X + Z2XZ + ZXZ2 +XZ3

and

f 00X (Z) = 2
�
Z2X2 + ZXZX +XZ2X + ZX2Z +XZXZ +X2Z2

�
: (37)

The derivatives of f at Zk + �Xk in the direction Xk are de�ned similarly, for
example:

f 000Xk (Zk + �Xk)

= 6 lim
t#0

f (Zk + (� + t)Xk)� f(Zk + �Xk)� tf 0Xk(Zk + �Xk)� 1
2
t2f 00Xk(Zk + �Xk)

t3
:

Next, let us write the Taylor formula for f (Zk +Xk):

f (Zk +Xk) = f(Zk) + f
0
Xk
(Zk) +

1

2
f 00Xk (Zk) +

1

2

Z 1

0

(1� �)2 f 000Xk (Zk + �Xk) d� :

(38)
Formula (38) can be obtained by integration by parts from the expression

f (Zk +Xk)� f(Zk) =

Z 1

0

f 0Xk (Zk + �Xk) d� :

For polynomials it is easy to write the explicit expressions for f (r)Xk (Zk) or f
(r)
Xk
(Zk + �Xk)

although they can be quite cumbersome for polynomials of high degree. Very schemat-
ically, for a function f (x) = xm; we can write

f 0Xk (Zk) = XkZ
m�1
k + ZkXkZ

m�2
k + :::+ Zm�1k Xk; (39)

and
f 00Xk (Zk) = 2

�
X2
kZ

m�2
k +XkZkXkZ

m�3
k + :::+ Zm�2k X2

k

�
; (40)

Similar formulas hold for f 0Yk (Zk) and f
00
Yk
(Zk) with the change that Yk should be

put instead of Xk:

Using the assumptions that sequence fXkg satis�es Condition A and that vari-
ables Yk are free, we can conclude that Ef 0Yk (Zk) = Ef 0Xk (Zk) = 0 and that
Ef 00Yk (Zk) = Ef 00Xk (Zk) : Indeed, consider, for example, (40). We can use expression
(36) for Zk and the free independence of Yi to expand (40) as

Ef 00Xk (Zk) =
X
�

c�P�
�
E
�
XkX1XkX2

�
; E
�
XkX3XkX4

�
; :::
�
; (41)
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where Xi denotes certain monomials in variables X1; :::; Xk�1 (i.e., Xi = Xi1 :::Xip

with ik 2 f1; :::; k � 1g), and where � indexes certain polynomials P�: In other
words, using the free independence of Yi andXi we expand the expectations of poly-
nomial f 00Xk (Zk) as a sum over polynomials in joint moments of variables Xj and Yi
where j = 1; :::; k and i = k + 1; :::; N: By freeness, we can achieve that the mo-
ments in this expression are either joint moments of variablesXj or joint moments of
variables Yi but never involve both Xj and Yi. Moreover, we can explictly calculate
the moments of Yi (i.e., expectations of the products of Yi) because their are mutually
free. The resulting expansion is (41).
Let us try to make this process clearer by an example. Suppose that f (x) = x4;

N = 4; k = 2 and Zk = Z2 = X1 + Y3 + Y4:We aim to compute Ef 00X2 (Z2) : Using
formula (37), we write:

Ef 00X2 (Z2) = 2E
�
Z22X

2
2 + :::

�
= 2E

�
(X1 + Y3 + Y4)

2X2
2 + :::

�
= 2fE

�
X2
1X

2
2

�
+ E

�
X1Y3X

2
2

�
+ E

�
X1Y4X

2
2

�
+E

�
Y3X1X

2
2

�
+ E

�
Y 2
3 X

2
2

�
+ E

�
Y3Y4X

2
2

�
+E

�
Y4X1X

2
2

�
+ E

�
Y4Y3X

2
2

�
+ E

�
Y 2
4 X

2
2

�
+ :::g:

Then, using freeness of Y3 and Y4 and the facts that E (Yi) = 0 and E (Y 2
i ) = �2i ; we

continue as follows:

Ef 00X2 (Z2) = 2fE
�
X2
1X

2
2

�
+ �23E

�
X2
2

�
+ �24E

�
X2
2

�
+ :::g;

which is the expression we wanted to obtain.
It is important to note that the coef�cients c� do not depend on variables Xj but

only on Yj; j > k; and on the locations, which Yj take in the expansion of f 00Xk (Zk) :
Therefore, we can substitute Yk for Xk and develop a similar formula for Ef 00Yk (Zk):

Ef 00Yk (Zk) =
X
�

c�P�
�
E
�
YkX1YkX2

�
; E
�
YkX3YkX4

�
; :::
�
: (42)

In the example above, we will have

Ef 00Y2 (Z2) = 2fE
�
X2
1Y

2
2

�
+ �23E

�
Y 2
2

�
+ �24E

�
Y 2
2

�
+ :::g:

Formula (42) is exactly the same as formula (41) except that all Xk is substituted
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with Yk. Finally, using Condition A we obtain that for every i:

E
�
YkXiYkXi+1

�
= E

�
Y 2
k

�
E
�
Xi

�
E
�
Xi+1

�
= E

�
X2
k

�
E
�
Xi

�
E
�
Xi+1

�
= E

�
XkXiXkXi+1

�
;

and therefore Ef 00Yk (Zk) = Ef 00Xk (Zk) :

Consequently,

Ef (Zk +Xk)� Ef (Zk + Yk) =
1

2

Z 1

0

(1� �)2Ef 000Xk (Zk + �Xk) d�

�1
2

Z 1

0

(1� �)2Ef 000Yk (Zk + �Yk) d� :

Next, note that if f is a polynomial, then f 000Xk (Zk + �Xk) is the sum of a �nite
number of terms, which are products of Zk + �Xk and Xk: The number of terms
in this expansion is bounded by C1, which depends only on the degree m of the
polynomial f:
A typical term in the expansion looks like

E (Zk + �Xk)
m�7X3

k (Zk + �Xk)
3Xk:

In addition, if we expand the powers of Zk + �Xk, we will get another expansion
that has the number of terms bounded by C2; where C2 depends only onm: A typical
element of this new expansion is

E
�
Zm�7k X3

kZ
2
kX

2
k

�
:

Every term in this expansion has a total degree of Xk not less than 3; and, corre-
spondingly, a total degree of Zk not more than m � 3: Our task is to show that as
n!1; these terms approach 0:
We will use the following lemma to estimate each of the summands in the expan-

sion of f 000Xk (Zk + �Xk).

Lemma 92 Let X and Y be self-adjoint. Then

jE (Xm1Y n1 :::XmrY nr)j
�

�
E
�
X2rm1

��2�r �
E
�
Y 2rn1

��2�r
:::
�
E
�
X2rmr

��2�r �
E
�
Y 2rnr

��2�r
:
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Proof: For r = 1; this is the usual Cauchy-Schwartz inequality for traces:

jE (Xm1Y n1)j2 � E
�
X2m1

�
E
�
Y 2n1

�
:

See, for example, Proposition I.9.5 on p. 37 in Takesaki (1979).
Next, we proceed by induction. We have two slightly different cases to consider.

Assume �rst that r is even, r = 2s: Then, by the Cauchy-Schwartz inequality, we
have:

jE (Xm1Y n1 :::XmrY nr)j2

� E (Xm1Y n1 :::XmsY nsY nsXms :::Y n1Xm1)

�E (Y nrXmr :::Y ns+1Xms+1Xms+1Y ns+1 :::XmrY nr)

= E
�
X2m1Y n1 :::XmsY 2nsXms :::Y n1

�
�E

�
Y 2nrXmr :::Y ns+1X2ms+1Y ns+1 :::Xmr

�
:

Applying the inductive hypothesis, we obtain:

jE (Xm1Y n1 :::XmrY nr)j2

�
�
E
�
X2rm1

��2�r+1 �
E
�
Y 2rns

��2�r+1
�
h
E
�
Y 2r�1n1

�i2�r+2
:::
h
E
�
X2r�1ms

�i2�r+2
�
�
E
�
X2rms+1

��2�r+1 �
E
�
Y 2rnr

��2�r+1
�
h
E
�
Y 2r�1ns+1

�i2�r+2
:::
h
E
�
X2r�1mr

�i2�r+2
:

We recall that by the Markov inequality,
h
E
�
Y 2r�1n1

�i2�r+2
�
�
E
�
Y 2rn1

��2�r+1
and we get the desired inequality:

jE (Xm1Y n1 :::XmrY nr)j
�

�
E
�
X2rm1

��2�r �
E
�
Y 2rn1

��2�r
:::
�
E
�
X2rmr

��2�r �
E
�
Y 2rnr

��2�r
:

Now let r be even, r = 2s+ 1: Then

jE (Xm1Y n1 :::XmrY nr)j2

� E (Xm1Y n1 :::Y nsXms+1Xms+1Y ns :::Y n1Xm1)

�E (Y nrXmr :::Xms+2Y ns+1Y ns+1Xms+2 :::XmrY nr)

= E
�
X2m1Y n1 :::Y nsX2ms+1Y ns :::Y n1

�
E
�
Y 2nrXmr :::Xms+2Y 2ns+1Xms+1 :::Xmr

�
:
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After that we can use the inductive hypothesis and the Markov inequality and obtain
that

jE (Xm1Y n1 :::XmrY nr)j
�

�
E
�
X2rm1

��2�r �
E
�
Y 2rn1

��2�r
:::
�
E
�
X2rmr

��2�r �
E
�
Y 2rnr

��2�r
:

QED.
We apply Lemma 92 to estimate each of the summands in the expansion of

f 000Xk (Zk + �Xk). Consider a summand E (Zm1
k Xn1

k :::Z
mr
k Xnr

k ) : Then by Lemma
92, we have

jE (Zm1
k Xn1

k :::Z
mr
k Xnr

k )j (43)

�
�
E
�
Z2

rm1
k

��2�r �
E
�
X2rn1
k

��2�r
:::
�
E
�
Z2

rmr
k

��2�r �
E
�
X2rnr
k

��2�r
:

Lemma 93 Let Z = (v1 + :::+ vN) =N
1=2; where vi are self-adjoint and satisfy con-

dition A and for each k; the kth absolute moments of vi are uniformly bounded, i.e.,
E jvijk � �k for every i: Then, for every integer r � 0

E (jZjr) = O (1) as N !1:

Proof: We will �rst treat the case of even r: In this case, E (jZjr) = E (Zr) :

Consider the expansion of (v1 + :::+ vN)
r : Let us refer to the indices 1; :::; N as

colors of the corresponding v: If a term in the expansion includes more than r=2
distinct colors, then one of the colors must be used by this term only once. Therefore,
by the �rst part of condition A the expectation of such a term is 0.
Let us estimate a number of terms in the expansion that include no more than r=2

distinct colors. Consider a �xed combination of � r=2 colors. The number of terms
that use colors only from this combination is � (r=2)r : Indeed, consider the product

(v1 + :::+ vN) (v1 + :::+ vN) ::: (v1 + :::+ vN)

with r product terms. We can choose an element from the �rst product term in r=2
possible ways, an element from the second product term in r=2 possible ways, etc.
Therefore, the number of all possible choices is (r=2)r : On the other hand, the num-
ber of possible different combinations of k � r=2 colors is

N !

(N � k)!k!
� N r=2:
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Therefore, the total number of terms that use no more than r=2 colors is bounded
from above by

(r=2)rN r=2:

Now let us estimate the expectation of an individual term in the expansion. In
other words we want to estimate E

�
vk1i1 :::v

ks
is

�
; where kt � 1; k1 + :::+ ks = r; and

it 6= it+1: First, note that ��E �vk1i1 :::vksis ��� � E
���vk1i1 :::vksis ��� :

Indeed, using Cauchy-Schwartz inequality, for any operator X we can write

jE (X)j2 = E
�
U jXj1=2 jXj1=2

�
� E

�
jXj1=2 U�U jXj1=2

�
E
�
jXj1=2 jXj1=2

�
= E (jXjP )E (jXj) ;

where U is a partial isometry and P = U�U is a projection. Note that from positivity
of the expectation it follows that E (jXjP ) � E (jXj) : Therefore, we can conclude
that jE (X)j � E (jXj) :
Next, we use the Hölder inequality for traces of non-commutative operators (see

Fack (1982), especially Corollary 4.4(iii) on page 324, for the case of the trace in a
von Neumann algebra and Section III.7.2 in Gohberg and Krein (1969) for the case
of compact operators and the usual operator trace). Note that

1

s
+ :::+

1

s| {z }
s-times

= 1;

therefore, the Hölder inequality gives

E
���vk1i1 :::vksis ��� � hE �jvi1jk1s� :::E �jvis jkss�i1=s :

Using this result and uniform boundedness of the moments (from assumption of
the lemma), we get:

log
��E �vk1i1 :::vksis ��� � 1

s

sX
i=1

log �kis:

Without loss of generality we can assume that bounds �k are increasing in k: Using
the fact that s � r and ki � r, we obtain the bound:

log
��E �vk1i1 :::vksis ��� � log �r2 ;
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or ��E �vk1i1 :::vksis ��� � �r2 :

Therefore,
E (v1 + :::+ vN)

r � (r=2)r �r2N r=2;

and
E (Zr) � (r=2)r �r2 : (44)

Now consider the case of odd r: In this case, we use the Lyapunov inequality to
write:

E jZjr �
�
E jZjr+1

� r
r+1 (45)

�
 �

r + 1

2

�r+1
�(r+1)2

! r
r+1

=

�
r + 1

2

�r �
�(r+1)2

� r
r+1

:

The important point is that bounds in (44) and (45) do not depend on n: QED.
By de�nition Zk =

�
�1 + :::+ �k�1 + �k+1 + :::+ �N

�
=sN and by assumption

�i and �i are uniformly bounded, and sN �
p
N . Moreover, �1; :::; �k�1 satisfy

Condition A by assumption, and �k+1; :::; �N are free from each other and from
�1; :::; �k�1: Therefore, �1; :::; �k�1; �k+1; :::; �N satisfy condition A. Consequently,
we can apply Lemma 93 to Zk and conclude that E jZkjr is bounded by a constant
that depends only on r but does not depend on N:
Using this fact, we can continue the estimate in (43) and write:

jE (Zm1
k Xn1

k :::Z
mr
k Xnr

k )j (46)

� C4
�
E
�
X2rn1
k

��2�r
:::
�
E
�
X2rnr
k

��2�r
;

where the constant C4 depends only onm:
Next we note that

�
E
�
X2rn1
k

��2�r � C
� �2rn1
N2r�1n1

�2�r
= C

�
�2rn1

�2�r
Nn1=2

:

Next note that n1 + :::+ nr � 3; therefore we can write�
E
�
X2rn1
k

��2�r
:::
�
E
�
X2rnr
k

��2�r � C 0N�3=2:

In sum; we obtain the following Lemma:

89



Lemma 94 ��Ef 000Xk (Zk + �Xk)
�� � C5N

�3=2;

where C5 depends only on the degree of polynomial f and the sequence of constants
�k.

A similar result holds for
��Ef 000Xk (Zk + �Yk)

�� and we can conclude that
jEf (Zk +Xk)� Ef (Zk + Yk)j � C6N

�3=2:

After we sum these inequalities over all k = 1; :::; N we get

jEf (X1 + :::+XN)� Ef (Y1 + :::+ YN)j � C7N
�1=2:

Clearly this approaches 0 as N grows. Applying Proposition 90, we conclude that
the measure ofX1+ :::+XN converges to the measure of Y1+ :::+YN in distribution.
This �nishes proof of the main theorem.
The key points of this proof are as follows: 1) We can substitute each random

variable Xi in the sum SN with a free random variable Yi so that the �rst and the
second derivatives of any polynomial with SN in the argument remain unchanged.
This depends on Condition A being satis�ed by Xi: 2)We can estimate a change in
the third derivative as we substitute Yi for Xi by using the �rst part of Condition A
and several matrix inequalities, valid for any collection of operators. Here Condition
A is used only in the proof that the k-th moment of (�1 + :::+ �N) =N

1=2 is bounded
as N !1.
It is interesting whether the ideas of this proof can be generalized to the case of

the multivariate CLT.

12 CLT, Rate of Convergence
In this section we investigate the speed of convergence in free CLT and establish an
inequality similar to the classical Berry-Esseen inequality.
Recall that without reference to operator theory, the free convolution can be de-

�ned as follows. Suppose �1 and �2 are two probability measures compactly sup-
ported on the real line. De�ne the Cauchy transform of �i as

Gi (z) =

Z 1

�1

d�i (t)

z � t
:
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Each of Gi (z) is well-de�ned and univalent for large enough z and we can de�ne
its functional inverse, which is well-de�ned in a neighborhood of 0. Let us call this
inverse the K-function of �i and denote it as Ki (z):

Ki (Gi (z)) = Gi (Ki (z)) = z:

Then, we de�ne K3 (z) by the following formula:

K3 (z) = K1 (z) +K2 (z)�
1

z
: (47)

It turns out that K3 (z) is the K-function of a probability measure, �3, which is the
free convolution of �1 and �2.
Let us turn to issues of convergence. Let d (�1; �2) denote the Kolmogorov dis-

tance between the probability measures �1 and �2: That is, if F1 and F2 are the
distribution functions corresponding to measures �1 and �2, respectively, then

d (�1; �2) =: sup
x2R

jF1 (x)�F2 (x)j :

Let � be a probability measure with the zero mean and unit variance and let m3 be
its third absolute moment. Then the classical Berry-Esseen inequality says that

d
�
�(n); �

�
� Cm3

1p
n
;

where � is the standard Gaussian measure and �(n) is the normalized n-time convo-
lution of measure � with itself:

�(n) (du) = � � ::: � �
�p

ndu
�
:

This inequality was proved by Berry (1941) and Esseen (1945) for a more general
situation of independent but not necessarily identical measures. A simple example
with Bernoulli measures shows that in this inequality the order of n�1=2 cannot be
improved without further restrictions.
We aim to derive a similar inequality when the usual convolution of measures is

replaced by free convolution. Namely, let

�(n) (du) = �� :::� �
�p

ndu
�

and let � denote the standard semicircle distribution. It is known that �(n) con-
verges weakly to � (Voiculescu (1983), Maassen (1992), Pata (1996), and Voiculescu
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(1998)). We are interested in the speed of this convergence and we prove that if � is
supported on [�L;L] ; then

d
�
�(n); �

�
� CL3

1p
n
: (48)

An example shows that the rate of n�1=2 cannot be improved without further restrictions;
similar to the classical case.
The main tool in our proof of inequality (48) is Bai's theorem (1993) that relates

the supremum distance between two probability measures to a distance between their
Cauchy transforms. To estimate the distance between Cauchy transforms, we use
the fact that as n grows, the K-function of �(n) approaches the K-function of the
semicircle law. Therefore, the main problem in our case is to investigate whether the
small distance between K-functions implies a small distance between the Cauchy
transforms themselves. We approach this problem using the Lagrange formula for
functional inverses.
The rest of the paper is organized as follows: Section 2 contains the formulation

and the proof of the main result. It consists of several subsections. In Subsection 2.1
we formulate the result and outline its proof. Subsection 2.2 evaluates how fast the
K-function of �(n) approaches the K-function of the semicircle law. Subsection 2.3
provides useful estimates on behavior of the Cauchy transform of the semicircle law
and related functions. Subsection 2.4 introduces a functional equation for the Cauchy
transforms and concludes the proof by estimating how fast the Cauchy transform of
�(n) converges to the Cauchy transform of the semicircle law. An example in Section
3 shows that the rate of n�1=2 cannot be improved.

12.1 Formulation and proof of the main result

12.1.1 Formulation of the result and outline of the proof

Let the semicircle law be the probability measure on the real line that has the follow-
ing cumulative distribution function:

� (x) =
1

�

Z x

�1

p
4� t2�[�2;2] (t) dt;

where �[�2;2] (t) is the characteristic function of the interval [�2; 2] :
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Theorem 95 Suppose that � is a probability measure that has zero mean and unit
variance, and is supported on interval [�L;L]. Let �(n) be the normalized n-time
free convolution of measure � with itself: �(n) (du) = �� :::�� (pndu) : Let Fn (x)
denote the cumulative distribution function of �(n). Then for large enough n the
following bound holds:

sup
x
jFn (x)� � (x)j � CL3n�1=2;

where C is an absolute constant.

Remark: C = 216 will do, although this constant is far from the best possible.
Proof: First, we repeat here for convenience of the reader one of Bai's results

(same as Theorem 59 on p. 58):

Theorem 96 (Bai (1993)) Let measures with distribution functions F and G be sup-
ported on a �nite interval [�B;B] and let their Cauchy transforms be GF (z) and
GG (z) ; respectively. Let z = u+ iv: Then

sup
x
jF (x)� G (x)j � 1

� (1� �) (2 � 1)

�Z A

�A
jGF (z)�GG (z)j du (49)

+
1

v
sup
x

Z
jyj�2vc

jG (x+ y)� G(x)j dy
�
;

where A > B; � = 4B
�(A�B)(2�1) < 1;  > 1=2; and c and  are related by the

following equality
 =

1

�

Z
juj<c

1

1 + u2
du:

Note that if G (x) is the semicircle distribution then jG 0 (x)j � ��1: Therefore
jG (x+ y)� G(x)j � jyj =�: Integrating this inequality, we obtain:

1

v
sup
x

Z
jyj�2vc

jG (x+ y)� G(x)j dy � 4c2

�
v: (50)

Hence, the main question is how fast v can be made to approach zero if the �rst
integral in (49) is also required to approach zero.
Let G� and Gn be the Cauchy transforms of the semicircle law and �(n); respec-

tively. Assume for the moment that the following lemma holds:

93



Lemma 97 Suppose v = 210L3=
p
n: Then for all suf�ciently large n; we have the

following estimate:
8Z

�8

jGn (u+ iv)�G� (u+ iv)j du � 210L3p
n
:

Let us apply Bai's theorem using Lemma 97 and inequality (50). Let � (x) and
Fn (x) denote the cumulative distribution functions of the semicircle law and �(n);
respectively. The semicircle law is supported on [�2; 2] ; and by taking n suf�ciently
large we can ensure that �(n) is supported on any �xed inteval that includes [�2; 2]
(see Bercovici and Voiculescu (1995)). Suppose that n is so large that �(n) is sup-
ported on

�
�25=4; 25=4

�
: Then we can take A = 8; B = 25=4; c = 6, and calculate

 = 0:895 and � = 0:682. Then Bai's theorem gives the following estimate:

sup
x
jFn (x)� � (x)j � 1:268

�
210L3n�1=2 + 46937L3n�1=2

�
� 216L3n�1=2:

QED.
Thus, the main task is to prove Lemma 97. Here is the plan of the proof. First,

we estimate how close the K-functions of �(n) and � are to each other. Then we
note that the Cauchy transforms of �(n) and � can be found from their functional
equations:

Kn (Gn (z)) = z;

and
K� (G� (z)) = z;

where Kn and K� denote the K-functions of �(n) and �: From the previous step we
know thatKn (z) is close toK� (z) : Our goal is to show that this implies thatGn (z)
is close to G� (z) :
If we introduce an extra parameter, t; then we can include these functional equa-

tions in a parametric family:
Kt (Gt (z)) = z: (51)

Parameter t = 0 corresponds to � and t = 1 to �(n). Next, we �x z and consider Gt
as a function of t:We develop this function in a power series in t:

Gt = G� +
1X
k=1

ckt
k;
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where ck are functions of z: Then we estimate Ik for each k � 1; where

Ik =

8Z
�8

jck (u+ iv)j du:

Then,
8Z

�8

jGn (u+ iv)�G� (u+ iv)j du �
1X
k=1

Ik;

and our estimates of Ik allow us to prove the claim of Lemma 97.

12.1.2 Speed of convergence of K-functions

In this Subsection, we derive an estimate for the speed of convergence of the K-
functions of �(n) and the semicircle law. Let Kn (z) denote the K-function of �(n).
For the semicircle law theK-function isK� (z) = z�1+z. De�ne 'n (z) = Kn (z)�
z � z�1:

Lemma 98 Suppose � has zero mean and unit variance and is supported on [�L;L].
Then the function 'n (z) is holomorphic in jzj �

p
n= (8L) and

j'n (z)j � 32L3
jzj2p
n
:

Proof: The measure �(n) is the n-time convolution of the measure e� (dx) =:
� (
p
ndx) with itself. Therefore, Kn (z) = nKe� (z) � (n� 1) z�1. Since e� is

supported on [�L=
p
n; L=

p
n], we can estimate Ke� (z) � 1

z
� 1

n
z inside the cir-

cle jzj =
p
n= (8L) by using the estimates for coef�cients ofKe� (z) from Lemma 64

on p. 62: ����Ke� (z)� 1
z
� 1

n
z

���� =
1X
k=2

bkz
k � 2Lp

n

1X
k=2

1

k

�
4Lp
n

�k
jzjk

� 32

�
Lp
n

�3
jzj2

1X
k=2

1

k2k�1

� 32

�
Lp
n

�3
jzj2 :
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Note that we used the assumption about the mean and variance of the measure � in
the �rst line by setting b1 = 0 and b1 = 1=n:
Using the summation formula (47) for K-functions, we further obtain:����Kn (z)�

1

z
� z

���� � 32 L3pn jzj2 :
QED.
Lemma 98 shows that as n grows, the radius of the convergence area of 'n (z) ;

and therefore ofKn (z) ; grows proportionally to
p
n: In particular, the radius of con-

vergence will eventually cover every bounded domain. Lemma 98 also establishes
the rate of convergence of Kn (z) to its limit K� (z) = z�1 + z:

12.1.3 Useful estimates

Suppose G� (z) is the Cauchy transform of the semicircle distribution.

Lemma 99 1) jG� (z)j � 1 if Im z > 0;
2) jz � 2G� (z)j � 2

p
Im z if Im z 2 (0; 2) :

Proof: G� (z) =
�
z �

p
z2 � 4

�
=2: If z = u + iv and v is �xed, then the

maximum of jG� (z)j is reached for u = 0: Then jG� (iv)j =
�p

v2 + 4� v
�
=2 and

sup jG� (iv)j = 1:
Next, jz � 2G� (z)j =

��pu2 � v2 � 4 + i2uv
�� : If v is in (0; 2) and �xed, the

minimum of this expression is reached for u = �
p
4� v2 and equals 2

p
v: QED.

Lemma 100 If n � 64L2 and Im z > 0; then we have:

j'n (G� (z))j �
32L3p
n
:

Proof: This Lemma follows directly from Lemmas 98 and 99. QED.

12.1.4 Functional equation for the Cauchy transform

LetGn (z) denote the Cauchy transform of �(n): Let us write the following functional
equation:

G (t; z) +
1

G (t; z)
+ t'n (G (t; z)) = z; (52)
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where t is a complex parameter. For t = 0 the solution is G� (z), and for t = 1 the
solution is Gn (z) : Assume that 'n (z) is not identically zero. (If it is, then �(n) is
semicircle and d

�
�(n); �

�
= 0:) Let us write equation (52) as

t =
zG�G2 � 1
G'n (G)

: (53)

We can think about z as a �xed complex parameter and about t as a function of the
complex variable G, i.e., t = f (G) : Suppose 'n (G� (z)) does not equal zero for a
given value of z. (This holds for all but a countable number of values of parameter
z.) Then, as a function of G, f is holomorphic in a neighborhood of G� (z) : What
we would like to do is to invert this function f and write G = f�1 (t) : In particular
we would like to develop f�1 (t) in a series of t around t = 0: Then we would be able
to estimate jf�1 (1)� f�1 (0)j, which is equal to jGn (z)�G� (z)j : To perform this
inversion, we use the Lagrange formula in Lemma 60 on p. 58.
Assume that z is �xed, and let us write G instead of G (z) and G� instead of

G� (z) : By Lemma 60, we can write the solution of (53) as

G = G� +
1X
k=1

ckt
k; (54)

where

ck =
1

k
res
G=G�

�
G'n (G)

zG�G2 � 1

�k
: (55)

We aim to estimate Ik =:
R 8
�8 jck (u+ iv)j du: In particular, we will show that for

any v 2 (0; 1) ; I1 = O
�
n�1=2

�
: In addition, we will show that if v = b=

p
n for

a suitably chosen b; then
P1

k=2 Ik = o
�
n�1=2

�
: This information is suf�cient for a

good estimate of Z 8

�8
jGn (u+ iv)�G� (u+ iv)j du:

Let us consider �rst the case of k = 1: Then

c1 =
G�'n (G�)

G2 �G�

=
G�'n (G�)p

z2 � 4
;
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whereG2 denotes another root of the equationG2�zG+1: Therefore, if z = u+ iv;

then we can calculate:

jc1j =
jG�j j'n (G�)j�

(u2 � 4)2 + 2 (u2 + 4) v2 + v4
�1=4

� 32L3p
n

1�
(u2 � 4)2 + 2 (u2 + 4) v2 + v4

�1=4 ;
where the last inequality holds by Lemma 100 for all n � 64L2:

Lemma 101 For every v 2 (0; 1) ;
8Z

�8

h�
u2 � 4

�2
+ 2

�
u2 + 4

�
v2 + v4

i�1=4
du < 24:

Proof: Let us make substitution x = u2 � 4: Then we get:

J =

60Z
�4

�
x2 + 2 (x+ 8) v2 + v4

��1=4 dxp
x+ 4

�
60Z

�4

1

(x2 + v2)1=4
dxp
x+ 4

:

Now we divide the interval of integration in two parts and write:

J �
�2Z
�4

:::+

60Z
�2

:::

� 1p
2

�2Z
�4

dxp
x+ 4

+
2p
2

60Z
0

dx

x1=2

= 2 +
4p
2

p
60 < 24:

QED.

Corollary 102 For every v 2 (0; 1) and all n � 64L2; it is true that

I1 =:

8Z
�8

jc1 (u+ iv)j du � 768L3p
n
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Now we estimate ck in (54) for k � 2. De�ne function fk (G) by the formula

fk (G) =:

�
G'n (G)

G2 �G

�k
;

where G2 denotes the root of the equation G2 � zG+ 1; which is different from G�:

Then formula (55) implies that kck equal to the coef�cient before (G�G�)
k�1 in

the expansion of fk (G) in power series of (G�G�). To estimate this coef�cient,
we will use the Cauchy inequality:

jkckj �
Mk (r)

rk�1
;

whereMk (r) is the maximum of jfk (G)j on the circle jG�G�j = r:

We will use r =
p
v and our �rst goal is to estimateMk (

p
v) :

Lemma 103 Let z = u+ iv and suppose that v 2 (0; 1) : If n � 256L2; then

Mk (v) �
"
512L3p

n

1�
(u2 � 4)2 + 2u2v2

�1=4
#k
:

Proof: Note that jGj � jG�j +
p
v and therefore jGj � 2 provided that v 2

(0; 1) : Then Lemma 98 implies that if n � 256L2; then 'n (G) is well de�ned and
j'n (G)j � 128L3=

p
n: It remains to estimate jG2 �Gj from below. If we write

G = G� + ei�
p
v; then we have

jG2 �Gj =
���pz2 � 4� ei�

p
v
���

�
���pz2 � 4����pv

=
��
u2 � 4

�2
+ 2

�
u2 + 4

�
v2 + v4

�1=4
�
p
v

>
��
u2 � 4

�2
+ 2

�
u2 + 4

�
v2
�1=4

�
p
v > 0:

From the concavity of function t1=4 it follows that for positive A and B the fol-
lowing inequality holds:

[8 (A+B)]1=4 � A1=4 � B1=4:
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Using v2 as A; and
h
(u2 � 4)2 + 2u2v2

i
=8 as B; we can write this inequality as

follows:��
u2 � 4

�2
+
�
2u2 + 4

�
v2
�1=4

�
p
v � 1

81=4

��
u2 � 4

�2
+ 2u2v2

�1=4
> 0:

Therefore

Mk (v) �
"
512L3p

n

1�
(u2 � 4)2 + 2u2v2

�1=4
#k
:

QED.

Corollary 104 For every v 2 (0; 1) ; k � 2; and all n � 256L2; it is true that

jkck (u+ iv)j � v�
k�1
2

"
512L3p

n

1�
(u2 � 4)2 + 2u2v2

�1=4
#k

Now we want to estimate integrals of jck (u+ iv)j when u changes from�8 to 8:
The cases of k = 2 and k > 2 are slightly different and we treat them separately.
Let

Ik =:

8Z
�8

jck (u+ iv)j du

Lemma 105 If v 2 (0; 1) and n � 256L2, then i)

I2 �
log (60=v)p

v

219L6

n
;

and ii) if k > 2; then

Ik �
12

k
v3=2

�
512L3

v
p
n

�k
:

Proof: Using Corollary 104, we write:

Ik =:

8Z
8

jck (u+ iv)j du � 1

k

1

v(k�1)=2

�
512L3p

n

�k 8Z
�8

du�
(u2 � 4)2 + 2u2v2

�k=4 :
After substitution x = u2� 4; the integral in the right-hand side of the inequality can
be re-written as

Jk =:

60Z
�4

1

(x2 + 2 (x+ 4) v2)k=4
dxp
x+ 4

:
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We divide the interval of integration into two portions and write the following in-
equality:

Jk �
�1Z
�4

dxp
x+ 4

+

60Z
�1

dx

(x2 + 2 (x+ 4) v2)k=4

� 2
p
3 +

60Z
�1

dx

(x2 + v2)k=4
:

If we use substitution s = x=v; then we can write:
60Z

�1

dx

(x2 + v2)k=4
=

60=vZ
�1=v

ds

v
k
2
�1 (1 + s2)k=4

� 2

v
k
2
�1

60=vZ
0

ds

(1 + s2)k=4
:

We again separate the interval of integration in two parts and write:

2

v
k
2
�1

60=vZ
0

ds

(1 + s2)k=4
� 2

v
k
2
�1

24 1Z
0

ds+

60=vZ
1

ds

sk=2

35 :
Here we have two different cases. If k = 2; then we evaluate the integrals as 1 +
log (60=v) : Therefore,

J2 � 2
p
3 + 2 + 2 log (60=v)

� 4 log (60=v) :

Hence,

I2 �
log (60=v)p

v

219L6

n
:

If k > 2; then we have:

2

v
k
2
�1

24 1Z
0

ds+

60=vZ
1

ds

sk=2

35 =
2

v
k
2
�1

"
1 +

1

�k
2
+ 1

 �
60

v

�� k
2
+1

� 1
!#

� 2

v
k
2
�1

 
1 +

1
k
2
� 1

!
:

� 6

v
k
2
�1
:
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Therefore,
Jk � 2

p
3 +

6

v
k
2
�1
� 12

v
k
2
�1
;

and

Ik � 1

k

1

v(k�1)=2

�
512L3p

n

�k
12

v
k
2
�1

� 12

k
v3=2

�
512L3

v
p
n

�k
:

QED.

Corollary 106 If v = 1024L3=
p
n; and n � 256L2 then

I2 � 214L9=2
log
�

15
256L3

p
n
�

n3=4
:

In particular, I2 = o
�
n�1=2

�
as n!1:

Now we address the case when k > 2:

Corollary 107 Suppose v = 1024L3=
p
n; and n � 256L2. Then

1X
k=3

Ik �
3

2
v3=2 = 1536L9=2

1

n3=4
:

In particular,
P1

k=2 Ik = o
�
n�1=2

�
as n!1:

Joining results of Corollaries 102, 106, and 107, we get the following result.

Lemma 108 Suppose v = 1024L3=
p
n: Then for all suf�ciently large n; we have the

following estimate:

8Z
�8

jGn (u+ iv)�G� (u+ iv)j du � 210L3p
n
:

Proof: From formula (54) we have

jGn �G�j �
1X
k=1

jckj :
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Since the series has only positive terms, we can integrate it term by term and write:

8Z
�8

jGn (u+ iv)�G� (u+ iv)j du �
1X
k=1

8Z
�8

jck (u+ iv)j du

� 768L3p
n
+ o

�
n�1=2

�
� 210L3p

n

for all suf�ciently large n: QED.
Lemma 108 is identical to Lemma 97 and its proof completes the proof of Theo-

rem 95.

12.2 Example

Consider a Bernoulli measure: � f�1=pg = p and � f1=qg = q � 1 � p: This is
a zero-mean measure with the variance equal to (pq)�1 : Let �(n) (dx) = � � ::: �
�

�q
n
pq
dx

�
and let Fn (x) be the distribution function corresponding to �(n):

Proposition 109 If p 6= q; then there exist such positive constants C1 and C2 that

C1n
�1=2 � sup

x
jFn (x)� � (x)j � C2n

�1=2

for every n:

Proof: From the Voiculescu addition formula and the Stieljes inversion formula,
it is easy to compute the density of the distribution of �(n):

fn (x) =
1

2�

q
4� x2 + 2 p�qp

pqn
x� 1

pqn�
1 + xp

nq=p

��
1� xp

np=q

� ;
if the square root is real, and if not, fn (x) = 0: We compare this distribution with
the semicircle distribution, which has the following density:

� (x) =
1

2�

p
4� x2�[�2;2] (x) :
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More precisely, we seek to estimate

sup
x

����Z x

�1
(fn (t)� � (t)) dt

���� :
The support of fn is

�
�2
p
1� n�1 + cn�1=2; 2

p
1� n�1 + cn�1=2

�
; where c =

(p� q) =
p
pq: Suppose in the following that p > q and introduce the new variable

u = x+ 2
p
1� n�1 � c=

p
n: Then,

2�fn (u) =

q
4u
p
1� n�1 � u2

�
p
4u� u2;

where the asymptotic equivalence is for u �xed and n ! 1 and we omit all terms
that are o

�
n�1=2

�
: Similarly,

2�� (x) =

q
4� (u� 2 (1� n�1) + cn�1=2)

2

�
p
4u� u2 + 4cn�1=2 � 2cun�1=2

=
p
4u� u2

s
1 + 2c

1p
nu

2� u

4� u
:

Consequently,

� (u)� fn (u) �
p
4u� u2

"s
1 + 2c

1p
nu

2� u

4� u
� 1
#

�
p
4u� u2c

1p
nu

2� u

4� u

= c
1p
nu

2� up
4� u

:

After integrating we get:����Z x

0

(fn (u)� � (u)) du

���� � c
1p
n
f (x) ;

where f (x) is a continuous positive bounded function. From this expression it is
clear that supx

���R x�1 (fn (t)� � (t)) dt
��� has the order of n�1=2 provided that p 6= q:

QED.
This example shows that the rate of n�1=2 in Theorem 95 cannot be improved

without further restrictions on measures. It would be interesting to extend Theorem
95 to measures with unbounded support or relate the constant in the inequality to
moments of the convolved measures, similar to the classical case.
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13 Superconvergence of Sums of Free Random Vari-
ables

In many respects, free probability theory parallels classical probability theory. There
exist analogues of the central limit theorem (Voiculescu (1986)), the law of large
numbers [Bercovici and Pata (1996)], and the classi�cation of in�nitely divisible
and stable laws [Bercovici and Voiculescu (1992) and Bercovici et al. (1999)]. On
the other hand, certain features of free and classical probability theories differ strik-
ingly. Let Sn = n�1=2

Pn
i=1Xi; whereXi are identically distributed and free random

variables. Then the law of Sn approaches the limit law in a completely different
manner than in the classical case. To illustrate this, suppose that the support of Xi is
[�1; 1]: Take a positive number � < 1: Then, in the classical case the probability of
fjSnj > �ng is exponentially small but not zero. In contrast, in the non-commutative
case the probability becomes identically zero for all suf�ciently large n: This mode of
convergence has been called superconvergence by Bercovici and Voiculescu (1995).
In this paper we extend the superconvergence result to a more general setting of

non-identically distributed variables and estimate the rate of the superconvergence
quantitatively. It turns out, in particular, that the support of Sn can deviate from the
supporting interval of the limiting law by not more than c=

p
n, and we explicitly

estimate the constant c: An example shows that the rate n�1=2 in this estimate cannot
be improved.
Related results have been obtained in random matrix literature. For example,

Johnstone (2001) considers the distribution of the largest eigenvalue of an empirical
covariance matrix for a sample of Gaussian vectors. This problem can be seen as a
problem about the edge of the spectrum of a sum of n random rank-one operators
in the N -dimensional vector space. More precisely, the question is about sums of
the form Sn =

Pn
i=1 xix

0
i; where xi is a random N -vector with the entries distrib-

uted according to the Gaussian law with the normalized variance 1=N: Then Sn is a
matrix-valued random variable with the Wishart distribution.
Johnstone is interested in the asymptotic behavior of the distribution of the largest

eigenvalue of Sn: The asymptotics is derived under the assumption that both n and
N approach 1, and that limn=N =  > 0;  6= 1: Johnstone �nds that the
largest eigenvalue has the variance of the order n�2=3 and that after an appropriate
normalization the distribution of the largest eigenvalue approaches the Tracy-Widom
law. This law has a right-tail asymptotically equivalent to exp

�
� (2=3) s3=2

�
; and,

in particular is unbounded from above. Johnstone's results have generalized the orig-
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inal breakthrough results by Tracy and Widom (1996) (see also Tracy and Widom
(2000)) for selfadjoint random matrices without the covariance structure. In Sosh-
nikov (1999) and (2002), it is shown that the results regarding the asymptotic dis-
tribution of the largest eigenvalue remain valid even if the matrix entries are not
necessarily Gaussian.
In an earlier contribution, Bai and Silverstein (1998) also considered empiri-

cal covariance matrices of large random vectors that are non-neccesarily Gaussian
and studied their largest eigenvalues. Again both n and N approach in�nity and
limn=N =  > 0;  6= 1: In contrast to Johnstone, Bai and Silverstein were inter-
ested in the behavior of the largest eigenvalue along a sequence of increasing random
covariance matrices. Suppose the support of the limiting eigenvalue distribution is
contained in the interior of a closed interval, I . Bai and Silverstein showed that the
probability that the largest eigenvalue lies outside of I is zero for all suf�ciently large
n:

These results are not directly comparable with ours for several reasons. First,
in our case the edge of the spectrum is not random in the classical sense and so it
does not make sense to talk about its variance. Second, informally speaking, we are
looking at the limit situation when N = 1; n ! 1: Because of this, we use much
easier techniques than all these papers as we do not need to handle the interaction of
the randomness and the passage to the asymptotic limit. Despite these differences,
comparison of our results with the results of the random matrix literature is stimulat-
ing. In particular, the superconvergence in free probability theory can be thought as
an analogue of the Bai-Silverstein result.

13.1 Results and examples

In the classical case the behavior of large deviations from the CLT is described by
the Cramer theorem, the Bernstein inequality, and their generalizations. It turns out
that in the non-commutative case, the behavior of large deviations is considerably
different. The theorem below gives some quantitative bounds on how the distribution
of a sum of free random variables differ from the limiting distribution.
Let Xn;i; i = 1; :::; kn be a double-indexed array of bounded self-adjoint random

variables. The elements of each row,Xn;1; :::; Xn;kn are assumed to be free but are not
necessarily identically distributed. Their associated probability measures are denoted
�n;i; their Cauchy transforms areGn;i (z) ; their k-th moments are a

(k)
n;i ; etc. We de�ne

Sn = Xn;1+ :::+Xn;kn and we will the study the behavior of the probability measure
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�n associated with Sn:
We will assume that the �rst moments of the random variables Xn;i are zero and

that kXn;ik � Ln;i: Let vn = a
(2)
n;1 + ::: + a

(2)
n;kn

; Ln = maxi fLn;ig ; and Tn =
L3n;1 + :::+ L3n;kn .

Theorem 110 Suppose that lim supn!1 Tn=v
3=2
n > 2�12: Then for all suf�ciently

large n the support of �n belongs to

I = (�2pvn � cTn=vn; 2
p
vn + cTn=vn) ;

where c > 0 is an absolute constant.

Remark 1: c = 256 will do although it is not best possible.
Remark 2: Informally, the assumption that lim supn!1 Tn=v

3=2
n > 2�12 means

that there are no large outliers. An example when the assumption is violated is pro-
vided by random variables with variance a(2)n;i = n�1 and Ln;i = 1: Then Tn = n and
v
3=2
n = 1; so that Tn=v

3=2
n increases when n grows.

Remark 3: The assumption in Theorem 110 are weaker than the assumptions of
Theorem 7 in Bercovici and Voiculescu (1995). In particular, Theorem 110 allows
making conclusions about random variables with non-uniformly bounded support.
Consider, for example, random variables Xk, k = 1; :::; n; that are supported on
intervals

�
�k1=3; k1=3

�
and have variances of order k2=3: Then Tn has the order of n2

and vn has the order of n5=3: Therefore, Tn=v
3=2
n has the order of n�1=2 and Theorem

110 is applicable. It allows us to conclude that the support of Sn = X1 + :::+Xn is
contained in the interval

�
�2pvn � cn1=3;�2pvn + cn1=3

�
:

Example 111 Identically Distributed Variables.

A particular case of the above scheme is the normalized sums of identically dis-
tributed, bounded, free r.v.: Sn = (�1 + :::+ �n) =

p
n: If k�ik � L then k�i=

p
nk �

Ln;i = Ln = L=
p
n: Therefore Tn = L3=

p
n: If the second moment of �i is �2 then

the second moment of the sum Sn is vn = �2: Applying the theorem we obtain the
result that starting with certain n; the support of the distribution of Sn belongs to�
�2� � c (L3=�2)n�1=2; 2� + c (L3=�2)n�1=2

�
:

Example 112 Free Poisson
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Let the n-th row of our scheme has kn = n identically distributed random vari-
ables Xn;i with the Bernoulli distribution that places probability pn;i on 1 and qn;i =
1 � pn;i on 0: (It is easy to normalize this distribution to have the zero mean by
subtracting pn;i). Suppose maxi pn;i ! 0 as n!1 and

nX
i=1

pn;i ! � > 0

as n ! 1: Then Ln;i � 1 and a2n;i = pn;i (1� pn;i) so that Tn � n and vn ! � as
n ! 1: Therefore, Theorem 110 does not apply. An easy calculation for the case
pn;i = �=n shows that superconvergence still holds. This example shows that the
conditions of the theorem are not necessary for superconvergence to hold.

Example 113 Identically Distributed Bernoulli Variables

Let Xi be identically distributed with a distribution that puts positive weights p
and q on �

p
q=p and

p
p=q; respectively. Then EXi = 0 and EX2

i = 1: It is not
dif�cult to show that the support of Sn = n�1=2

Pn
i=1Xi is the interval I = [x1; x2] ;

where

x1;2 = �2
r
1� 1

n
+
q � p
p
pq

1p
n
:

This example shows that rate of n�1=2 in Theorem 110 cannot be improved without
further restrictions. Note also that for p > q; Ln is

p
p=q; and therefore the coef�-

cient before n�1=2 is of order Ln: In the general bound the coef�cient is L3n=�2: It is
not clear whether it is possible to replace the coef�cient in the general bound by a
term of order Ln:
Recall the scaling properties of the Cauchy transform and its inverse:

Lemma 114 i) G�A(z) = ��1GA(z=a) and ii) K�A(u) = �KA(�u):

The claim of the lemma follows directly from de�nitions.

13.2 Proof

The key ideas of the proof are as follows:
1) We know that the Cauchy transform of the sum Sn is the Cauchy transform of a

bounded r.v. (since by assumption each Xn;i is bounded). Consequently the Cauchy
transform of Sn is holomorphic in a certain circle around in�nity (i.e., in the area
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jzj > R for some R). We want to estimate R and apply Lemma 56 to conclude that
Sn is supported on [�R;R] :
2) Since the K-function of Sn; call it Kn(z); is the sum of K-functions of Xn;i

and the latter are inverses of Cauchy transforms of Xn;i; it is an exercise in complex
analysis to estimate the radius of convergence of power series ofKn(z) at z = 0 and
locate critical points of Kn (z) (i.e., zeros of its derivative). Using this information,
we can prove that the K-function of Sn takes real values and is a one-to-one function
on a suf�ciently large real interval around zero. Therefore, it has a differentiable
inverse de�ned on a suf�ciently large real interval around in�nity (i.e. on the set
I = (�1;�A] [ [A;1) for some A, which we can explicitly estimate). Moreover,
with a little bit more effort we can show that this inverse function is well-de�ned and
holomorphic in an open complex neighborhood of I . This shows that Lemma 56 is
applicable, and the estimate forA provides the desired estimate for the support of Sn:
Wewill start with �nding the radius of convergence of the Taylor series ofKn (z) :

First we need to prove some preliminary facts about Cauchy transforms of Xn;i:

De�ne gn;i (z) = Gn;i (z
�1) : Since the series Gn;i (z) are convergent everywhere

in jzj > Ln;i; then the Taylor series for gn;i (z) converges everywhere in jzj < L�1n;i:

Assume that Rn;i andmn;i are such that

1. Rn;i � Ln;i;

2. jGn;i (z)j � mn;i > 0 everywhere on jzj = Rn;i;

3. gn;i (z) is one-to-one in jzj < R�1n;i :

For example, we can take Rn;i = 2Ln;i and mn;i = (4Ln;i)
�1 : Indeed, for any z

with jzj = r > Ln;i we can estimate Gn;i (z):

jGn;i (z)j �
1

r
�
 
a2n;i
r3
+

��a3n;i��
r4

+ :::

!

� 1

r
�
�
L2n;i
r3

+
L3n;i
r4

+ :::

�
=

1

r
�
L2n;i
r2

1

r � Ln;i
:

In particular, taking r = 2Ln;i we get the estimate:

jGn;i (z)j �
1

4Ln;i
;
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valid for every i and everywhere on jzj = 2Ln;i:
It remains to show that gn;i(z) is one-to-one in jzj < (2Ln;i)�1 : This is indeed so

because
gn;i(z) = z

�
1 + a

(2)
n;iz

2 + a
(3)
n;iz

3 + :::
�
;

and we can estimate���a(2)n;iz2 + a
(3)
n;iz

3 + :::
��� � L2n;i

�
1

2Ln;i

�2
+ L3n;i

�
1

2Ln;i

�3
+ ::: =

1

2
:

De�nition 115 LetRn = maxi fRn;ig,mn = mini fmn;ig ; andDn =
Pkn

i=1Rn;i (mn;i)
�2 :

We are now able to investigate the region of convergence for the series Kn;i (z) :

Lemma 116 The radius of convergence of K-series for measure �n is at leastmn:

The lemma says essentially that if r.v. Xn;1; ...., Xn;kn are all bounded by Ln;
then K-series for

P
iXn;i converge in the circle jzj � 1= (4Ln) :

Proof: Let us apply Lemma 61 to Gn;i (z) with  having radius (Rn;i)�1 : By
Lemma 61 the coef�cients in the series for the inverse of Gn;i (z) are

b
(k)
n;i =

1

2�ik

I
@

dz

z2gn;i(z)k
;

and we can estimate them as ���b(k)n;i ��� � Rn;i
k
(mn;i)

�k :

This implies that the radius of convergence of K-series for measures �n;i is mn;i:

Consequently, the radius of convergence of K-series for measure �n is at least mn:

QED.
Now we can investigate the behavior of Kn (z) and its derivative inside its con-

vergence circle.

Lemma 117 For every z in jzj < mn; the following inequalities are valid:����Kn (z)�
1

z
� vnz

���� � Dn jzj2 ; (56)����K 0
n (z) +

1

z2
� vn

���� � 2Dn jzj : (57)
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Note that Dn is approximately knL3n; so the meaning of the lemma is that the
growth of Kn � z�1 � vnz around z = 0 is bounded by a constant that depends on
the norm of the variables Xn;1; ..., Xn;kn :

Proof: Consider the circle with radius mn;i=2: We can estimate Kn;i inside this
circle����Kn;i �

1

z
� a

(2)
n;iz

���� � Rn;i
2
(mn;i)

�2 jzj2 + Rn;i
3
(mn;i)

�3 jzj2 mn;i

2

+
Rn;i
4
(mn;i)

�3 jzj2
m2
n;i

22
+ :::

= Rn;i (mn;i)
�2 jzj2

�
1

2
+
1

3

1

2
+
1

4

1

22
+ :::

�
� Rn;i (mn;i)

�2 jzj2 :

Consequently, using Voiculescu's addition formula we can estimate����Kn (z)�
1

z
� vnz

���� � Dn jzj2 ; (58)

Similar argument leads to the estimate:����K 0
n (z) +

1

z2
� vn

���� � 2Dn jzj : (59)

QED.

Lemma 118 Suppose mn > 4=
p
vn; rn < 1=

�
2
p
vn
�
; and rn � 4Dn=v

2
n: Then

there are no zeros of K 0
n (z) inside jzj � 1=

p
vn � rn.

Proof: On jzj = v
�1=2
n � rn; we have jzj�2 > vn: Also

���z � v
�1=2
n

��� ���z + v
�1=2
n

��� >
rnv

�1=2
n : This is easy to see by considering two cases Re z � 0 and Re z � 0: In the

�rst case
���z � v

�1=2
n

��� � rn and
���z + v

�1=2
n

��� > v
�1=2
n : In the second case

���z � v
�1=2
n

��� >
v
�1=2
n and

���z + v
�1=2
n

��� � rn: Therefore,���z�2 + vn
�� =

��z�2�� vn ��z � v�1=2n

�� ��z + v�1=2n

��
> rnv

3=2
n :

The circle  lies entirely in the area where formula (57) applies toK 0
n (z) : (Since

by assumption rn < v
�1=2
n =2 , then rn + v

�1=2
n < 2v

�1=2
n and therfore rn + v

�1=2
n <
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mn=2; provided that mnv
1=2
n > 4; which holds by assumption.) Consequently, using

(57) we can estimate ��K 0
n (z)�

�
�z�2 + vn

��� � 4Dnv
�1=2
n ;

where we used jzj � 2v
�1=2
n : By assumption rn � 4Dnv

�2
n , therefore v

3=2
n rn �

4Dnv
�1=2
n ; and Rouche's theorem is applicable. BothK 0

n (z) and�z�2+vn have only
one pole, which is of order two, in jzj � v�1=2 � rn; and the function �z�2 + vn has
no zeros inside jzj � v�1=2�rn: Therefore, Rouche's theorem implies that there is no
zeros ofK 0

n (z) inside jzj � v�1=2 � rn: (Rouche's theorem is often formulated only
for holomorphic functions but as a consequence of the argument principle (see e.g.
Theorems II.2.3 and II.2.4 in Markushevich (1977)) it can be easily re-formulated for
meromorphic functions. In this form it claims that a meromorphic function, f(z); has
the same difference between the number of zeros and number of poles inside a curve
 as another meromorphic function, g(z); provided that jf (z)j > jg (z)� f (z)j :
For this formulation see, e.g., Hille (1962), Theorem 9.2.3.) QED.

Condition 119 Assume in the following rn = 4Dn=v
2
n and rn < 1=

�
2
p
vn
�
:

Now we use our knowledge about the location of critical points of Kn (z) to
investigate how it behaves on the real interval around zero.

Lemma 120 Suppose mn > 4=
p
vn and Dn=v

3=2
n � 1=8. Then Kn (z) maps the

interval
�
�1=pvn + rn; 1=

p
vn � rn

�
in a one-to-one fashion on the set that contains

the union of two intervals
�
�1;�2pvn � cDn=vn

�
[
�
2
p
vn + cDn=vn;1

�
; where

c is a constant that does not depend on n:

Remark: For example, c = 8 will work.
Proof: The assumption that mn > 4=

p
vn ensures that the series eKn (z) con-

verges in jzj � 4=
p
vn; z 6= 0: Note that Kn (z) is real-valued on the set I =�

�1=pvn + rn; 0
�
[
�
0; 1=

p
vn � rn

�
; because this set belongs to the area where

the series eKn (z) converges and the coef�cients of this series are real. Moreover, by
Lemma 118, there is no critical points ofKn (z) on I (i.e., for every z 2 I ,K 0

n (z) 6=
0), therefore Kn (z) must be strictly monotonic on subintervals

�
�1=pvn + rn; 0

�
and

�
0; 1=

p
vn � rn

�
:Consequently,Kn (I) =

�
�1; Kn

�
�1=pvn + rn

��
[
�
Kn

�
1=
p
vn � rn

�
;1
�
:

We claim that Kn

�
1=
p
vn � rn

�
� 2

p
vn + 8Dn=vn and Kn

�
�1=pvn + rn

�
�

�2pvn � 8Dn=vn:
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Indeed, write
Kn (z) =

1

z
+ vnz + h (z) ;

then

Kn

�
1
p
vn
� rn

�
=
p
vn

1

1� rn
p
vn
+
p
vn (1� rn

p
vn) + h

�
1
p
vn
� rn

�
:

According to our assumption rn
p
vn = 4Dn=v

3=2
n < 1=2: Therefore we can estimate

1

1� rn
p
vn
� 1 + 2rn

p
vn;

and
Kn

�
1
p
vn
� rn

�
� 2pvn + rnvn +

����h� 1
p
vn
� rn

����� :
We can estimate the last term using Lemma 117 as

h

�
1
p
vn
� rn

�
� Dn

���� 1pvn
����2 = Dn=vn:

Altogether, after substituting rn = 4Dn=v
2
n we get

Kn

�
1
p
vn
� rn

�
� 2pvn + 8Dn=vn:

Similarly we can derive that

Kn

�
� 1
p
vn
+ rn

�
� �2pvn � 8Dn=vn:

QED.
From the previous Lemma we can conclude that Kn (z) has a differentiable in-

verse de�ned on
�
�1;�2pvn � cDn=vn

�
[
�
2
p
vn + cDn=vn;1

�
:We can extend

this conclusion to an open complex neighborhood of this interval. This is achieved
in the next two lemmas.

Lemma 121 As in previous Lemma suppose thatmn > 4=
p
vn and Dn=v

3=2
n � 1=8.

Let z be an arbitrary point of the interval
�
�1=pvn + rn; 1=

p
vn � rn

�
: Then we

can �nd a neighborhood Uz of z and a neighborhood Ww of w = Kn (z) such that
Kn is a one-to-one map of Uz on Ww and the inverse map K�1

n is holomorphic
everywhere inWw:
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Proof: Since the series eKn (z)� z�1 converges in jzj � 4=pvn, function Kn (z)

is holomorphic in jzj � 4=pvn; z 6= 0: In addition, by Lemma 118, if

z0 2 [�1=
p
vn + rn; 1=

p
vn � rn]

then z0 is not a critical point of Kn (z) : Therefore for z 6= 0; the conclusion of
the lemma follows from Theorems II.3.1 and II.3.2 in Markushevich (1977). For
z = 0 the argument is parallel to the argument in Markushevich except for a different
choice of local coordinates: Indeed, f (z) = 1=Kn (z) is holomorphic at z = 0; it
maps z = 0 to w = 0; and f 0 (z) = 1 6= 0 at z = 0: Therefore, Theorems II.3.1
and II.3.2 in Markushevich (1977) are applicable to f (z) and it has a well de�ned
holomorphic inverse in a neighborhood of w = 0: This implies that Kn(z) has a
well-de�ned holomorphic inverse in a neighborhood of 1; given by the formula
K�1
n (z) = f�1 (1=z) : QED.

Lemma 122 Local inversesK�1
n (z) de�ned in the previous lemma are restriction of

a functionGn (z) which is de�ned and holomorphic everywhere in a neighborhood of
I = f1g[

�
�1;�2v1=2n � cDn=vn

i
[
h
2v
1=2
n + cDn=vn;1

�
. The functionGn (z)

is the inverse of Kn (z) in this neighborhood.

Proof: By Lemma 120, for every point w 2 I we can �nd a unique

z 2 [�1=pvn + rn; 1=
p
vn � rn]

such that Kn (z) = w: Let Uz andWw be the neighborhoods de�ned in the previous
lemma. Also let us write (Ww; K

�1
n ) to denote the local inverses de�ned in the pre-

vious lemma together with their areas of de�nition. Our task is to prove that these
local inverses can be joined to form a function de�ned everywhere in a neighborhood
of I:We will do it in several steps.
First, an examination of the proof of the previous lemma and Theorem II.3.1 in

Markushevich (1977) shows that we can take each Uz in the form of a disc. Then,
let eUz = Uz=3; that is, de�ne eUz as a disc that has the same center but 3 times
smaller radius than Uz: De�nefWw asKn

�eUz� : These new sets are more convenient
because of the following property: If eUz1 \ eUz2 6= ;; then either eUz1 [ eUz2 � Uz1
or eUz1 [ eUz2 � Uz2 : In particular, this means that if eUz1 \ eUz2 6= ; then Kn (z) is a
one-to-one map of eUz1 [ eUz2 onfWw1 [fWw2 : This is convenient because Kn is one-
to-one not only on a particular neighborhood eUz1 but also on the union of every two
intersecting neigborhoods eUz1 and eUz2 : Let us call this extended invertibility property.
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Next de�ne even smaller eeU z with the following properties: 1) eeU z � eUz; 2)ffWw =: Kn

�eeU z� is either an open disk for z 6= 0 or the set jwj > R for z = 0;

and 3) 0 =2 ffWw. This is easy to achieve by taking an appropriate open subset offWw

asffWw and applying K�1
n : Note that the property of the previous paragraph remains

valid for the new sets eeU z:
Discs ffWw form an open cover of I and the corresponding sets

eeU z form an open
cover forK�1

n (I) ;which is a closed interval contained in
�
�1=pvn + rn; 1=

p
vn � rn

�
.

Let U
i
, i = 0; :::; N; be a �nite cover of K�1

n (I), selected from
�eeU z� : (We can do

it because of compactness ofK�1
n (I) :) And letW

i
=: Kn (Ui) be the corresponding

cover of I; selected from
�ffW z

�
. For convenience, let W0 denote the set

ffWw for

w = 1: Finally let R = [Ni=0Ui and S = [Ni=0Wi: Sets R and S are illustrated in
Figure 1.
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Clearly S is open. We aim to prove that S is simply connected in the extended
complex plane C [ f1g. For this purpose let us de�ne the deformation retraction
F1 of the set S by the formula: 1) if z 2 W0 then z ! z; 2) if z =2 W0 then
z ! Re z + (1� t) Im z: Here parameter t changes from 0 to 1. (For the de�nition
and properties of deformation retractions see, e.g., Hatcher (2002), the de�nition is
on page 2 and the main property is in Proposition 1.17.) This retraction reduces S
to a homotopically equivalent set S 0 that consists ofW0 and two intervals of the real
axis that do not include 0: After that we can use another deformation retraction F2
that sends z to (1� t)�1z: This retraction reduces S 0 to S 00 = f1g which is evidently
simply-connected.
We know that there is a holomorphic inverse K�1

n (z) de�ned on each of Wi:

Starting from one of these domains, sayW0; we can analytically continueK�1
n (z) to

every otherWi: Indeed, take a point z0 2 U0 and zi 2 Ui and connect them by a path
that lies entirely in R = [Ni=0Ui: This path corresponds to a chain fUksg ; s = 1; ::; n
that connects U0 and Ui. That is, Uk1 = U0; Ukn = Ui; and Ukj \ Ukj+1 6= ?: The
corresponding fWksg form a chain that connects W0 and Wj; that is, Wk1 = W0;

Wkn = Wi; andWkj \Wkj+1 6= ?: By its de�nition, this chain of setsWks has also
a speci�c property that K�1

n

�
Wkj

�
\K�1

n

�
Wkj+1

�
= Ukj \ Ukj+1 6= ?:

Consider two adjacent sets, Wkj and Wkj+1 ; in this chain: Then the correspond-
ing local inverses

�
Wkj ; K

�1
n

�
and

�
Wkj+1 ; K

�1
n

�
;which were de�ned in the previous

lemma, coincide on an open non-empty set: Indeed,Kn

�
Ukj \ Ukj+1

�
is an open and

non-empty set. Since Kn

�
Ukj \ Ukj+1

�
� Kn

�
Ukj
�
\Kn

�
Ukj+1

�
= Wkj \Wkj+1 ;

functions
�
Wkj ; K

�1
n

�
and

�
Wkj+1 ; K

�1
n

�
are well de�ned onKn

�
Ukj \ Ukj+1

�
. More-

over, they must coincide on Kn

�
Ukj \ Ukj+1

�
:

Indeed, by construction Ukj\Ukj+1 6= ; and, therefore, by the extended invertibil-
ity property,Kn is one-to-one on Ukj [Ukj+1 : Hence there cannot exist two different
z and z0 2 Ukj [ Ukj+1 that would map to one point in Kn

�
Ukj \ Ukj+1

�
. Hence�

Wkj ; K
�1
n

�
and

�
Wkj+1 ; K

�1
n

�
must coincide on Kn

�
Ukj \ Ukj+1

�
:

Using the property that if tow analytical functions coincide on an open set then
each of them is an analytic continuation of the other, we conclude that the local in-
verse

�
Wkj ; K

�1
n

�
can be analytically continued toWkj+1 where it coincides with the

local inverse
�
Wkj+1 ; K

�1
n

�
: Therefore, at least one analytic continuation of (W0; K

�1
n )

is well-de�ned everywhere on S and has the property that when restricted to each of
Wj it coincides with a local inverse of Kn (z) de�ned in the previous lemma. Since
S is simply connected, the analytic continuation is unique, that is, it does not depend
on the choice of the chain of the neighborhoods that connectW0 andWj .
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Let us denote the function resulting from this analytic continuation asGn (z) : By
construction, it is unambiguously de�ned for everyWj and the restrictions of Gn (z)
to Wj coincide with K�1

n : Therefore, Gn (z) satis�es the relations Kn (Gn (z)) = z

and Gn (Kn (z)) = z everywhere on R = [Ni=0Ui and on S = [Ni=0Wi: Every claim
of the lemma is proved because S is an open neighborhood of I:
QED.

Lemma 123 The function Gn (z) constructed in the previous lemma is the Cauchy
transform of Sn:

By construction, G�1n (z) is the inverse of Kn (z) in a neighborhood of f1g [�
�1;�2v1=2n � cDn=vn

�
[
�
2v
1=2
n + cDn=vn;1

�
: In particular, it is inverse of

Kn (z) in a neighborhood of in�nity. Therefore, in this neighborhood it has the
same power expansion as the Cauchy transform of Sn: Therefore, it coincides with
the Cauchy transform of Sn in this neighborhood. Next we apply the principle that
if two analytical functions coincide in an open domain then they coincide at every
point where they can be continued analytically. QED.
Now it remains to apply Lemma 56 and we obtain the following Theorem.

Theorem 124 Suppose that i) lim infmn
p
vn > 4; and ii) lim supn!1Dn=v

3=2
n �

1=8: Then for all suf�ciently large n the support of �n belongs to

I = (�2pvn � cDn=vn; 2
p
vn + cDn=vn) ;

where c > 0 is an absolute constant (e.g. c = 8).

Proof of Theorem 124. Let us collect the facts that we know about Gn (z) that
was de�ned in Lemma 122. First, by Lemma 123 it is the Cauchy transform of a
bounded random variable Sn: Second, by Lemma 122 it is holomorphic at z 2 R,
jzj > 2v

1=2
n + cDn=vn: Using Lemma 56 we conclude that the distribution of Sn is

supported on the interval
h
�2v1=2n � cDn=vn; 2v

1=2
n + cDn

i
: QED.

If we take Rn;i = 2Ln;i andmn;i = (4Ln;i)
�1 ; then assumption i) is equivalent to

lim inf
n!1

min
i

p
vn

4Ln;i
> 4;

which is equivalent to

lim sup
n!1

Lnp
vn

< 16:
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From ii) we get

1=8 � lim sup
n!1

Pkn
i=1Rn;i (mn;i)

�2

v
3=2
n

= lim sup
n!1

32
Pkn

i=1 L
3
n;i

v
3=2
n

;

which is equivalent to

lim sup
n!1

Tn

v
3=2
n

� 1=256:

Finally note that the condition lim supn!1 Tn=v
3=2
n � 2�12 implies that

lim sup
n!1

Ln=
p
vn < 16:

Therefore, Theorem 110 is a consequence of Theorem 124.
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Part III

Limit Theorems for Products of Free
Operators
14 Norms of Products of Free Random Variables

14.1 Introduction

Suppose X1; X2; ... ; Xn are identically-distributed free random variables. These
variables are in�nite-dimensional linear operators but the reader may �nd it conve-
nient to think of them as very large random matrices. The �rst question we will
address in this paper is how the norm of �n = X1X2:::Xn behaves. If Xi are all
positive, then it is natural to look also at the symmetric product operation � de�ned
as follows: X1 � X2 = X

1=2
1 X2X

1=2
1 : The bene�t is that unlike the usual operator

product, this operation maps the set of positive variables to itself. For this operation
we can ask how the norm of symmetric products Yn = X1 �X2 � ::: �Xn behaves.3

Products of random matrices and their asymptotic behavior were originally stud-
ied by Bellman (1954). One of the decisive steps was made by Furstenberg and
Kesten (1960), who investigated a matrix-valued stationary stochastic processX1; :::

; Xn; ::: , and proved that the limit of n�1E (log kX1:::Xnk) exists (but might equal
�1) and that under certain assumptions n�1 log kX1:::Xnk converges to this limit
almost surely. Essentially, the only facts that are used in the proof of this result are
the ergodic theorem, the norm inequality kX1X2k � kX1k kX2k and the fact that
the unit sphere is compact in �nite-dimensional spaces. It is the lack of compact-
ness of the unit sphere in the in�nite-dimensional space that makes generalizations
to in�nite-dimensional operators non-trivial (see Ruelle (1982) for a generalization in
the case of compact operators). More work on non-commutative products was done

3The operation � is neither commutative, nor associative. By convention we multiply starting on
the right, so, for example,X1 �X2 �X3 �X4 = X1 � (X2 � (X3 �X4)) : However, this convention is
not important for the question that we ask. First, it is easy to check thatX1 �X2 has the same spectral
distribution and therefore the same norm as X2 � X1: Second, if X1; X2; and X3 are free, then the
spectral distribution of (X1 �X2) � X3 is the same as the spectral distribution of X1 � (X2 �X3) ;
and therefore these two products have the same norm. In brief, if Xi are free, then the norm of
X1 �X2 � ::: �Xn does not depend on the order in which Xi are multiplied by the operation �:
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by Furstenberg (1963), Oseledec (1968), Kingman (1973), and others. The results
are often called multiplicative ergodic theorems and they �nd many applications in
mathematical physics. For example, see Ruelle (1984).
In this paper, we study products of free random variables. These variables are

(non-compact) in�nite-dimensional operators which can be thought of as a limiting
case of large independent random matrices.
Suppose that Xi are free, identically-distributed, self-adjoint, and positive. Sup-

pose also E (Xi) = 1: Then we show that the norm of Yn = X1 �X2 � ::: �Xn grows
no faster than a linear function of n: Precisely, we �nd that

lim sup
n!1

n�1 kYnk � c1 kXik :

We are also able to show that if Xi is not concentrated at 1; then

lim inf
n!1

n�1=2 kYnk � c2 > 0:

For the usual products �n = X1X2:::Xn we can relax the assumption of self-
adjointness. So, suppose thatXi are free and identically-distributed but not necessar-
ily self-adjoint. Also, we do not require that E (Xi) = 1: Then we show that

lim
n!1

n�1 log k�nk = log
p
E (X�

iXi): (60)

Another way to describe the behavior of �n is to look at how the norm of a �xed
vector � changes when we consecutively apply free operators X1; :::; Xn to it. More
precisely, suppose that the action of the algebra of variablesXi on a Hilbert spaceH
is described by a cyclic representation � and that the vector � is cyclic with respect
to the expectation E. By de�nition, this means that E (X) = h�; � (X) �i for every
operator X from a given algebra. Then we show that

n�1 log k� (�n) �k = log
p
E (X�

iXi): (61)

Note that we do not need to take the limit, since the equality holds for all n:
The reader may think of cyclic vectors as typical vectors. For example, if the

representation � is cyclic and irreducible then cyclic vectors are dense in H . In
colloquial terms, (60) says that for large n the product �n cannot increase the norm
of any given vector � by more than [E (X�X)]n=2 :And (61) says that for every cyclic
vector � this growth rate is achieved.
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One more way to capture the intuition of this result is to write

lim
n!1

n�1 log k�nk = lim
n!1

n�1 log sup
kxk=1

k� (�n)xk

We have shown that this limit is equal to

n�1 log k� (�n) �k

where � is a cyclic vector. Thus, for large n the product �n acts uniformly in all
directions. Its maximal dilation as measured by supkxk=1 k� (�n)xk has the same
exponential order of magnitude as the dilation in the direction of a typical vector �:
It is helpful to compare these results with the case of commutative random vari-

ables. Suppose for the moment that Xi are independent commutative random vari-
ables with positive values: Then,

lim
n!1

n�1 log kX1:::Xnk = log kXik ;

where the norm of a random variable is the essential supremum norm (i.e., kXk =
ess sup!2
 jX (!)j). Indeed, for every " > 0 the measure of the set

f! : jX1 (!) :::Xn (!)j � kX1k ::: kXnk � "g

is positive. Therefore kX1:::Xnk = kX1kn : Note that log
p
E (X�

iXi) � log kXik
and therefore the norm of free products grows more slowly than we would expect
from the classical case.
Another interesting comparison is that with results about products of random

matrices. Let Xi be i.i.d. random k � k matrices. Then under suitable conditions,

lim
n!1

n�1 log kXn:::X1k

exists almost surely. Let us denote this limit as �: Furstenberg (1963) developed a
general formula for �; and Cohen and Newman (1984) derived explicit results in the
case when entries ofXi have a joint Gaussian distribution. In particular, if all entries
of Xi are independent and have the distribution N (0; s2k) then

� = (1=2)
�
log
�
s2k
�
+ log 2 +  (k=2)

	
where  is the digamma function ( (x) = d log � (x) =dx). If the size of the ma-
trices grows (k ! 1) then � � (1=2) log (ks2k) : To compare this with our results,
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note that if ks2k ! s2; then the sequence of random matrices approximates a free
random variable eXi with the spectral distribution that is uniform inside the circle
of radius s: For this free variable, E

� eX�
i
eXi

�
= s2; and our theorem shows that

limn!1 n
�1
 eX1::: eXn

 = log s: This limit agrees with the result for random matri-
ces. Thus, our result can be seen as a limiting form of results for random matrices.
The results regarding kYnk are also interesting. We can associate with Xi and Yn

probability measures �X and �Yn ; which are called the spectral probability measures
of Xi and Yn; respectively. Then the measure �Yn is determined only by n and the
measure �X and is called the n-time free multiplicative convolution of �X with itself:

�Yn = �X � :::� �X| {z }
n times

:

The norm kYnk is easy to interpret in terms of the distribution �Yn : Indeed, it is the
smallest number t such that the support of �Yn is inside the interval [0; t] : Therefore,
the growth in kYnk measures the growth in the support of the spectral probability
measure if the measure is convolved with itself using the operation of the free multi-
plicative convolution.
In the case of classical multiplicative convolutions of probability measures, the

support grows exponentially, so that if �X is supported on [0; LX ] ; then the measure
�X1:::Xn is supported on [0; (LX)

n] : What we have found in the case of free multi-
plicative convolutions is that if we �x EXi = 1; then the support of the �Yn grows
no faster than a linear function of n, i.e., the support of �Yn is inside the interval
[0; cnLx] with an absolute constant c.
As was pointed out in the literature, a similar phenomenon occurs for sums of

free random variables. The support of measures obtained by free additive convolu-
tions grows much more slowly than in the case of classical additive convolutions.
This effect was called superconvergence by Bercovici and Voiculescu (1995). Our
�nding about kYnk can be considered as a superconvergence for free multiplicative
convolutions.
The rest of the paper is organized as follows. Section 2 formulates the results.

Section 3 contains the necessary technical background from free probability theory.
Sections 4, 5, and 6 prove the results. And Section 7 concludes.
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14.2 Results

Let X1; X2; ... ; Xn be free identically-distributed positive random variables. Con-
sider �n = X1X2:::Xn and Yn = X1 �X2 � ::: �Xn (by convention we multiply on
the left, so that, for example,X1 �X2 �X3 �X4 = X1 � (X2 � (X3 �X4)) ). We will
see later that these variables have the same moments: E (�n)k = E (Yn)

k : As a �rst
step let us record some simple results about the expectation and variance of Yn and
�n:We de�ne variance of a random variable A as

�2 (A) =: E
�
A2
�
� [E (A)]2 :

Proposition 125 Suppose that Xi are self-adjoint and E (Xi) = 1: Then E (�n) =
E (Yn) = 1 and �2 (�n) = �2 (Yn) = n�2 (Xi) :

Note that the linear growth in the variance of �n = X1:::Xn is in contrast with
the classical case, where only the variance of log (X1:::Xn) grows linearly. We will
prove this Proposition later when we have more technical tools available. Before that
we are going to formulate the main results.
Let kAk denote the usual operator norm of operator A.

Theorem 126 Suppose that X1, ..., Xn are identically-distributed positive self-
adjoint free variables: Suppose also that E (Xi) = 1: Then
(1) there exists such a constant, c; that kYnk � c kXikn;
and
(2) kYnk � � (Xi)

p
n:

For the next theorem de�ne

 = �

�
X�
iXi

E (X�
iXi)

�
� 0

Theorem 127 Suppose thatX1, ...,Xn are free identically-distributed variables (not
necessarily self-adjoint): Then
(1) there exists such a constant, c; that k�nk � c kXik

p
n [E (X�

iXi)]
(n�1)=2 ;

and
(2) k�nk � 1=2n1=4 [E (X�

iXi)]
n=2 :

Corollary 128 Suppose that X1, ..., Xn are free identically-distributed variables
(not necessarily self-adjoint): Then

lim
n!1

n�1 log k�nk = log
p
E (X�

iXi)

124



Next, suppose that the algebraA acts on an (in�nitely-dimensional) Hilbert space
H: In other words, let � be a representation of A. We call representation � cyclic if
there exists such a vector � 2 H that E (X) = h�; � (X) �i for all operators X 2 A:
The vectors with this property are also called cyclic.

Theorem 129 Suppose � is a cyclic representation of A, � is its cyclic vector, and
X1, ..., Xn are free identically-distributed variables from A. Then

n�1 log k� (�n) �k = log
p
E (X�

iXi)

Corollary 130 If � and � are cyclic then

log k�nk � log k� (�n) �k � n log k� (X1) �k

as n!1:

14.3 Preliminaries

Let us write out several �rst terms in the power expansions for  (z) ;  �1 (z) ; and
S (z) : Suppose for simplicity that E (A) = 1 and let E

�
Ak
�
= mk. Then,

 (z) = z +m2z
2 +m3z

3 + :::;

 �1 (z) = z �m2z
2 �

�
m3 � 2m2

2

�
z3 + :::;

S (z) = 1 + (1�m2)z +
�
2m2

2 �m2 �m3

�
z2 + :::

The Voiculescu theorem about multiplication of random variables implies that
S�n = SYn = (SX)

n ; where SX denotes the S-transform of any of Xi: Now it is
easy to prove Proposition 125. Indeed, let us denote S�n as Sn: Then, using the
power expansions we can write:

Sn (z) = 1 +
�
1�m

(n)
2

�
z + :::

= (SX)
n = 1 + n (1�m2) z + :::;

where m(n)
2 =: E (�n)

2 and m2 =: E (Xi)
2 : Then, using power expansion in (21),

we conclude that E (�n) = 1: Next, by de�nition �2 (Xi) = m2 � 1 and �2 (�n) =
m
(n)
2 � 1: Therefore, we can conclude that �2 (�n) = n�2 (X) : QED.
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14.4 Proofs

Proof of Theorem 126
Throughout this section we assume that Xi are self-adjoint, E (Xi) = 1; and the

support of the spectral distribution of Xi belongs to [0; L] :
Let us �rst go in a simpler direction and derive a lower bound on kYnk : That is,

we are going to prove claim (2) of the theorem. From Proposition 125, we know
that E (Yn) = 1 and �2 (Yn) = n�2 (Xi) : It is clear that for every positive random

variable A; it is true that E (A2) � kAk2 and therefore kAk �
q
�2 (A) + [E (A)]2:

Applying this to Yn, we get kYnk �
p
n�2 + 1: In particular, kYnk > �

p
n; so (2) is

proved.
Now let us prove claim (1). By Theorem 49, Sn (z) = (SX (z))

n. The idea of
the proof is to investigate how jSX (z)jn behaves for small z: It turns out that if z is
of the order of n�1, then jSX (z)jn > c where c is a constant that does not depend
on n:We will show that this fact implies that  n (z) (i.e., the  -function for Yn) has
the convergent power series in the area jzj < (cn)�1 and that therefore the Cauchy
transform of Yn has the convergent power series in jzj > cn: This fact and the Perron-
Stieltjes inversion formula imply that the support of the distribution of Yn is inside
[�cn; cn] :

Lemma 131 E
�
Xk
�
� Lk�1:

Proof:

E
�
Xk
�
=

Z L

0

�kd�X (�) � Lk�1
Z L

0

�d�X (�) = Lk�1;

where d�X denotes the spectral distribution of the variable X: QED.

Lemma 132 The function  X (z) is one-to-one in jzj � (4L)
�1 and if jzj = (4L)�1 ;

then j X (z)j � (6L)
�1 :

Proof: If jzj � (4L)�1 then

j X (z)� zj � jzj
1X
k=2

E
�
Xk
�
jzjk�1

� jzj
1X
k=1

1

4k
=
jzj
3
:
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Therefore,  X (z) is one-to-one in this area.
If jzj = (4L)�1 ; then

j X (z)j � jzj �
1X
k=2

E
�
Xk
�
jzjk

� jzj
 
1�

1X
k=1

1

4k

!

=
1

4L

�
1� 1

3

�
=
1

6L
:

QED.
By Lemma 60, we can expand the functional inverse of  X (z) as follows:

 �1X (u) = u+
1X
k=2

cku
k;

where
ck =

1

2�ik

Z


dz

[ X (z)]
k

Lemma 133 If juj � (72Ln)�1 ; then���� �1X (u)

u
� 1
���� � 1

7n
:

Proof: Using the previous lemma we can estimate ck:

ck �
1

k

1

4L
(6L)k � 3

2
(6L)k�1 :

Then ���� �1X (u)

u
� 1
���� =

�����
1X
k=2

cku
k�1

�����
� 3

2

1X
k=1

�
1

12n

�k
=
3

2

1

12n� 1

=
3

2

12n

12n� 1
1

12n
� 1

7n
;

provided that juj � (72Ln)�1 : QED.

127



Lemma 134 If juj � (72Ln)�1 ; then

j1� SX (u)j �
1

6n
:

Proof: Recall that SX (u) = (1 + u) �1X (u) =u: Then we can write:

j1� SX (u)j =
����u+ (1 + u)

�
 �1X (u)

u
� 1
�����

� juj+ j1 + uj
���� �1X (u)

u
� 1
���� :

Then the previous lemma implies that for juj � (72Ln)�1 and n � 2; we have the
estimate:

j1� SX (u)j �
1

72Ln
+

����1 + 1

72Ln

���� 17n:
Note that L � 1 because EX = 1: Therefore,

j1� SX (u)j �
1

72n
+
73

72

1

7n
� 1

6n
:

QED.

Lemma 135 For all positive integer n if juj � (72Ln)�1 ; then

e1=6 � jSX (u)jn � e�1=3:

Proof: Let us �rst prove the upper bound on jSX (u)jn : The previous lemma
implies that

jSX (u)jn �
�
1 +

1

6n

�n
� e1=6:

Now let us prove the lower bound. The previous lemma implies that

jSX (u)jn �
�
1� 1

6n

�n
:

In an equivalent form,

n log jSX (u)j � n log

�
1� 1

6n

�
: (62)

Recall the following elementary inequality: If x 2 [0; 1� e�1] ; then

log (1� x) � �2x:
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Let x = 1= (6n). Then

log

�
1� 1

6n

�
� � 1

3n
:

Substituting this in (62), we get

n log jSX (u)j � �
1

3
;

or
jSX (u)jn � e�1=3:

QED.
By Theorem 49, Sn(u) =: [SX (u)]n is the S-transform of the variable Yn: The

corresponding inverse  -function is  �1n (u) = uSn (u) = (1 + u) :

First, we estimate Sn (u)� 1.

Lemma 136 If juj � (72Ln)�1 ; then

jSn (u)� 1j �
1

5
:

Proof: Write

jSX (u)n � 1j � jSX (u)� 1j
�
jSX (u)jn�1 + jSX (u)jn�2 + :::+ 1

�
� 1

6n
e1=6n � 1

5
:

QED.

Lemma 137 The function  �1n (u) is one-to-one in juj = (72Ln)�1 and if juj =
(72Ln)�1 ; then �� �1n (u)

�� � 1

102Ln
:

Proof: Recall that by de�nition in (21),  �1n (u) = uSn (u) = (1 + u) : Therefore,�� �1n (u)� u
�� = juj ����Sn (u)� (1 + u)1 + u

����
and by Lemma 136 we have the following estimate:����Sn (u)� (1 + u)1 + u

���� � 1

1� juj jSn (u)� 1j+
juj

1� juj

� 72

71

1

5
+
1

71
� 1

4
:
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Therefore,  �1n (u) is invertible in juj � (72Ln)�1 :
Next, note that  �1n (u) = uSn (u) = (1 + u) and if juj = (72Ln)�1 ; then���� u

1 + u

���� � 1

72Ln
=

�
1 +

1

72Ln

�
� 1

73Ln
:

Using Lemma 135, we get:�� �1n (u)
�� � 1

73Ln
e�1=3 � 1

102Ln
:

QED.
Now we again apply Lemma 60 and obtain the following formula:

 n (z) = z +
1X
k=2

"
1

2�ik

I


du�
 �1n (u)

�k
#
zk; (63)

where we can take the circle juj = (72Ln)�1 as :

Lemma 138 The radius of convergence of series (63) is at least (102Ln)�1 :

Proof: By the previous lemma, the coef�cient before zk can be estimated as
follows:

jckj �
1

k

1

72Ln
(102Ln)k :

This implies that series (63) converges at least for jzj � (102Ln)�1 : QED.

Lemma 139 The support of the spectral distribution of Yn = X1 � X2 � ::: � Xn

belongs to the interval [�102Ln; 102Ln] :

Proof: The variable Yn is self-adjoint and has a well-de�ned spectral measure,
�n (dx) ; supported on the real axis. We can infer the Cauchy transform of this mea-
sure from  n (z):

Gn (z) = z�1
�
 n
�
z�1
�
+ 1
�
:

Using Lemma 138, we can conclude that the power series for Gn (z) around z = 1
converges in the area jzj > 102Ln: The coef�cients of this series are real. Therefore,
using the Perron-Stieltjes formula we conclude that �n (dx) is zero outside of the
interval [�102Ln; 102Ln] : QED.
Lemma 139 implies the statement of Theorem 126.
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Proof of Theorem 127
The norm of the operator �n coincides with the square root of the norm of the

operator��n�n: Therefore, all we need to do is to estimate the norm of the self-adjoint
operator ��n�n:

Lemma 140 For every bounded operator X 2 A; products X�X and XX� have
the same spectral distributions.

Proof: Since E is tracial, E (X�X)k = E (XX�)k. Therefore, X�X and XX�

have the same sequences of moments and, therefore, the same distributions. QED.
If two variables A and B have the same sequences of moments, we say that they

are equivalent and write A � B: In particular, if two self-adjoint variables have
the same spectral distribution, then they are equivalent. Conversely, if two bounded
self-adjoint variables are equivalent, then they have the same spectral distribution.

Lemma 141 IfA � B, A is free from C, andB is free from C; thenA+C � B+C,
AC � BC, and CA � CB:

Proof: Since A and C are free, the moments of A + C can be computed from
the moments of A and C: The computation is exactly the same as for B + C; since
B and C are also free. In addition we know that A and B have the same moments.
Consequently, A + C has the same moments as B + C; i.e., A + C � B + C. The
other equivalences are obtained similarly. QED.

Lemma 142 If A � B, then SA (z) = SB (z). In words, if two variables are equiv-
alent, then they have the same S-transform.

Proof: From the de�nition of the  -function, it is clear that if A � B, then
 A (z) =  B (z). This implies that  

�1
A (z) =  �1B (z) and therefore SA (z) =

SB (z) : QED.
For example, since Xi are all identically distributed, all SXi (z) are the same and

we will denote this function as SX (z) : Similarly, SX�
i Xi
(z) does not depend on i

and we will denote it as SX�X (z) :

Lemma 143 If X1; :::; Xn are free then

��n�n � X�
nXn:::X

�
1X1

and if X1; :::; Xn are in addition identically distributed then

S��n�n = S�n��n = (SX�X)
n
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Proof: We will use induction. For n = 1; we have ��1�1 = X�
1X1. Therefore

S��1�1 = SX�X : Suppose that the statement is proved for n� 1: Then

��n�n = X�
n:::X

�
1X1:::Xn

� XnX
�
nX

�
n�1:::X

�
1X1:::Xn�1;

where the equivalence holds because E is tracial and it is easy to check that the
products have the same moments. Therefore,

��n�n � (XnX
�
n)�

�
n�1�n�1

� (X�
nXn)�

�
n�1�n�1

by Lemmas 140 and 141. Then the inductive hypothesis implies that

��n�n � X�
nXn:::X

�
1X1:

Using Lemma 142 and Theorem 49, we write:

S��n�n = (SX�X)
n :

Since ��n�n � �n��n; therefore S��n�n = S�n��n = (SX�X)
n : QED.

We have managed to represent S��n�n as (SX�X)
n and therefore all the arguments

of the previous section are applicable, except that we are interested in (SX�X)
n rather

than in (SX)n : In particular, we can conclude that the following lemma holds:

Lemma 144 De�ne

 = �

�
X�
iXi

E (X�
iXi)

�
:

Then
(1) k��n�nk � 102 kXik2 nE (X�

iXi)
n�1 ; and

(2) k��n�nk � 
p
nE (X�

iXi)
n :

Proof: Let us introduce variables Ri = s�1Xi where s2 = E (X�X) : Then
kR�iRik = (kXik =s)2 and E (R�iRi) = 1: Let e�n = R1:::Rn: Then ��n�n =
s2ne��ne�n and the S-transform of e��ne�n is (SR�R)n :
Note that e��ne�n has the same S-transform and therefore the same distribution as

(R�1R1)�:::�(R�nRn) :Using Theorem 126, we conclude that
e��ne�n � 102 (kXik =s)2 n:

It follows that k��n�nk � 102 kXik2 s2n�2n: In addition, Theorem 126 implies thate��ne�n >
p
n� (R�iRi)

= 
p
n
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Consequently,
k��n�nk � 

p
ns2n:

QED.
From Lemma 144 we conclude that

k�nk � 11 kXik
p
nE (X�

iXi)
(n�1)=2 ;

and
k�nk � 1=2n1=4E (X�

iXi)
n=2

This completes the proof of Theorem 127.

Proof of Theorem 129
By de�nition of the cyclic vector, we have:

k� (�n) �k2 = h� (�n) �; � (�n) �i
= h�; � (��n�n) �i
= E (��n�n) :

Using Lemma 143, we continue this as follows:

E (��n�n) = E (X�
nXn:::X

�
1X1)

= [E (X�X)]n :

Consequently,
n�1 log k�n�k =

1

2
logE (X�X) :

QED.

14.5 Conclusion

We have investigated how the norms of �n = X1:::Xn and Yn = X1 � ::: �Xn grow
as n ! 1: For k�nk ; we have shown that limn!1 n

�1 log k�nk exists and equals
log
p
E (X�

iXi): For kYnk ; we have proved that the growth rate of kYnk is some-
where between

p
n and n: There remains the question of whether limn!1 n

�s kYnk
exists for some s:
Another interesting question, which is not resolved in this paper, is how the spec-

tral radius of �n grows. Indeed, for Yn, the norm coincides with the spectral radius.
But for �n; the norm and the spectral radius are different because �n is not self-
adjoint.
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15 OnAsymptotic Growth of the Support of FreeMul-
tiplicative Convolutions

15.1 Preliminaries and the main result

First, let us recall the de�nition of the free multiplicative convolution. Let ak denote
the moments of a compactly-supported probability measure �; ak =

R
tkd�; and let

the  -transform of � be  (z) =
P1

k=1 akz
k: The inverse  -transform is de�ned as

the functional inverse of  (z) and denoted as  (�1) (z) : It is a well-de�ned analytic
function in a neighborhood of z = 0; provided that a1 6= 0:
Suppose that � and � are two probability measures supported onR+ = fxjx � 0g

and let  (�1)� (z) and  (�1)� (z) be their inverse  -transforms. Then, it is possible to
show that

f (z) =
�
1 + z�1

�
 (�1)� (z) (�1)� (z)

is the inverse  -transform of a probability measure, which is called the free mul-
tiplicative convolution of measures � and �; and which is denoted as � � �: The
signi�cance of this operation can be seen from the fact that if � and � are the distrib-
utions of singular values of two free operatorsX and Y; then �� � is the distribution
of singular values of the product operator XY (assuming that the expectation is tra-
cial). For more details about free convolutions and free probability theory, the reader
can consult (Voiculescu, Dykema, and Nica 1992), (Hiai and Petz 2000), or (Nica
and Speicher 2006).
Let the support of a measure � be inside the interval [0; L] ; let � have the ex-

pectation 1 and variance v: We assume that the measure consists only of absolutely
continuous and atomic parts and that the number of atoms is �nite. We are interested
in the support of the n-time free multiplicative convolution of the measure � with
itself, which we denote as �n.

Theorem 145 Let Ln denote the upper boundary of the support of �n: Then

inf
Ln
n

� v;

lim sup
n!1

Ln
n

� (1 + 2v) exp

�
1 + v

1 + 2v

�
:

Remarks: 1) LetXi be free identically distributed variables and let�n = X1:::Xn.
If � is the spectral probability measure of X�

iXi; then �n is the spectral probability
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measure of��n�n: Assume that E (X�
iXi) = 1 and E

�
(X�

iXi)
2� = 1+v; and de�ne

k�nk2 =: [E (��n�n)]
1=2 : Then our theorem implies that

p
n
p
v k�nk2 � k�nk �

p
n
p
2 (1 + v) k�nk2

for all suf�ciently large n: This result also holds if we relax the assumptionE (X�
iXi) =

1 and de�ne

v =
E
�
(X�

iXi)
2�

[E (X�
iXi)]

2 � 1:

2) This theorem improves the result in Section 14 ((Kargin 2007)), where under
the same conditions on the measure � it was shown that Ln=n � cL where c is a
certain absolute constant. Thus the asymptotic growth in the support of free multi-
plicative convolutions �n is controlled by the variance of � and not by the length of
its support.

15.2 Proof of the main result

In our analysis we need a couple of estimates on the  -transform. Let the support of
a measure � be inside the interval [0; L] ; let this measure have the unit expectation,
and let it have the variance v: Note that

v =

Z
t2� (dt)� 1 � L� 1;

because we assumed that the expectation of measure � is 1.
We want to estimate higher moments of measure � in terms of v and L:

Lemma 146 For every k � 3;

E
�
Xk
�
�
(

Lk

(L�1)2v + 1; if L � 2;
2kv + 1; if L < 2:

Proof: By binomial expansion,Z
xk� (dx) =

kX
j=0

�
k

j

��Z
(x� 1)k�j � (dx)

�
:
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If L � 2; then for each term of the sum with j � k� 2 we can estimate this term
by (L� 1)k�j�2 v; and so we have:

E
�
Xk
�
�

��
k

0

�
(L� 1)k�2 +

�
k

1

�
(L� 1)k�3 + :::+

�
k

k � 2

�
1

�
v + 1

=
1

(L� 1)2

"
kX
j=0

�
k

j

�
(L� 1)k�j

#
v � k

v

L� 1 �
v

(L� 1)2
+ 1

� Lk

(L� 1)2
v + 1:

If L < 2; then we can estimate:

E
�
Xk
�
�

��
k

0

�
+

�
k

1

�
+ :::+

�
k

k � 2

��
v + 1

� 2kv + 1:

QED.
Now we can estimate  and its derivative. For example, if L � 2; then we have:

 (z) � z + (1 + v) z2 +
vL3

(L� 1)2
z3

1� Lz
+

z3

1� z

Similarly,

 0 (z) � 1 + 2 (1 + v) z +
vL3

(L� 1)2
3� 2Lz
(1� Lz)2

z2 +
3� 2z
(1� z)2

z2: (64)

If L < 2; then

 (z) � z + (1 + v) z2 + 8v
z3

1� 2z +
z3

1� z
;

and
 0 (z) � 1 + 2 (1 + v) z + 8v

3� 4z
(1� 2z)2 z

2 +
3� 2z
(1� z)2

z2:

These estimates are valid for all z 2 [0; L) :
Proof of Theorem 145: The �rst claim of Theorem 145 is easy. Note the esti-

mate:

nv = vn =

Z Ln

0

t2d�n (t)� 1 � Ln � 1;
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which is valid because the variances are additive relative to free multiplicative con-
volution, the expectation of the measure �n is 1; and the measure is supported on
[0;1) : This implies that

inf
Ln
n
� v:

The proof of the second claim is more involved. Let the  -transform of the n-time
convolution be denoted as  n (z) : The idea is that the Taylor series for  n (z) di-
verges for those real z which are greater in absolute value than 1=Ln: Therefore the
function  n (z) must have a singularity in the closed disc jzj � 1=Ln; i.e., there
should exist a point z0 in this disc; such that the Taylor series for  n (z) diverges at
z0: Since all the coef�cients in this series are real and positive, we can take z0 to be
real and positive. Therefore, in order to bound 1=Ln from below, we are looking for
the singularity of  n (z) which is located in R+ and which is closest to 0:
From the results in (Belinschi and Bercovici 2005) we know that for all large

n; the measure �n does not have atoms in R+n f0g. Since atoms of �n correspond
to poles of  n (z) ; therefore, we can assume that the function  n (z) does not have
poles in R+: Hence, the problem is reduced to �nding the branching point of  n (z) ;
which would be closest to 0: This branching point of  n (z) equals the critical value
of  (�1)n (z). By Voiculescu's theorem,

 (�1)n (z) =

�
1 + u

u

�n�1 h
 (�1) (u)

in
;

where  (�1) (u) is the inverse  -function for measure �. Therefore we can �nd criti-
cal points of  (�1)n (z) from the equation:

d

du

�
n log (�1) (u) + (n� 1) log

�
1 + u

u

��
= 0;

We can write this equation as

n

n� 1
d

du
log (�1) (u)� 1

u (1 + u)
= 0:

Thus, our task is to estimate that root of this equation which is real, positive and
closest to 0: In particular, if we succeed in proving that for all u 2 [0; b] the following
inequality is valid:

d

du
log (�1) (u) >

n� 1
n

1

u (1 + u)
; (65)

137



then we can be sure that all the critical points of  (�1)n (z) are greater than b. Since
the inverse  -transform is increasing on the interval [0; b], therefore we will be able
to infer that the critical value of  (�1)n (z) is greater thanh

 (�1) (b)
in�1 + b

b

�n�1
:

Hence, we will be able to conclude that the upper boundary of the support of �n is
less than

1h
 (�1) (b)

in � b

1 + b

�n�1
:

In order to proceed with this plan, we re-write inequality (65) as

1

z 0 (z)
>
n� 1
n

1

 (z) (1 +  (z))
; (66)

where z =  (�1) (u) :

Consider �rst the case L � 2: Using estimate (64), we infer that inequality (66)
is implied by the following inequality:

1

z

1

1 + 2 (1 + v) z + vL3

(L�1)2
3�2Lz
(1�Lz)2 z

2 + 3�2z
(1�z)2 z

2
>
n� 1
n

1

 (z) (1 +  (z))
;

Next we note that  (z) � z because we assumed that the �rst moment is 1 and
because all other moments are positive. Therefore, it is enough to show that

1

1 + 2 (1 + v) z + vL3

(L�1)2
3�2Lz
(1�Lz)2 z

2 + 3�2z
(1�z)2 z

2
>
n� 1
n

1

1 + z
:

Let us write this as

1

n� 1 +
1

n� 1z > (1 + 2v) z +
3� 2z
(1� z)2

z2 +
vL3

(L� 1)2
3� 2Lz
(1� Lz)2

z2:

If we �x an arbitrary " > 0; then clearly for all z � (n (1 + 2v + "))�1 this inequality
holds if n is suf�ciently large.
A similar conclusion can be achieved in the case when L < 2: This implies

that we can �nd such c ("; L; n) that inequality (66) holds for all real positive z �
z0 (n) = (n (1 + 2v + "))�1 c ("; L; n) and that c ("; L; n)! 1 as n!1:
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Next step is to estimate [z0= (z0)]n�1 :Note that  (z) = z+(1 + v) z2+O (z3) ;

where the coef�cient in the term O (z3) depends on L; but can be chosen uniformly
for all z � z0 (n) if n is suf�ciently large: Therefore,

[z0= (z0)]
n�1 ! exp

�
� 1 + v

1 + 2v + "

�
;

as n!1: It follows that

z0 [z0= (z0)]
n�1 = (n (1 + 2v + "))�1 exp

�
� 1 + v

1 + 2v + "

�
c0 ("; L; n) ;

where c0 ("; L; n) ! 1 as n ! 1: It follows that the upper boundary of the support
of the n-time convolution can be estimated as follows:

Ln � n (1 + 2v + ") exp

�
1 + v

1 + 2v + "

�
c00 ("; L; n) ;

where c00 ("; L; n)! 1 as n!1: In particular, this means that

lim sup
n!1

Ln
n
� (1 + 2v) exp

�
1 + v

1 + 2v

�
:

QED.

15.3 Conclusion

It would be interesting to �nd out whether the limit of (nv)�1 Ln exists, and if it does,
then whether it depends on the measure �:

16 Lyapunov Exponents for Free Operators

16.1 Introduction

Suppose that at each moment of time, ti; a system is described by a state function
' (ti) and evolves according to the law ' (ti+1) = Xi' (ti) ; where Xi is a sequence
of linear operators. One can ask how small changes in the initial position of the sys-
tem are re�ected in its long-term behavior. If operators Xi do not depend on time,
Xi = X; then the long-term behavior depends to a large extent on the spectrum of
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the operator X: If operators Xi do depend on time but can be modelled as a station-
ary stochastic process, then the long-term behavior of the system depends to a large
extent on so-called Lyapunov exponents of the process Xi.
The largest Lyapunov exponent of a sequence of random matrices was inves-

tigated in a pioneering paper by Furstenberg and Kesten (1960). This study was
followed by Oseledec (1968), which researched other Lyapunov exponents and �ner
aspects of the asymptotic behavior of matrix products. These investigations were
greatly expanded and clari�ed by many other researchers. In particular, Ruelle (1982)
developed a theory of Lyapunov exponents for random compact linear operators act-
ing on a Hilbert space. Cohen and Newman (1984), Newman (1986b), Newman
(1986a), and Isopi and Newman (1992) studied Lyapunov exponents for random
N �N matrices when N !1:

The goal of this paper is to investigate how the concept of Lyapunov exponents
can be extended to the case of free linear operators. It was noted recently (Voiculescu
(1991)) that the theory of free operators can be a natural asymptotic approximation
for the theory of large random matrices. Moreover, it was noted that certain dif�cult
calculations from the theory of large random matrices become signi�cantly simpler
if similar calculations are performed using free operators. For this reason it is in-
teresting to study whether the concept of Lyapunov exponents is extendable to free
operators, and what methods for calculation of Lyapunov exponents are available in
this setting.
Free operators are not random in the traditional sense so the usual de�nition of

Lyapunov exponents cannot be applied directly. Our de�nition of Lyapunov expo-
nents is based on the observation that in the case of random matrices, the sum of
logarithms of the k largest Lyapunov exponents equals the rate at which a random
k-dimensional volume element grows asymptotically when we consecutively apply
operators Xi.
In the case of free operators we employ the same idea. However, in this case

we have to clarify how to measure the change in the "t-dimensional volume ele-
ment" after we apply operators Xi: It turns out that we can measure this change by
a suitable extension of the Fuglede-Kadison determinant. Given this extension, the
de�nition proceeds as follows: Take a subspace of the Hilbert space, such that the
corresponding projection is free from all Xi and have the dimension t relative to the
given trace. Next, act on this subspace by the sequence of operators Xi. Apply the
determinant to measure how the �volume element� in this subspace changes under
these linear transformations. Use the asymptotic growth in the determinant to de�ne
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the Lyapunov exponent corresponding to the dimension t.
It turns out that the growth of the t-dimensional volume element is exponential

with a rate which is a function of the dimension t: We call this rate the integrated
Lyapunov exponent. It is an analogue of the sum of the k largest Lyapunov exponents
in the �nite-dimensional case. The derivative of this function is called the marginal
Lyapunov exponent. Its value at a point t is an analogue of the k-th largest Lyapunov
exponent.
Next, we relate the marginal Lyapunov exponent fX (t) to the Voiculescu S-

transform of the random variable X�
iXi: The relationship is very simple:

fX (t) = � (1=2) log [SX�X (�t)] : (67)

Using this formula, we prove that the marginal Lyapunov exponent is decreasing
in t; and derive an expression for the largest Lyapunov exponent. Formula (67) also
allows us to prove the additivity of the marginal Lyapunov exponent with respect to
operator product: fXY (t) = fX (t) + fY (t) :The author is unaware if an analogous
result holds for �nite-dimensional random matrices.
As an example, we calculate Lyapunov exponents for variables Xi that have the

Marchenko-Pastur distribution with parameter � as the spectral probability distri-
bution of X�

iXi: The case � = 1 corresponds to the case considered in Newman
(1986b), and the results of this paper are in agreement with Newman's �triangle�
law. In addition, our results regarding the largest Lyapunov exponent agree with the
results regarding the norm of products of large random matrices in Cohen and New-
man (1984). Finally, our formula for computation of Lyapunov exponents seems to
be easier to apply than the non-linear integral transformation developed in Newman
(1986b).
An interesting by-product of our results is a relation between the extended Fuglede-

Kadison determinant and the Voiculescu S-transform, which allows expressing each
of them in terms of the other. Since under certain conditions the extended determi-
nant retains the multiplicativity property of the original Fuglede-Kadison determi-
nant, this relation sheds some additional light on the multiplicativity property of the
S-transform.
The rest of the paper is organized as follows: Section 16.2 describes the extension

of the Fuglede-Kadison determinant that we use in this paper. Section 16.3 de�nes
the Lyapunov exponents of free operators, proves an existence theorem, and derives
a formula for the calculation of Lyapunov exponents. Section 16.4 computes the
Lyapunov exponents for a particular example. Section 16.5 connects the marginal
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Lyapunov exponents and the S-transform, proves additivity and monotonicity of the
marginal Lyapunov exponent, and derives a formula for the largest Lyapunov expo-
nent. In addition, it derives a relation between the determinant and the S-transform.
And Section 16.6 concludes.

16.2 A modi�cation of the Fuglede-Kadison determinant

Let A be a �nite von Neumann algebra and E be a trace in this algebra. Recall
that if X is an element of A that has a bounded inverse, then the Fuglede-Kadison
determinant ((Fuglede and Kadison 1952)) is de�ned by the following formula:

det (X) = exp
1

2
E log (X�X) : (68)

The most important property of the Fuglede-Kadison determinant is its multiplica-
tivity:

det (XY ) = det (X) det (Y ) : (69)

This determinant cannot be extended (non-trivially) to non-invertibleX if we require
that property (69) holds for all X and Y:
However, if we relax this property, then we can de�ne an extended determinant

as follows: Let log+� (t) =: log t if t > � and =: 0 if t � �: Note that on the
interval (0; 1) ; E log+� (X�X) is a (weakly) decreasing function of �; and therefore
it converges to a limit (possibly in�nite) as �! 0:

De�nition 147
det (X) = exp

1

2
lim
�#0

E log+� (X�X) :

This extension of the Fuglede-Kadison determinant coincides with the extension
introduced in Section 3.2 of Luck (2002) .

Example 148 Zero Operator

From De�nition 147, if X = 0; then detX = 1:

Example 149 Finite dimensional algebra
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Consider the algebra of n-by-n matrices Mn (C) with the trace given as the
normalization of the usual matrix trace: E (X) = n�1Tr (X) : Then the original
Fuglede-Kadison determinant is de�ned for all full-rank matrices and equals the
product of the singular values of the operator in the power of 1=n. It is easy to
see that this equals the absolute value of the usual matrix determinant in the power of
1=n. The extended Fuglede-Kadison determinant is de�ned for all matrices, includ-
ing the matrices of rank k < n: It is equal to the product of non-zero singular values
in the power of 1=n:
We can write the de�nition of the determinant in a slightly different form. Recall

that for a self-adjoint operatorX 2 A we can de�ne its spectral probability measure
as follows: First, we write the spectral decomposition as

X =

Z 1

�1
�PX (d�) ;

where fPX (�)g is a family of commuting projections. Then, the spectral probability
measure of X is de�ned by the following formula:

�X (S) = E (PX (S)) ;

where S is an arbitrary Borel-measurable set. We can calculate the trace of any
summable function of a self-adjoint variable A by using its spectral measure:

Ef (X) =

Z 1

�1
f (�) d�X (�) :

In particular the determinant of operator X can be written as

det (X) = exp
1

2
lim
�#0

Z
R+
log+� (t) d�X�X (t) :

For arbitrary probability measure � with support in R+ = fxjx � 0g ; we write:

det (�) = exp
1

2
lim
�#0

Z
R+
log+� (t) d� (t) :

For all invertibleX the extended determinant de�nes the same object as the usual
Fuglede-Kadison determinant. For non-invertible X , the multiplicativity property
sometimes fails. However, it holds if a certain condition on images and domains of
the multiplicands is ful�lled:

143



Proposition 150 Let V be the closure of the range of the operatorA: IfB is an injec-
tive mapping on V and is the zero operator on V ?, then det (BA) = det (B) det (A) :

The claim of this proposition is a direct consequence of Theorem 3.14 and Lemma
3.15(7) in Luck (2002).
Now let us connect the determinant and the concepts of free probability theory.

Following the conventions of free probability theory, we will call the pair (A; E) a
non-commutative probability space ifA is a �nite von Neumann algebra, E is a trace
in this algebra, and E (I) = 1: The trace E will be called the expectation by analogy
with classical probability theory. LetA1;:::;An be sub-algebras of algebraA, and let
ai be elements of these sub-algebras such that ai 2 Ak(i):

De�nition 151 The sub-algebras A1;:::;An (and their elements) are called free or
freely independent if E (a1:::am) = 0 whenever the following two conditions hold:
(a) E (ai) = 0 for every i, and
(b) k(i) 6= k (i+ 1) for every i < m; and k (m) 6= k (1) :

The random variables are called free or freely independent if the algebras that
they generate are free. (See Voiculescu et al. (1992) or Hiai and Petz (2000) for more
details on foundations of free probability theory.)
If � is the spectral probability measure for X�X and � is the spectral probability

measure for Y �Y; then the spectral probability measure of Y �X�XY depends only
on � and �: It is called the free multiplicative convolution of measures � and �; and
denoted as �� �:

Proposition 152 Let � and � be two probability measures supported onR+: Suppose
that they have no atoms at 0; i.e., � (f0g) = � (f0g) = 0: Then det (�� �) =

det (�) det (�) ; where �� � denotes the free multiplicative convolution of measures
� and �:

Proof: Let us take free, self-adjoint, and positive X and Y; such that � and � are
the spectral probability measures for X2 and Y 2; respectively. Then, by de�nition,
�� � is the spectral probability measure for Y X2Y and we can write det (�� �) =

det (XY ) = det (X) det (Y ) = det (�) det (�) : The second equality holds true
because the closure of the image of Y is the whole space (guaranteed by � (f0g) = 0),
and X is injective on this image (guaranteed by � (f0g) = 0). QED.
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16.3 De�nition of Lyapunov exponents for free operators

Let fXig1i=1 be a sequence of free identically-distributed operators. Let�n = Xn : : : X1;

and let Pt be a projection which is free of all Xi and has the dimension t; i.e.,
E (Pt) = t:

De�nition 153 The integrated Lyapunov exponent corresponding to the sequenceXi

is a real-valued function of t 2 [0; 1] which is de�ned as follows:

F (t) = lim
n!1

1

n
log det (�nPt) ;

provided that the limit exists.

Remark: In the case of random matrices, �n is the product of independent
identically-distributed random matrices. In this case, it turns out that the function
de�ned analogously to F (t) equals the sum of the tN largest Lyapunov exponents
divided by N , where N is the dimension of the matrices and t belongs to the set
f0=N; 1=N; : : : ; N=Ng :
Our �rst task is to prove the existence of the limit in the previous de�nition.

Theorem 154 Suppose that Xi are free identically-distributed operators. Let u =:
dimker (Xi) : Then

F (t) =

�
1
2
lim�#0E log

+� (PtX
�
1X1Pt) ; if t � 1� u;

1
2
lim�#0E log

+� (PuX
�
1X1Pu) ; if t > 1� u:

Before proving this theorem, let us make some remarks. First, this theorem shows
that the integrated Lyapunov exponent of the sequence fXig exists and depends only
on the spectral distribution of X�

iXi:

Next, suppose that we know that F (t) is differentiable almost everywhere. Then
we can de�ne the marginal Lyapunov exponent as f (t) = F 0 (t) : We can also
de�ne the distribution function of Lyapunov exponents by the formula: F(x) =
� ft 2 [0; 1] : f (t) � xg ; where � is the usual Borel-Lebesgue measure. Intuitively,
this function gives a measure of the set of the Lyapunov exponents which are less than
a given threshold, x: In the �nite-dimensional case it is simply the empirical distrib-
ution function of the Lyapunov exponents, i.e., the fraction of Lyapunov exponents
that fall below the threshold x:
Proof of Theorem 154: The proof is through a sequence of lemmas. We will

consider �rst the case of injective operatorsXi and then will show how to generalize
the argument to the case of arbitrary Xi:

Let PA denote the projection on the closure of the range of operator A:
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Lemma 155 Suppose that A is an operator in a von Neumann probability space A,
that A is injective, and that Pt is a projection of dimension t: Then projection PAPt is
equivalent to Pt. In particular, E (PAPt) = t:

Proof: Recall that polar decomposition is possible inA. (See Proposition II.3.14
on p. 77 in Takesaki (1979) for details.) Therefore, we can write APt = WB; where
W is isometric and B is self-adjoint and where bothW and B belong to A. By def-
inition, the range of W is [Range (APt)] ; and the domain of W is [x : Bx = 0]? =
[x : APtx = 0]

? = [x : Ptx = 0]
? = [Range (Pt)] : Therefore, PAPt is equivalent

to Pt, with the equivalence given by the isometric tranformation W: In particular,
dim (PAPt) = dim (Pt) ; i.e., E (APt) = t: QED.

Lemma 156 If A; A�; and Pt are free from an operator algebra B; then PAPt is free
from B:

Proof: PAPt belongs to the algebra generated by I; A; A�; and Pt: By assump-
tion, this algebra is free from B: Hence, PAPt is also free from B: QED.
Let us use the notation Qk = PXk:::X1Pt for k � 1 and Q0 = Pt. Then by

Lemma 156, Qk is free fromXk+1: Besides, if allXi are injective, then their product
is injective and, therefore, by Lemma 155, Qk is equivalent to Pt:

Lemma 157 If all Xi are injective, then

det (�nPt) =
Yn

i=1
det (XiQi�1) :

Proof: Note that �nPt = XnQn�1Xn�1 : : : Q1X1Q0:We will proceed by induc-
tion. We need only to prove that

det (Xk+1QkXk : : : Q1X1Q0) = det (Xk+1Qk) det (Xk : : : Q1X1Q0) : (70)

Let Vk be the closure of the range ofXk : : : Q1X1Q0: SinceXk+1 is injective and Qk
is the projector on Vk, therefore Xk+1Qk is injective on Vk and equal to zero on V ?

k :

Consequently, we can apply Proposition 150 and obtain (70). QED.
Now we are ready to prove Theorem 154 for the case of injective Xi. Using

Lemma 157, we write

n�1 log det (�nPt) =
1

n

Xn

i=1
log det (XiQi�1) :
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Note that Xi are identically distributed by assumption, Qi have the same dimension
by Lemma 155, and Xi and Qi�1 are free by Lemma 156. This implies that

lim
�#0

E log+� (Qi�1X
�
iXiQi�1)

does not depend on i; and hence, det (XiQi�1) does not depend on i: Hence, using
i = 1 we can write:

n�1 log det (�nPt) = log det (X1Pt) :

This �nishes the proof for the case of injective Xi: For the case of non-injective
Xi, i.e., for the case when dimker (Xi) > 0; we need the following lemma.

Lemma 158 Suppose that Pt is a projection operator free ofA and such thatE (Pt) =
t: Then dimker (APt) = max f1� t; dimker (A)g :

Proof: Let V = (KerA)? and let PV be the projection on V: Then E (PV ) =
1 � dimKerA: Note that Ax = 0 () PV x = 0: Consequently, APtx = 0 ()
PV Ptx = 0: Therefore, we have:

dim fx : APtx = 0g = dim fx : PV Ptx = 0g
= dim fx : PtPV Ptx = 0g :

Since Pt and PV are free, an explicit calculation of the distribution of PtPV Pt
shows that

dim fx : PtPV Ptx = 0g = max f1� t; 1� dimV g :

QED.
Consider �rst the case when 0 < dimkerXi � 1� t: This case is very similar to

the case of injectiveXi:Using Lemma 158 we conclude that dimKer (X1Pt) = 1�t;
and therefore that E (PX1Pt) = t: If, as before, we denote PX1Pt as Q1; then the
projection Q1 is free from X2; and E (Q1) = t:

Similarly, we obtain that E (PX2Q1) = t: Proceeding inductively, we de�neQk =
PXkQk�1 and conclude that Qk is free from Xk+1 and that E (Qk) = t:

Next, we write Xk:::X1Pt = XkQk�1Xk�1Qk�2:::X1Q0, where Q0 denotes Pt;
and note that XkQk�1 is injective on the range of Qk�1: Indeed, if it were not in-
jective, then we would have dim (Ker (Xk) \ Range (Qk�1)) > 0: But this would
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imply that dim (KerXkQk�1) > dim (KerQk�1) = 1� t; which contradicts the fact
that dim (KerXkQk�1) = 1� t: Therefore, Proposition 150 is applicable and

det (Xk:::X1Pt) = det (XkQk�1) ::: det (X1Q0)

= [det (X1Pt)]
k :

Now let us turn to the case when dimkerXi = u > 1�t: Then dimKer (X1Pt) =

1�u and thereforeE (PX1Pt) = u: Proceeding as before, we conclude thatE (Qk) =
u for all k � 1; and we can write Xk:::X1Pt = XkQk�1Xk�1Qk�2:::X1Q0, where
we have denoted Pt as Q0: Then we get the following formula:

det (Xk:::X1Pt) = det (XkQk�1) ::: det (X2Q1) det (X1Q0)

= [det (X1Pu)]
k�1 det (X1Pt) :

Therefore,
lim
n!1

n�1 log det (�nPt) = log det (X1Pu) :

QED.

16.4 Example

Let us compute the Lyapunov exponents for a random variable X that has the prod-
uct X�X distributed according to the Marchenko-Pastur distribution. Recall that
the continuous part of the Marchenko-Pastur probability distribution with parameter

� > 0 is supported on the interval
��
1�

p
�
�2
;
�
1 +

p
�
�2�

; and has the following

density there:

p� (x) =

q
4�� (x� 1� �)2

2�x
:

For � 2 (0; 1) ; this distribution also has an atom at 0 with the probability mass
(1� �) assigned to it. The Marchenko-Pastur distribution is sometimes called the
free Poisson distribution since it arises as a limit of free additive convolutions of the
Bernoulli distribution, and a similar limit in the classical case equals the Poisson
distribution. It can also be thought of as a scaled limit of the eigenvalue distribution
of Wishart-distributed random matrices (see (Hiai and Petz 2000) for a discussion).
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Proposition 159 Suppose that X is a non-commutative random variable such that
X�X is distributed according to the Marchenko-Pastur distribution with parameter
�: If � � 1; then the distribution of Lyapunov exponents of X is

F (x) =

8<:
0; if x < (1=2) log (�� 1)

e2x + 1� �; if x 2
�
1
2
log (�� 1) ; 1

2
log �

�
1 if x � 1

2
log �:

:

If � < 1; then the distribution of Lyapunov exponents of X is

F (x) =

8<:
e2x; if x < (1=2) log (�)
�; if x 2

�
1
2
log (�) ; 0

�
1 if x � 0:

Remark: If � = 1; then the distribution is the exponential law discovered by
C. M. Newman as a scaling limit of Lyapunov exponents of large random matrices.
(See Newman (1986b), Newman (1986a), and Isopi and Newman (1992). This law
is often called the �triangle� law since it implies that the exponentials of Lyapunov
exponents converge to the law whose density function is in the form of a triangle.)
Proof of Proposition 159: It is easy to calculate that the continuous part of the

distribution of PtXPt is supported on the interval
��p

t�
p
�
�2
;
�p

t+
p
�
�2�

;

and has the density function

pt;� (x) =

q
4�t� [x� (t+ �)]2

2�x
:

This distribution also has an atom at x = 0with the probability massmax f1� �; 1� tg.
See for example, results in (Nica and Speicher 1996).
Next, we write the expression for the integrated Lyapunov exponent. If � � 1; or

� < 1 but � � t; then

F� (t) =
1

2
lim
"#0

E log+" (PtX
�XPt)

=
1

2

(
p
t+
p
�)

2Z
(
p
t�
p
�)

2

log x

q
4�t� [x� (t+ �)]2

2�x
dx: (71)
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If � < 1 and � < t; then

F� (t) =
1

2
lim
"#0

E log+" (P1��X
�XP1��)

F� (t) =
1

2

(
p
1��+

p
�)

2Z
(
p
1���

p
�)

2

log x

q
4� (1� �)� [x� 1]2

2�x
dx: (72)

Differentiating (71) with respect to t; we obtain an expression for the marginal Lya-
punov exponent:

f� (t) =
1

4�

(
p
t+
p
�)

2Z
(
p
t�
p
�)

2

log x

x

x� t+ �q
4�x� [x� t+ �]2

dx: (73)

Using substitutions u =
�
x�

�p
t�

p
�
�2�

=
�
2
p
�t
�
�1 and then � = arccosu;

this integral can be computed as

f� (t) =
1

2
log (�� t) :

From this expression, we calculate the distribution of Lyapunov exponents for the
case when � � 1:

F (x) =

8<:
0; if x < (1=2) log (�� 1)

e2x + 1� �; if x 2
�
1
2
log (�� 1) ; 1

2
log �

�
1 if x � 1

2
log �:

A similar analysis shows that for � < 1; the distribution is as follows:

F (x) =

8<:
e2x; if x < (1=2) log (�)
�; if x 2

�
1
2
log (�) ; 0

�
1 if x � 0:

QED.

16.5 A relation with the S-transform

In this section we derive a formula that makes the calculation of Lyapunov exponents
easier and relates them to the S-transform of the operator Xi. Recall that the  -
function of a bounded non-negative operatorA is de�ned as A (z) =

P1
k=1E

�
Ak
�
zk:
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Then the S-transform is SA (z) = (1 + z�1) 
(�1)
A (z) ; where  (�1)A (z) is the func-

tional inverse of  A (z) in a neighborhood of 0:

Theorem 160 Let Xi be identically distributed free bounded operators. Let Y =

X�
1X1 and suppose that �Y (f0g) = 1 � u 2 [0; 1) ; where �Y denotes the spectral

probability measure of Y: Then the marginal Lyapunov exponent of the sequence
fXig is given by the following formula:

fX (t) =

�
�1
2
log [SY (�t)] if t < u;

0 if t > u;

where SY is the S-transform of the variable Y:

Remark: Note that if X�
1X1 has no atom at zero then the formula is simply

fX (t) = �1
2
log [SY (�t)] :

Proof: If t > u; then fX (t) = 0 by Theorem 154. Assume in the following that
t < u: Then PtX�XPt has an atom of mass 1 � t at 0: Let �t denote the spectral
probability measure of PtX�XPt; with the atom at 0 removed. (So the total mass of
�t is t.) We start with the formula:

log x = log (c+ x)�
Z c

0

ds

x+ s
;

and write: Z 1

0

log x �t (dx) = lim
c!1

�
t log (c) +

Z c

0

Gt (�s) ds
�
;

where Gt is the Cauchy transform of the measure �t:
Next, note that Gt (�s) = �s�1 t (�s�1) � ts�1 and substitute this into the

previous equation:Z 1

0

log x �t (dx) = lim
c!1;"!0

�
t log c� t log c+ t log (") +

Z c

"

 t (s
�1)

s
ds

�
= lim

"!0

�
t log (") +

Z 1

"

 t (s
�1)

s
ds

�
:

Using substitutions v = � log s; and A = � log "; we can re-write this equation as
follows: Z 1

0

log x �t (dx) = lim
A!1

�
�tA�

Z A

�1
 t (�ev) dv

�
:
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The function  t (�ev) monotonically decreases when v changes from �1 to
1; and its value changes from 0 to �t: Let s� =:  t (�e0) =  t (�1) and let
�t (x) denote the functional inverse of  t (�ev) : The function �t (x) is de�ned on the
interval (�t; 0) : In this interval it is monotonically decreasing from1 to �1: The
only zero of �t (x) is at x = s�:

It is easy to see that

lim
A!1

�
�tA�

Z A

0

 t (�ev) dv
�
= �

Z s�

�t
�t (x) dx;

and that
�
Z 0

�1
 t (�ev) dv = �

Z 0

s�
�t (x) dx:

Therefore, Z 1

0

log x �t (dx) = �
Z 0

�t
�t (x) dx:

It remains to note that �t (x) = log
h
� (�1)t (x)

i
; in order to conclude thatZ 1

0

log x �t (dx) = �
Z 0

�t
log
h
� (�1)t (x)

i
dx:

The next step is to use Voiculescu's multiplication theorem and write:  (�1)t (x) =

 
(�1)
Y (x) (1 + x) = (t+ x) : Then we have the formula:Z 1

0

log x �t (dx) = �
Z 0

�t
log
h
� (�1)Y (x)

i
dx�

Z 0

�t
log

�
1 + x

t+ x

�
dx

= �
Z 0

�t
log
h
� (�1)Y (x)

i
dx+ (1� t) log (1� t) + t log t:

The integrated Lyapunov exponent is one half of this expression, and we can obtain
the marginal Lyapunov exponent by differentiating over t:

f (t) =
1

2

�
� log

h
� (�1)Y (�t)

i
+ log t� log (1� t)

�
= �1

2
log

��
1� 1

t

�
 
(�1)
Y (�t)

�
= �1

2
log [SY (�t)] :

QED.
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Example
Let us consider again the case of identically distributed free Xi such that X�

iXi

has theMarchenko-Pastur distribution with the parameter � � 1: In this case SY (z) =
(�+ z)�1 : Hence, applying Theorem 160, we immediately obtain a formula for the
marginal Lyapunov exponent:

f (t) =
1

2
log (�� t) :

Inverting this formula, we obtain the formula for the distribution of Lyapunov expo-
nents:

F (x) =

8<:
0; if x < (1=2) log (�� 1) ;

e2x + 1� �; if x 2
�
1
2
log (�� 1) ; 1

2
log �

�
;

1 if x � 1
2
log �;

which is exactly the formula that we obtained earlier by a direct calculation from
de�nitions. It is easy to check that a similar agreement holds also for � < 1:

Corollary 161 Let X and Y be such that X�X and Y �Y are bounded and have
no atom at zero. Let fX ; fY ; and fXY denote the marginal Lyapunov exponents
corresponding to variables X; Y and XY; respectively. Then

fXY (t) = fX (t) + fY (t) :

Proof: By Theorem 160,

fXY (t) = �1
2
log [SY �X�XY (�t)]

= �1
2
log [SY �Y (�t)SX�X (�t)]

= fX (t) + fY (t) :

QED.

Corollary 162 If X is bounded and X�X has no atom at zero, then the marginal
Lyapunov exponent is (weakly) decreasing in t, i.e. f 0X (t) � 0:

Proof: Because of Theorem 160, we need only to check that S (t) is (weakly)
decreasing on the interval [�1; 0] ; and this was proved by Bercovici and Voiculescu
in Proposition 3.1 on page 225 of Bercovici and Voiculescu (1992). QED.
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Corollary 163 If X is bounded and X�X has no atom at zero, then the largest Lya-
punov exponent equals (1=2) logE(X�X):

Proof: This follows from the previous Corollary and the fact that SY (0) =
1=E (Y ) : QED.
Remark: It is interesting to compare this result with the result in Cohen and

Newman (1984), which shows that the norm of the product of N � N i.i.d. random
matrices X1; : : : ; Xn grows exponentially when n increases, and that the asymptotic
growth rate approaches 1

2
logE(tr (X�

1X1)) if N ! 1 and matrices are scaled ap-
propriately. The assumption in Cohen and Newman (1984) about the distribution
of matrix entries is that the distribution of X�

1X1 is invariant relative to orthogonal
rotations of the ambient space. Since the growth rate of the norm of the product
X1 : : : Xn is another way to de�ne the largest Lyapunov exponent of the sequence
Xi; therefore the result in Cohen and Newman (1984) is in agreement with Corollary
163.
The main result of Theorem 160 can also be reformulated as the following inter-

esting identity:

Corollary 164 If Y is bounded, self-adjoint, and positive, and if fPtg is a family of
projections which are free of Y and such that E (Pt) = t, then

logSY (�t) = � d

dt

h
lim
�!0

E log+� (PtY Pt)
i

= �2 d
dt

h
log det

�p
Y Pt

�i
:

Conversely, we can express the determinant in terms of the S-transform:

Corollary 165 If X is bounded and invertible, then

det (X) = exp

�
�1
2

Z 1

0

logSX�X (�t) dt
�
:

16.6 Conclusion

One interesting remaining question is how the obtained results are related to the
in�nite-dimensional analogue of Newman's non-linear transformation, which can be
de�ned as follows: LetK (dt) be the spectral probability measure for

p
X�
iXi: Then
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for a certain range of x; we de�ne H (x) as the solution of the following integral
equation: Z

t2

H (x)x2 + (1�H (x)) t2
K (dt) = 1:

A claim suggested by Newman's results about random matrices is that if X�
iXi is

invertible, then H (x) is the distribution function for e�; where � is the marginal
Lyapunov exponent of Xi.

17 CLT formultiplicative free convolutions on the unit
circle

17.1 Introduction

Suppose X is a unitary n-by-n matrix. Then X has n eigenvalues, which are all lo-
cated on the unit circle. If we give each eigenvalue a weight of n�1; then we can think
about the distribution of these eigenvalues as a probability distribution supported on
n points of the unit circle. More generally, if X is a unitary operator in a �nite von
Neumann algebra, then we can de�ne a spectral probability distribution of X; which
is supported on the unit circle (see, e.g., Section 1.1 in Hiai and Petz (2000)).
If we have several unitary operatorsX1, ....,Xn, then it is natural to ask about the

spectral distribution of their product. In general, we cannot determine this distribu-
tion without more information about relations among operatorsX1; ....,Xn:However,
ifX1; ....,Xn are in�nite-dimensional and, in a certain sense, in a general position rel-
ative to each other, then the spectral distribution of their product is computable. The
idea of a general position was formalized by Voiculescu in his concept of freeness
of operators (see Voiculescu (1983), Voiculescu (1986), and a textbook by Hiai and
Petz (2000)). If operators X1; ..., Xn are free and unitary and their distributions are
�1; ...., �n; respectively, then the distribution of their product is determined uniquely.
This distribution is called the free multiplicative convolution of measures �1; :::; �n
and denoted as �1 � :::� �n:

What can we say about the asymptotic behavior of �(n) =: �1 � ::: � �n; as n
increases to in�nity? In particular, what are necessary and suf�cient conditions on �i
that ensure that �(n) converges to the uniform distribution on the unit circle?
To answer this question, let us de�ne the expectation with respect to the measure

�i. This is a functional that maps functions analytic in a neighborhood of the unit
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circle to complex numbers:

E�if =:

Z
j�j=1

f (�) d�i (�) :

If unitary operator Xi has the spectral probability distribution �i, then we will also
write:

Ef (Xi) =: E�if:

In particular, EXi denotes
R
j�j=1 �d�i (�) : Then the answer is given by the following

theorem:

Theorem 166 Suppose fXig are free unitary operators with spectral measures �i:
The measure �(n) of their product �n = X1:::Xn converges to the uniform measure
on the unit circle if and only if at least one of the following situations holds:
(i) There exist two indices i 6= j such that EXi = EXj = 0;

(ii) There exists exactly one index i such that EXi = 0; and
Qn
k=i+1EXk ! 0 as

n!1;
(iii) There exists exactly one index i such that Xi has the uniform distribution;
(iv) EXk 6= 0 for all k; and

Qn
k=1EXk ! 0 as n!1:

In other words, convergence of �(n) to the uniform law implies that
Qn
k=1EXk !

0; and the only case when the reverse implication fails is when EXi = 0 for exactly
one Xi; the measure �i is not uniform, and

Qn
k=i+1EXk 9 0 as n ! 1: Note that

cases (ii) and (iii) above are not exclusive. It may happen that both �i is uniform andQn
k=i+1EXk ! 0 as n!1: In this case, both (ii) and (iii) hold, and �(n) converges

to the uniform law.
This theorem can be thought of as a limit theorem about free multiplicative con-

volutions of measures on the unit circle. There is some literature about traditional
multiplicative convolutions of measures on the unit circle, or more generally, about
convolutions of measures on compact groups. For the unit circle, this investigation
was started by Levy (1939). Then it was continued by Kawada and Itô (1940), who
studied compact groups, and Dvoretzky and Wolfowitz (1951) and Vorobev (1954),
who both considered the case of commutative �nite groups. These researchers found
an important necessary condition for convergence of convolutions to the uniform law.
This condition requires that there should be no normal subgroup such that the support
of the convolved measures is supported entirely in an equivalence class relative to this
subgroup. This condition is suf�cient if summands are identically distributed. If they
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are not, then there are some suf�cient and necessary conditions, which is are espe-
cially useful if the group is cyclic. A textbook presentation with further references
can be found in Grenander (1963).
Recent investigations of convolutions on groups are mostly concerned with the

speed of convergence of convolved measures to the uniform law. For a description
of progress in this direction, the reader can consult surveys in Diaconis (1988) and
Saloff-Coste (2004).
It turns out that free convolutions converge to the uniform law under much weaker

conditions than usual convolutions. As an example, consider the distributions that
are concentrated on �1 and +1. Let measure �k put the weight pk on +1: Then
usual convolutions remain concentrated on �1 and +1; and therefore they have no
chance to converge to the uniform distribution on the unit circle. In contrast, we
will show that free convolutions do converge to the uniform law, provided that eitherQn
k=k0

(2pk � 1) ! 0 for arbitrarily large k0; or there exist two indices i and j such
that pi = pj = 1=2:

The rest of this section is organized as follows. In Section 17.2 we outline the
proof. Section 17.3 derives some auxiliar results that will be used in the proof.
Section 17.4 proves the main result (Theorem 166). Section 17.5 derives the key
estimate used in the proof. And Section 17.6 concludes.

17.2 Outline of the proof

Let (A; E) be a non-commutative probability space and fXig1i=1 be a sequence of
free unitary operators (random variables) from this space. Let �n denote the partial
products: �n = X1:::Xn: We denote E (Xi) as ai; and E (�n) as a(n): First, note
that it is enough to consider the case when all ai are real and non-negative. Indeed,
ei�n�n converges in distribution to the uniform law if and only if �n converges in
distribution to the uniform law. Therefore if ai is not real and positive, then we can
replace Xi with e�i arg aiXi without affecting the convergence of �n:
We divide the analysis into the following cases:
Case I a(n) 9 0:

Case II a(n) ! 0; and there are at least two indices, i and j; such that ai = aj =

0:

Case III a(n) ! 0; and for all i; ai > 0:
Subcase III.1 lim inf ai = 0:
Subcase III.2 lim inf ai = a > 0:
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Case IV a(n) ! 0; and there exists exactly one index i; such that ai = 0:
We will show that without loss of generality we can assume in this case that

a1 = 0; and ak > 0 for all k > 1:
Subcase IV.1 X1 has the uniform distribution.
Subcase IV.2 X1 does not have the uniform distribution, and

Qn
k=2 an ! 0

as n!1:

Subcase IV.3 X1 does not have the uniform distribution, and
Qn
k=2 an 9 0

as n!1:

We will show that �n does not converge to the uniform law if and only if either
Case I or Case IV.3 holds.

17.3 Auxiliary lemmas

We will use the Lemmas below:

Lemma 167 SupposeA andB are free unitary operators, jE (A)j � a and jE (B)j �
b: Then ���E h(AB)ki��� �Mkmax (a; b)

for some absolute constantsMk:

Proof: If we expand E
h
(AB)k

i
using Theorem 8, then we can observe that each

term in the expansion contains either E (A) or E (B) as a separate multiple. The
remaining multiples in this term are � 1 in absolute value; therefore, we can bound
each term by max (a; b) : The number of terms in this expansion is bounded by a
constant,Mk: Therefore,

���E h(AB)ki��� is bounded byMkmax (a; b) : QED.
In the following lemmas we use the fact that the sequence of measures �i; sup-

ported on the unit circle, converges to the uniform law if and only if all moments
converge to 0: (That is, for each k,

R
j�j=1 �

kd�i (�) ! 0 as i ! 1:) For complete-
ness we give a proof of this result below
Recall that the  -function of a bounded random variable X is de�ned as

 X (z) =:
1X
k=1

E
�
Xk
�
zk: (74)

If X is unitary operator with the spectral measure �, then we can write:

 � (z) =

Z
j�j=1

1

1� �z
d� (�)� 1:
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Let us de�ne c(i)k =: E
�
Xk
i

�
=
R
j�j=1 �

kd�i (�) : Note that for a �xed i; c
(i)
k are

coef�cients in the Taylor series of  i (z), i.e., of the  -function of the measure �i:

Lemma 168 Let �i be a sequence of measures supported on the unit circle. If for
each k the coef�cients c(i)k ! 0 as i ! 1; then  i (z) ! 0 uniformly on compact
subsets of the unit disc.

Proof: Let 
 be a compact subset of the unit disc, and let 
 � Dr; where Dr

denotes a closed disc with the radius r < 1: Fix an " 2 (0; 1) : Then we can �nd such
a k0 that �����

1X
k=k0

c
(j)
k z

k

����� < "=2

for all z 2 Dr and all j: Indeed,
���c(j)k ��� � 1; and therefore,�����
1X
k=k0

c
(j)
k z

k

����� � rk0

1� r
;

so we can take k0 = log (" (1� r) =2) = log r:

Given k0; we choose a j0 so large that for all j > j0 and all k < k0; we have���c(j)k ��� < "= (2k0) : This is possible because by assumption for each k; coef�cients c
(j)
k

converge to zero as j ! 1; and we consider only a �xed �nite number of possible
k:

Consequently, �����
k0�1X
k=1

c
(j)
k z

k

����� �
k0�1X
k=1

���c(j)k ��� < "=2

for every j > j0 and all z 2 Dr: Therefore,�����
1X
k=1

c
(j)
k z

k

����� < "

for every j > j0 and all z 2 Dr: Therefore,  j (z) ! 0 uniformly on Dr; and
therefore on 
: Since 
 was arbitrary, we have proved that  j (z)! 0 uniformly on
compact subsets of the unit disc. QED.
Lemma 168, formula (34), p. 70. and Theorem 74, p. 69, imply that if all

moments of �j converge to 0; then �j ! �, where � is the uniform distribution on
the unit circle. QED.
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Lemma 169 Suppose fAng1n=1 is a sequence of unitary operators that converges in
distribution to the uniform law. Let fBng1n=1 be another sequence of unitary op-
erators, and let the operator Bn be free of the operator An for every n: Then the
sequence of products BnAn converges in distribution to the uniform law. Also, the
sequence AnBn converges to the uniform law.

Proof: Let a(n)k = E
�
(An)

k
�
: By assumption, for each �xed k; the moment

a
(n)
k ! 0 as n ! 1: If we represent E

�
(BnAn)

k
�
as a polynomial in individual

moments of Bn and An, then all terms of this polynomial contain at least one of the
moments a(n)i ; i � k; which are perhaps multiplied by some other moments. All of
these other moments are less than 1 in absolute value. Therefore, we can write the
following estimate: ���E �(BnAn)k���� �Mkmax

i�k

n
a
(n)
i

o
;

where Mk is the number of terms in the polynomial. If k is �xed and n is growing,
then the assumption that An converges in distribution to the uniform law implies that
maxi�k

n
a
(n)
i

o
converges to zero. Therefore, all moments of BnAn converge to zero

as n!1, and therefore, by Lemma 168 and Theorem 74, p. 69, the sequenceBnAn
converges in distribution to the uniform law. A similar argument proves that AnBn
converges in distribution to the uniform law. QED.

Lemma 170 Suppose that B is a unitary operator, fAng is a sequence of unitary
operators, B is free from each of An; E (B) 6= 0; and the sequence An does not
converge to uniform law. Then the sequence of products BAn does not converge to
the uniform law.

Proof: The condition that the sequence An does not converge to the uniform law
means that for some �xed k the sequence of k-th moments of An does not converge
to zero as n!1. Let k be the smallest of these indices. By selecting a subsequence
we can assume that

��E �Akn��� > � > 0 for all n: Consider E
�
(BAn)

k
�
:

E
�
(BAn)

k
�
= [E (B)]k E

�
Akn
�
+ :::;

The number of the terms captured by ... is �nite and depends only on k. Each of
these terms includes at least one of E (Ain) where i < k; and other multipliers in this
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term are less than 1 in absolute value. Therefore, each of these terms converges to
zero. Hence, for any " > 0; there exist such N that for all n > N; the sum of the
terms captured by ... is less than " in absolute value. Take " = jE (B)jk �=2: Then
for n > N; we have: ���E �(BAn)k���� � jE (B)jk �=2:
Therefore, the sequence of products BAn does not converge to the uniform law.
QED.

Lemma 171 Suppose that B is a unitary random variable, fAng is a sequence of
unitary random variables, B is free from each of An; B is not uniform; and the
sequence of expectations E (An) does not converge to zero. Then the sequence of
products BAn does not converge to the uniform law.

Proof: By selecting a subsequence we can assume that jE (An)j > � > 0 for all
n: The assumption that B is not uniform means that for some k, E

�
Bk
�
6= 0: Let k

be the smallest of such k: Consider E
�
(BAn)

k
�
:

E
�
(BAn)

k
�
= [E (An)]

k E
�
Bk
�
+ :::;

Each of the terms in ... includes one of E (Bi) where i < k. Therefore, all terms in
... are zero. Hence,���E �(BAn)k���� = ���[E (An)]k E �Bk

���� > �k
��E �Bk

��� :
Therefore, the sequence of products BAn does not converge to the uniform law.
QED.

17.4 Analysis

We use the following notation:  i and Si denote  - and S-functions for variables Xi

(and measures �i); and  (n) and S(n) denote these functions for variables �n (and
measures �(n)).
Case I: a(n) 9 0.
Since E (�n) = a(n); therefore, if a(n) 9 0; then E (�n)9 0: Hence, �n cannot

converge to the uniform measure on the unit circle.
Case II a(n) ! 0; and there are at least two indices i and j such that ai =

aj = 0:
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Assume without loss of generality that j > i: Consider �n with n � j and de�ne
X =: X1:::Xi and Y =: Xi+1::Xn. Then �n = XY; and E (Y ) = E (X) = 0:

Using Lemma 167, we obtain that
���E h(�n)ki��� = 0 for every k > 0: Therefore, the

 -function of �n is zero, and �n has the uniform distribution on the unit circle.
Case III a(n) ! 0; and for all i; ai > 0:

Subcase III.1 lim inf ai = 0:
In this case we can �nd a subsequence ani that monotonically converges to zero.
Now, consider �j , where j 2 [ni; ni+1) : Then we can write �j = XY; where

X = X1:::Xni�1; and Y = Xni :::Xj: Then EX � ani�1 and EY � ani � ani�1 :

Applying Lemma 167 we get��E ��kj ��� �Mkani�1 :

This implies that for a �xed k;
��E ��kj ��� approaches zero as j !1: By Lemma 168

and Proposition 74, this establishes that �j converges to the uniform law.
Case III a(n) ! 0; and for all i; ai > 0

Subcase III.2 lim inf ai = a > 0.
Let us choose such an a that 0 < a < a: Starting from some j0; aj 2 (a; 1) : Lete�n = Xj0 :::Xn+j0�1: Then, by Lemmas 169 and 170, e�n converges to the uniform

law if and only if �n converges to the uniform law. Hence, without loss of generality
we can restrict our attention to the case when ak 2 (a; 1) for all k:
In this case we have to use the analytic apparatus developed by Voiculescu for

free multiplicative convolutions. Let  �1X (u) denote the functional inverse of  X (z)
in a neighborhood of z = 0; where  X (z) is as de�ned in (74). (This inversion is
possible provided that E (X) 6= 0.) De�ne also

SX (u) =
u+ 1

u
 �1X (u) :

By Voiculescu multiplication theorem, ifX and Y are bounded free random vari-
ables and both E (X) and E (Y ) are not zero, then SXY (z) = SX (z)SY (z) :

To prove convergence to the uniform law, we have to establish that for every
k > 0 the coef�cient c(n)k in the Taylor expansion of function  (n) (z) approaches
zero as n!1:We know from Lemma 60, p. 58, that

kc
(n)
k = res

z=0

1h
 �1(n) (z)

ik ;
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therefore, our main task is to estimate this residual. This is the same as estimating
the coef�cient before the term zk�1 in the Taylor expansion of

f (z) =

"
z

 �1(n) (z)

#k
:

We will approach this problem by using the Cauchy inequality (see Section 5.23 in
Whittaker and Watson (1927)). Recall that this inequality says that���kc(n)k ��� � M (r)

rk�1
; (75)

where r > 0 is such that f (z) is analytic inside jzj = r and

M (r) =: max
jzj=r

jf (z)j :

It is easy to note that the constant in the Taylor expansion of z= �1(n) (z) is a(n)
which approaches zero as n!1: SoM (0) = a(n): The main question is how large
we can take r, so that M (r) remains relatively small. In other words, we want to
minimize the right-hand side of (75) by a suitable choice of r:

Proposition 172 Suppose that EXi = ai > a for each i and that a(n) =:
Qn
i=1 ai !

0: Let �i = 1� ai. Then for all suf�ciently large n; the following inequality holds:���c(n)k ��� � �Ca2
�k " nX

i=1

�i

!
exp

 
�

nX
i=1

�i

!#k
;

where C = 217:

Proof: The main tool in the proof is the following proposition:

Proposition 173 Suppose that �i =: 1� ai < 1� a for each i; and that z and n are
such that

jzj � a2

6684
min

8<:1;
 

nX
i=1

�i

!�19=; :

Then, ����� z

 �1(n) (z)

�����
k

�
�
2e2
�k �Yn

i=1
ai

�k
:
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We will prove this proposition in the next section and assume for now that it
holds.

Lemma 174 Suppose 1 � ak > 0 for all k; and let �i =: 1� ai. Then
Qn
i=1 ai ! 0

if and only if
Pn

i=1 �i !1:

This is a standard result. For a proof see Section 2.7 in Whittaker and Watson
(1927). Since log (1� �i) � ��i; we also have the following estimate.

nY
i=1

ai � exp
 
�

nX
i=1

�i

!
: (76)

Let n0 be so large that
Pn0

i=1 �i > 1: (We can �nd such n0 because by Lemma
174,

Pn
i=1 �i ! 1 as n ! 1:) In particular, this implies that

Pn
i=1 �i > 1 for

every n � n0: De�ne rn =: a2 (
Pn

i=1 �i)
�1
=6684: Then, using Proposition 173 and

formulas (75) and (76), we get:���kc(n)k ��� �
�
2e2
�k �Yn

i=1
ai

�k �6684
a2

Xn

i=1
�i

�k�1
�

�
217

a2

�Xn

i=1
�i

�
exp

�
�
Xn

i=1
�i

��k
;

provided that n � n0: QED.
Using Lemma 174, we get the following Corollary:

Corollary 175 If the assumptions of Proposition 172 hold, then for each k; the co-
ef�cient c(n)k ! 0 as n!1:

This Corollary shows that in Case III.2 the product �n converges to the uniform
law.
Case IV a(n) ! 0; and there exists exactly one index i; such that ai = 0:
First, we want to show that without loss of generality we can assume in this case

that a1 = 0; and ak > 0 for all k > 1: Indeed, suppose ai = 0 for i > 1: Let
X = X1:::Xi�1 and let e�n = Xi:::Xi+n�1: Then E (X) 6= 0; and using Lemmas
169 and 170, we conclude that �n converges to the uniform law if and only if e�n
converges to the uniform law.
Subcase IV.1 X1 has the uniform distribution.
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In this case all moments of X1 are zero, i.e., E
�
Xk
1

�
= 0 for all k > 0; and

Theorem 8 implies that all moments of �n are zero. Therefore, �n is uniform for all
n:

Subcase IV.2X1 does not have the uniform distribution, and
Qn
k=2 an ! 0 as

n!1:

By Case III, the productX2:::Xn converges to the uniform law, and using Lemma
169, we conclude that �n also converges to the uniform law.
Subcase IV.3 X1 does not have the uniform distribution and

Qn
k=2 an 9 0 as

n!1:

Applying Lemma 171 to B = X1 and A = X2:::Xn; we conclude that �n does
not converge to the uniform law.

17.5 Proof of Proposition 173

Let

f(z) =:

 
z

 �1(n) (z)

!k
:

Using Theorem 49, 49, we can write this function as follows:

f(z) =

 
zn

(1 + z)n�1

nY
i=1

1

 �1i (z)

!k
: (77)

We want to estimate jf (z)j for all suf�ciently small z: The plan of the attack is
as follows. First, we will show that if ai is close to 1; then  �1i (z) behaves approx-
imately as z= (ai + z) : The quantitative version of this statement is in Lemma 181.

This behavior implies that f (z) is approximately
h
a(n)

Yn

i=1
[(1 + z=ai) = (1 + z)]

ik
and it is easy to show that the product is convergent if z � C

P
(1� ai) : This im-

plies the statement of Proposition 173.
To implement this plan, we start with some auxiliary estimates, which will later

allow us to estimate  i (z) ; and then  
�1
i (z) for small z:

Lemma 176 Suppose � is a probability measure on [��; �) such that����Z �

��

�
ei� � 1

�
d� (�)

���� � �: (78)

Then, i) Z �

��
�2d� (�) � �2

2
� < 5�;
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ii) ����Z �

��
�d� (�)

���� � �1 + �3

12

�
� < 3�; and

iii) if k > 2; then Z �

��
j�jk d� (�) � �k

2
�:

Proof: Condition (78) implies thatZ �

��
(1� cos (�)) d� (�) � �

and that ����Z �

��
sin (�) d� (�)

���� � �:

Since 1� cos � � (2=�2) �2; from the �rst of these inequalities we infer that:Z �

��
�2d� (�) �

�
�2=2

�
�;

which proves claim i) of the lemma.
Next, note that jsin � � �j � j�j3 =6; and that

1

6

Z �

��
j�j3 d� (�) � �

6

Z �

��
�2d� (�) � �3

12
�:

Therefore,����Z �

��
�d� (�)

���� �
����Z �

��
sin (�) d� (�)

����+ ����Z �

��
(� � sin (�)) d� (�)

����
� �+

�3

12
�:

This proves claim ii) of the lemma.
For claim iii), note thatZ �

��
j�jk d� (�) � �k�2

Z �

��
j�j2 d� (�) � �k

2
�:

QED.
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Lemma 177 Suppose Condition (78) holds, and k is a positive integer. Then����Z �

��

�
eik� � 1

�
d� (�)

���� � 7k3�:
Proof: First, remark that j1� cos (k�)j � (k�)2 =2 and therefore����Z �

��
(cos k� � 1) d� (�)

���� � k2

2

Z �

��
�2d� (�)

� �2k2

4
�:

Next, we will use jsin (k�)� k�j � (k j�j)3 =6 and write����Z �

��
sin (k�) d� (�)

���� �
����Z �

��
k�d� (�)

����+ ����16
Z �

��
(k j�j)3 d� (�)

����
� k

�
1 +

�3

12

�
�+

1

6
k3
�3

2
�

� k3
�
1 +

�3

6

�
�:

Consequently,����Z �

��

�
eik� � 1

�
d� (�)

���� � �

s
�4k4

16
+ k6

�
1 +

�3

6

�2
� 7k3�:

QED.

Lemma 178 Let X be unitary and EX = a > 0. If jzj � 1=2 and 1� a � �; then���� X (z)� az

1� z

���� � 716� jzj2 :
Proof: We can write:

 X (z)�
az

1� z
=

1X
k=2

�
E
�
Xk
�
� a
�
zk:
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Therefore, using Lemma 177, we estimate:���� X (z)� az

1� z

���� �
1X
k=2

���E �Xk
�
� 1
��+ j1� aj

�
zk

� 7� jzj2
1X
k=0

�
(k + 2)3 + 1=7

�
jzjk

� 716� jzj2

QED.
To derive a similar estimate for  �1X (z), we need a couple of preliminary lemmas.

Lemma 179 Suppose X is unitary and EX = a > 0: Then the function  X (z) has
only one zero (z = 0) in the area jzj < a=3 . If jzj = a=3; then j X (z)j � a2=6:

Proof: Write the following estimate:

j X (z)� azj =
�����
1X
k=2

E
�
Xk
�
zk

�����
� jzj

1� jzj jzj <
a

2
jzj ;

if jzj < a=3: By Rouche's theorem,  X (z) has only one zero in jzj < a=3: The
second claim also follows immediately from this estimate. QED.

Lemma 180 Suppose X is unitary and EX = a > 0: Then the function  �1X (z) is
analytical for jzj < a2=6. In this area it can be represented as

 �1X (z) =
z

a
(1 + zv (z)) ;

where v (z) is an analytical function. If jzj � a2=12; then

jv (z)j � 12

a2
:

Proof: Using Lagrange's formula, we can write

 �1X (z) =
z

a
+

1X
k=2

ckz
k;
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where

ck =
1

2�i

1

k

I


du

[ X (u)]
k
:

By the previous Lemma, we can use the circle with the center at 0 and radius a=3 as
, and then we can estimate ck as follows:

jckj �
a=3

k (a2=6)k
=
2

ka

�
6

a2

�k�1
:

It follows that the power series for  �1X (z) converges in jzj < a2=6: In particular it
follows that  �1X (z) can be represented as

 �1X (z) =
z

a
(1 + zv (z)) ;

where v (z) is an analytical function. For v (z) we have the following estimate:

jv (z)j � 6

a2
1

1� 6
a2
jzj
:

So if jzj � a2=12; then

jv (z)j � 12

a2
:

QED.

Lemma 181 Let X be unitary and EX = a > 0: If jzj � a2=12; and � � 1 � a;

then ����  �1X (z)

z= (a+ z)
� 1
���� � 3342�

a2
jzj :

Proof: First of all, note that Lemma 180 implies that�� �1X (z)
�� � 2

a
jzj

for jzj � a2=12:

Now we use the functional equation for  �1X (z):

 X
�
 �1X (z)

�
= z:
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If jzj � a2=12; then
�� �1X (z)

�� � 2 jzj =a � a=6 < 1=2 and we can apply Lemma
178 to get: ����z � a �1X (z)

1�  �1X (z)

���� � 716�
�� �1X (z)

��2
� 2864�

a2
jzj2 :

Next, we write this as��z � (a+ z) �1X (z)
�� �

��1�  �1X (z)
�� 2864�

a2
jzj2

� 3342�

a2
jzj2 :

It follows that ����  �1X (z)

z= (a+ z)
� 1
���� � 3342�

a2
jzj :

QED.

Lemma 182 Let EXi = ai and assume that for each i; it is true that ai � a: Assume
also that jzj � a2=3342 and let �i =: 1� ai. Then�����

nY
i=1

1

 �1i (z)

����� �
Qn
i=1 ai
jzjn

nY
i=1

1

1� ci jzj

�����
nY
i=1

�
1 +

z

ai

������ ;
where ci = 3342�i=a2i :

Proof: From Lemma 181 we infer that�� �1i (z)
�� � z

ai

1

1 + z=ai

�
1� 3342�i

a2i
jzj
�
:

Multiplying these inequalities together and inverting both sides, we get the desired
result. QED.

Lemma 183 Under the assumptions of the previous lemma, the following inequality
holds:

jf (z)j �
 Qn

i=1 ai
j1 + zj

nY
i=1

1

1� ci jzj

�����
nY
i=1

1 + z=ai
1 + z

�����
!k

; (79)

where ci = 3342�i=a2i :
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Proof: The claim of this lemma is a direct consequence of Lemma 182 and equal-
ity (77). QED.
We will estimate terms in the product on the right-hand side of (79) one by one.

Lemma 184 Suppose that �i =: 1� ai < 1� a for each i; and that

jzj � a2

6684
min

8<:1;
 

nX
i=1

�i

!�19=; :

Then �����
nY
i=1

1 + z=ai
1 + z

����� � e:

Proof: We write:�����
nY
i=1

1 + z=ai
1 + z

����� = exp
 
Re

nX
i=1

log

�
1 +

�i
ai

z

1 + z

�!
:

Recall that Re log (1 + u) � juj if juj < 1: Under our assumption about jzj ; it is true
that �����iai z

1 + z

���� < 1:
Therefore we can write:�����

nY
i=1

1 + z=ai
1 + z

����� � exp

 ���� z

1 + z

���� nX
i=1

�i
ai

!

� exp

�
2

a
jzj
X

�i

�
� e:

QED.

Lemma 185 Suppose that �i =: 1� ai < 1� a for each i; and that

jzj � a2

6684
min

8<:1;
 

nX
i=1

�i

!�19=; :

Then,
nY
i=1

1

1� ci jzj
� e;

where ci = 3342�i=a2i :
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Proof: We use the inequality log (1� u) � �2u;which is valid for u 2 (0; 1=2) ;
and write:

nY
i=1

1

1� ci jzj
= exp

 
�

nX
i=1

log (1� ci jzj)
!

� exp

 
2 jzj

nX
i=1

ci

!

� exp

"
6684

a2

 
nX
i=1

�i

!
jzj
#

� e:

QED.
Finally, note that if jzj � a2=6684; then jzj � 1=2 and, therefore,

��(1 + z)�1�� �
2: Collecting all the pieces, we obtain that if

jzj � a2

6684
min

8<:1;
 

nX
i=1

�i

!�19=;
then:

jf (z)j �
�
2e2
�k �Yn

i=1
ai

�k
:

This completes the proof of Proposition 173.

17.6 Conclusion

We have derived suf�cient and necessary conditions for the product of free unitary
operators to converge in distribution to the uniform law. If essential convergence
denotes the situation when the partial products continue to converge even after an
arbitrary �nite number of terms are removed, then the necessary and suf�cient con-
dition for essential convergence is that the products

Yn

k0
EXi converges to zero for

all k0; that is, that the products of expectations essentially converge to zero. Essential
convergence implies convergence. In addition, non-essential convergence can occur
when there is either a term that has the uniform distribution, or there are two terms
that have zero expectation. In the latter case convergence occurs because the product
of these two terms has the uniform distribution.
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Part IV

Free Point Processes and Free
Extremes
In classical probability theory, one of the most important places is taken by the the-
ory of extremal events. Recently, a similar theory has started to be developed in
the context of free probability theory, in the role of independent random variables is
played by freely independent non-commutative operators in a Hilbert space. In par-
ticular, (Ben Arous and Voiculescu 2006) have introduced and studied free extremal
processes. The main object of this paper is to show that free extremes are naturally
related to an object that we call a free point process.
The basic element in both classical and free theory of extremes is a measure �:

In the classical case, we take a sequence of i.i.d. random variables Xi; distributed
according to �; and then de�ne a sequence of scaled maxima:

X(n) = max
1�i�n

�
Xi � an
bn

�
;

where an and bn are certain constants.
If F (n) denotes the distribution function ofX(n); then it was shown in the classical

works by (Frechet 1927), (Fisher and Tippett 1928), and (Gnedenko 1943) that there
are only 3 possible limit laws, to which a sequence of F (n) can converge, and that for
a given measure �; the distributions F (n) can converge to only one of these laws. In
this case, it is said that the measure � belongs to the domain of attraction of this limit
law.
In the free case, a sequence of free self-adjoint operators Xi is taken, such that

each of Xi has the spectral probability distribution �: Using some ideas from (Ando
1989), (Ben Arous and Voiculescu 2006) have de�ned a maximum operation that
maps any n-tuple of self-adjoint operators to another self-adjoint operator, which is
called their maximum. By analogy with the classical case, the sequence of scaled
maxima is de�ned as X(n) = max1�i�n f(Xi � anI) =bng ; and F (n)f (x) is de�ned
as the spectral distribution function of the self-adjoint operator X(n): Note that in
general F (n)f (x) 6= F (n) (x) :

The same question presents itself: When does the sequence of F (n)f (x) con-
verges?
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Surprisingly, the answer to this question is very similar to the answer in the clas-
sical case: There are only 3 possible limit laws, and for a given �; the distributions
F
(n)
f can converge to only one of them. As in the classical case, this allows de�ning
domains of attraction of the free limit laws: A puzzling fact is that the limit laws are
different in the classical and free cases, but the domains of attraction are the same!
In order to investigate this situation further, let us return to the classical case and

consider the random point process Nn; which is de�ned by the following formula:

Nn =
nX
i=1

�(Xi�an)=bn

When does this point process converges? It turns out that this question is intimately
related to the convergence of the distributions F (n): If F (n) (x) converges to one of
the classical limit lawsG (x), then the corresponding point process weakly converges
to a Poisson random measure on every interval [a;1), provided thatG (a) > 0: Con-
versely, if Nn weakly converges on an interval [a;1) to a Poisson random measure
with the intensity measure � (dx) ; then F (n) (x) converges on the interval [a;1) to
a limit law G (x). The limit law G (x) and the intensity � (dx) are related by the
equation G (x) = exp [�� ((x;1))].
What is the free analogue of the point process Nn? To motivate our de�nition,

note that we can think about Nn as a linear functional on the space of measurable
bounded functions: hNn; fi =:

Pn
i=1 f ((Xi � an) =bn) : This functional takes values

in the space of bounded random variables. We de�ne free point process analogously
but prefer to work in a slightly greater generality and associate a free random process
to any triangular array of free random variables
Let A be the set of densely-de�ned closed operators af�liated with a von Neu-

mann algebra A, and let B1 (R) denote the set of all bounded, Borel measurable
functions f : R! R.

De�nition 186 Let Xi;n 2 A; (i = 1; : : : ; n; n = 1; : : :) be a triangular array of
freely independent self-adjoint variables. Then the free point processMn associated
with the array Xi;n is a sequence of A-valued functionals on B1 (R), which are
de�ned by the following formula:

hMn; fi =:
nX
i=1

f (Xi;n) :
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A triangular array of free variables that we use in applications to free extremes
is, of course, Xi;n = (Xi � an) =bn; where Xi is a sequence of free self-adjoint
variables.
We can also de�ne the concept of weak convergence of a free point process as

a weak-� convergence of the corresponding functionals. In the classical case, after
a suitable scaling, the point process Nn converges to a Poisson random measure.
It turns out that in the non-commutative case the free point process converges to a
free Poisson random measure, which was recently de�ned in (Voiculescu 1998) and
(Barndorff-Nielsen and Thorbjornsen 2005). Moreover, we have the following result.
Let xi = inf fx : Gi (x) > 0g ; where Gi (x) ; i 2 fI; II; IIIg is one of the

classical extremal laws. On the interval [xi;1) ; let us de�ne a measure �i (dx) by
the equality �i ((x;1)) = � logGi (x).

Theorem 187 The following statements are equivalent:
(i) � belongs to the domain of attraction of the classical extremal limit law Gi (x);
(ii) � belongs to the domain of attraction of the free extremal limit law Gif (x);
(iii) For some an and bn; the point process Nn weakly converges on (xi;1) to the
Poisson random measure with the intensity �i (dx);
(iv) For some an and bn; the free point process Mn weakly converges on (xi;1) to
the free Poisson random measure with the intensity �i (dx) :

The equivalences of (i) and (iii) follows from the results in (Resnick 1987), and
the equivalence of (i) and (ii) was proved in (Ben Arous and Voiculescu 2006). Thus,
we only need to prove the equivalence of (i) and (iv).
Let �n (A) = � (bnA+ an) : Note that (i) is equivalent to the statement that

n�n (A) ! �i (A) for all Borel sets A � (xi;1) : Indeed, suppose that � is in
the domain of attaction of Gi (x) : If F (x) denote the distribution function of the
measure �; then

F n (bnx+ an)! Gi (x) ;

For every x 2 (xi;1) ; Gi (x) is positive. After taking logarithms on both sides, we
get

n logF (bnx+ an)! logGi (x) ;

which is equivalent to

n (1� F (bnx+ an))! � logGi (x) :
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Consequently,
n�n ((x;1))! �i ((x;1)) ;

from which we conclude that n�n (A)! �i (A) for all Borel sets A � (xi;1) : The
reverse implication is also clear.
Therefore, the equivalence of (i) and (iv) will be established if we prove the fol-

lowing general result about free point processes.
Recall that a measure is called Radon if � (K) <1 for every compact K:

Theorem 188 Let Xi;n be a triangular array of free, self-adjoint random variables
and let the spectral probability measure of Xi;n be �n: Let � be a Radon measure on
D � R: The free point processMn associated with the array Xi;n converges weakly
on D to a free Poisson measureM with the intensity measure � if and only if

n�n (A)! � (A) (80)

for every Borel set A � D.

We will prove this result in Section 18.
Theorem 187 tells us that the convergence of a free point process is related to the

convergence of the distribution of free maxima. In addition, free processes can help
us to de�ne higher order free extreme processes. Indeed, in the classical case one
way to calculate the probability distribution of the k-th order statistic is to calculate
the probability that exactly k � 1 variables Xi exceed a threshold t: This probability
can be de�ned in terms of the corresponding point process.
In order to see that free point processes are necessary in the free case, note that

the straightforward approach to the de�nition of higher order statistics does not work.
While we can still de�ne a set of space directions, which are dilated by exactly k� 1
operators by the amount that exceeds t; this set is not a linear subspace except when
k = 1, and we cannot apply to this set the non-commutative analogue of probability
� the dimension function. To break through this dif�culty, we have to use free point
processes.
Precisely, let X1; :::; Xn be freely independent self-adjoint variables and let Xi

have the distribution Fi: De�ne projections Pi (t) = 1(t;1) (Xi) and consider the
variable

Y (t) =
nX
i=1

Pi (t) :
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De�nition 189 For every real k � 0; we say that F (n) (tjk) =: E
�
1[0;k] (Y (t))

�
is

the distribution function of k-th order statistic of the sequenceX1:::Xn; and that it is
the k-th order free extremal convolution of distributions Fi:

To understand better the meaning of this de�nition, note that Y (t) =
Pn

i=1 1(t;1) (Xi) =

Mn; 1(t;1)

�
; where Mn is the free point process associated with the sequence Xi:

Therefore the distribution F (n) (tjk) equals the expectation of 1[0;k]
�

Mn; 1(t;1)

��
:

In the classical case we have an analogous expression 1[0;k]
�

Nn; 1(t;1)

��
, where

Nn =
Pn

i=1 �Xi is the (classical) point process associated with the sequence of (clas-
sical) random variables Xi: In this case, the indicator function 1[0;k]

�

Nn; 1(t;1)

��
corresponds to the event that the number of elements of X1; :::; Xn located in the
interval (t;1) does not exceed k:
If X(0) denote the largest element of (classical) random variables, X1; :::; Xn,

X(1) denote the second largest one, and so on, then a realization ofX1; :::; Xn will be
counted by 1[0;k]

�

Nn; 1(t;1)

��
if and only ifX(k) � t: It follows thatE1[0;k]

�

Nn; 1(t;1)

��
=

Pr
�
X(k) � t

	
; i.e., this expectation gives the distribution of the (k + 1)-st largest

element of the sequence X1; :::; Xn:

Thus, the expressionE1[0;k]
�

Mn; 1(t;1)

��
can be interpreted as the non-commutative

analogue of the distribution of the (k + 1)-st order statistic. Note that the de�nition
is valid not only for all integer k but also for all non-negative real k:
One question that immediately arises is whether we can de�ne an operator, for

which the distribution F (n) (tjk) would be a spectral distribution function? The an-
swer to this question is positive. The condition t0 � t implies that 1[0;k] (Y (t0)) �
1[0;k] (Y (t)) : Therefore, as t grows, the operators 1[0;k] (Y (t)) form an increasing
family of projections and we can use this family to construct the required operator by
the spectral resolution theorem.

De�nition 190 For every real k � 0; let

Z(k) =

Z
t d1[0;k] (Y (t)) :

We call Z(k) the k order statistic of the family Xi:

From the construction it is clear that F (n) (tjk) is the spectral distribution function
of the operator Z(k):
In complete analogy with the classical case the limits of these free extremal con-

volutions can be computed using the limits of free point measures. If G (x) is one
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of the classical limit laws, then we use G(�1) (x) to denote the functional inverse of
G (x) : Let

t� (k) = G(�1)
�
exp

�
�
�
1 +

p
k
�2��

;

t0 (k) = G(�1)
�
1

e

�
;

t+ (k) = G(�1)
�
exp

�
�
�
1�

p
k
�2��

:

Let � (t) = � logG (t) and pt (�) = (2��)�1
q
4� � (1� � (t) + �)2:

Theorem 191 Suppose that measure � belongs to the domain of attraction of a (clas-
sical) limit law G (x) and an, bn are the corresponding norming constants. Assume
thatXi are free self-adjoint variables with the spectral probability measure � and let
F (n) (tjk) denote the distribution of the k order statistic of the family (Xi � an) =bn;

where i = 1; : : : ; n: Then, as n!1; the distribution F (n) (tjk) converges to a limit,
F (tjk) ; which is given by the following formula:

F (tjk) =

8>>>>><>>>>>:

0; if t < t�;R k�
1�
p
�(t)

�2 pt (�) d�; if t 2 [t�; t0] ;

1� �t +
R k�
1�
p
�(t)

�2 pt (�) d�; if (t0; t+] ;

1� � (t) 1[0;1) (k) ; if t > t+:

It turns out that in the particular case of the 0-order free extremal convolutions,
their limits coincide with the limits discovered in (Ben Arous and Voiculescu 2006)
(see De�nition 6.8 and Theorems 6.9 and 6.11):

F
(I)
(tj0) =

�
1� e�x

�
1(0;1) (x) ;

F
(II)
(tj0) =

�
1� 1

x�

�
1(1;1) (x) ; and

F
(III)

(tj0) = (1� jxj�) 1(�1;0) (x) + 1[0;1) (x) ;

where � is a positive parameter.
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18 Convergence of Free Point Processes

18.1 Free Poisson random measure

Recall some facts about the free Poisson distribution with parameter (�intensity�) �:

The continuous part of this distribution is supported on the interval
��
1�

p
�
�2
;
�
1 +

p
�
�2�

and the density is

p� (x) =

q
4x� (1� �+ x)2

2�x
:

In addition, if � < 1; then there is also an atom at zero with the probability weight
1� �:We call such an operator a (non-commutative) Poisson random variable with
intensity � and size 1:
The sum of two freely independent Poisson random variables of intensities �1

and �2 is again a Poisson random variable of intensity �1 + �2:

If we scale a non-commutative Poisson random variable by a; then we get a vari-
able, which we call a scaled (non-commutative) Poisson random variable of intensity
� and size a:
Non-commutative Poisson random variables arise when we convolve a large num-

ber, N; of Bernoulli distributions that put probability �=N on 1 and probability
1 � �=N on 0: The following result is well-known, see (Voiculescu 1998), or (Hiai
and Petz 2000).

Proposition 192 Suppose �n; (n = 1; 2; :::) is a sequence of Bernoulli distributions,
such that �n (f1g) � �=n and �n (f0g) = 1� �n (f1g) : De�ne �n as follows:

�n = �n � :::� �n| {z }
n times

:

Then �n weakly converges to the free Poisson distribution with intensity � and size 1:

The following de�nition is basic for our investigation.

De�nition 193 Let (�;B; �) be a measure space, and put

B0 = fB 2 B : � (B) <1g :

Let further (A; E) be aW �-probability space, and letA+ denote the cone of positive
operators inA: Then a free Poisson random measure (fPrm) on (�;B; �) with values
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in (A; E) is a mappingM : B0 ! A+; with the following properties:
(i) For any set B in B0,M (B) is a free Poisson variable with parameter � (B) :
(ii) If r 2 N, and B1; :::; Br 2 B0 are disjoint, thenM (B1) ; :::;M (Br) are free.
(iii) If r 2 N, and B1; :::; Br 2 B0 are disjoint, thenM

�
[rj=1Bj

�
=
Pr

j=1M (Bj) :

The existence of a free Poisson measure for arbitrary spaces (�;B; �) and (A; E)
was shown in (Voiculescu 1998) and a different proof was given in (Barndorff-
Nielsen and Thorbjornsen 2005).
If f is a real-valued simple function in L1 (�;B; �) ; i.e,. if it can be written as

f =
rX
i=1

ai1Bi ;

for a system of disjoint Bi 2 B0; then we de�ne the integral with respect to a Poisson
random measureM as follows:Z

�

f dM =
rX
i=1

aiM (Bj) :

It is possible to check that this de�nition is consistent. Moreover, as it is shown in
(Barndorff-Nielsen and Thorbjornsen 2005), this concept can be extended to a larger
class of functions:

Proposition 194 Let f be a real-valued function in L1 (�;B; �) and suppose that sn
is a sequence of real valued simple B-measurable functions, satisfying the condition
that there exists a positive �-integrable function h (�) ; such that jsn (�)j � h (�)

for all n and �: Suppose also that limn!1 sn (�) = f (�) for all � Then integralsR
�
sn dM are well-de�ned and converge in probability to a self-adjoint (possibly

unbounded) operator I (f) af�liated withA. Furthermore, the limit I (f) is indepen-
dent of the choice of approximating sequence sn of simple functions:

The resulting functional I (f) is de�ned for all real valued functions f inL1 (�;B; �)
and is called the integral with respect to the free Poisson random measureM . It pos-
sesses all the usual properties of the integral: additivity, linear scaling, continuity,
etc.
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18.2 Free point process and weak convergence

Let A be the set of densely-de�ned closed operators af�liated with a von Neumann
algebra A, and let B1 (R) denote the set of all bounded, Borel measurable functions
f : R! R.

De�nition 195 Let Xi;n 2 A; (i = 1; : : : ; n; n = 1; : : :) be a triangular array of
freely independent self-adjoint variables Then the free point process Mn associated
with the array Xi;n is a sequence of A-valued functionals on B1 (R), which are
de�ned by the following formula:

hMn; fi =:
nX
i=1

f (Xi;n) :

Note that we use terminology �point process� to emphasize the analogy with the
classical case. In the classical case, an analogous functional Nn can be realized as a
random real-valued measure Nn (dx) which is concentrated on a (random) �nite set
of points in R. In particular, hNn; fi is a random variable. In the free caseMn is not
random in the classical case but is completely determined by the arrayXi;n:However,
for each f; the bracket hMn; fi is an operator inA and thus is a free random variable.
Next, we de�ne the mode of convergence of free point measures that in the clas-

sical case corresponds to the weak convergence of point processes.
LetD be a Borel subset of R and let F1

K (D) denote the space of bounded, Borel
measurable functions that have compact support on D:

De�nition 196 We say that a free point processMn converges weakly on D to a free
Poisson random measureM; which is de�ned on (D;B; �) and takes values in A, if
for every function f 2 F1

K (D) the following convergence holds:

hMn; fi
d!
Z
R
f dM:

Sometimes we need to speak about convergence with respect to a class of func-
tions, which is different from F1

K (D).

De�nition 197 We say that a free point process Mn converges weakly with respect
to a class of functions F to a free Poisson random measureM; if for every function
f 2 F the following convergence holds:

hMn; fi
d!
Z
R
f dM:
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Theorem 198 Let Xi;n be a triangular array of free, self-adjoint random variables
and let the spectral probability measure of Xi;n be �n: Let � be a Radon measure on
D � R: The free point processMn associated with the array Xi;n converges weakly
on D to a free Poisson measureM with the intensity measure � if and only if

n�n (A)! � (A) (81)

for every Borel set A � D.

We will prove Theorem 188 by considering initially the convergence of free point
processesMn with respect to the class of simple functions (i.e., �nite sums of indica-
tor functions), and then approximating functions from a more general class by simple
functions.

18.3 Convergence with respect to simple functions

Let S (D) be the class of simple functions on D � R, i.e., the class of �nite sums of
indicator functions of Borel sets belonging to D.

Proposition 199 Let Xi;n be a triangular array of free, self-adjoint random vari-
ables and let the spectral probability measure of Xi;n be �n: Let � be a Radon mea-
sure on D � R: If

n�n (A)! � (A)

for each Borel set A � D; then the free point processMn associated with the array
Xi;n converges weakly with respect to S (D) to a free Poisson random measure M
with the intensity measure �.

Before proving this theorem, we derive some auxiliary results.

Lemma 200 Suppose Xi;n is an array of free and identically distributed random
variables with the spectral measure �n: Let n�n (A) ! �(A) < 1 as n ! 1: Let
Zi;n = 1A (Xi;n) : Then as n!1; the sum Sn =

Pn
i=1 Zi;n converges in distribution

to a free Poisson random variable with intensity � (A) :

Proof: Note that Zi;n are projections with expectation �n (A) and they are free.
Therefore,

Pn
i=1 Zi;n is the sum of free projections and we can use Proposition 192

to infer the claim of the lemma. QED.
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As the next step to the proof of Proposition 199 we need to check that if Borel
setsAk are disjoint, then the sums Sk =

Pn
i=1 1Ak (Xi;n) are asymptotically free with

respect to growing n:
Recall the de�nition of the asymptotic freeness: Let (Ai; Ei) be a sequence of

non-commutative probability spaces and let Xi and Yi be two random variables in
Ai: Let also x and y be two free operators in a non-commutative probability space
(A; E).

De�nition 201 The sequences Xi and Yi are called asymptotically free if the se-
quence of pairs (Xi; Yi) converges in distribution to the pair (x; y) : That is, for every
" > 0 and every sequence of k-tuples (n1; :::; nk) with non-negative integer nj , there
exists such i0 that for i � i0; the following inequality holds:��Ei �Xn1

i Y
n2
i :::X

nk�1
i Y nk

i

�
� E (xn1yn2 :::xnk�1ynk)

�� � ":

At the cost of more complicated notation, this de�niton can be generalized to the
case of more than two variables.
Now, we can formulate a generalization of Proposition 192 that says that cer-

tain sums of projections not only converge to Poisson random variables, but are also
asymptotically free.

Proposition 202 Let Pi;n be free projections of dimension �=n and Qi;n be free pro-
jections of dimension �=n Assume Pi;n and Qj;n are free if i 6= j; and orthogonal to
each other if i = j: Let Sn =

Pn
i=1 Pi;n and �n =

Pn
i=1Qi;n: Then the sequences

Sn and �n converge in distribution to free variables S and �; that have free Poisson
distributions with parameters � and �; respectively. In particular, the sequences Sn
and �n are asymptotically free.

Proof: The fact that each of the sequences Sn and �n converge to a free Pois-
son distribution is clear from Proposition 192. The essential part is to prove that
asymptotic freeness holds. Let us introduce variables eQi;n which are (i) free among
themselves, (ii) distributed according to the same distribution as Qi;n; and (iii) are
free from all of Pi;n: De�ne e�n = Pn

i=1
eQi;n. Clearly, Sn and e�n are freely in-

dependent and e�n has the same distribution as �n: Consequently, the sequence of�
Sn; e�n� converges in distribution to (S;�) ; where S and � are two freely indepen-
dent random variables with free Poisson distributions.
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What remains to prove is that if an integer r > 0 is �xed and Pr (Sn;�n) is an
arbitrary non-commutative polynomial of degree r, then

E
h
Pr (Sn;�n)� Pr

�
Sn; e�n�i! 0

as n!1.
From this moment on we will omit the subscript n from variables Pi;n; Qi;n; andeQi;n to make the notation more transparent.
Let us expand Pr (Sn;�n) as a sum of products of variables Pi and Qi: A similar

expansion in products of Pi and eQi holds for Pr �Sn; e�n� : The expectations of the
corresponding product terms in these expansions differ if and only if for some i; the
product includes both Pi and Qi (and Pi and eQi in the corresponding term of the
other expansion). Otherwise, these two products are the same from the distributional
point of view and therefore must have the same expectations.
Example: Consider E (Sn�n) � E

�
Sne�n� : Then we note that E (PiQj) =

E
�
Pi eQj� if i 6= j; and therefore:

E (Sn�n)� E
�
Sne�n� =

nX
i=1

h
E (PiQi)� E

�
Pi eQi�i

= ���
n
:

End of Example.
Now consider one of the products that do have different expectations. Consider

�rst the product in the expansion of Pr (Sn;�n) : Let I is a set of all indices that are
used in this product (without regard to whether it is the index of a P or a Q). For
example, if the product is P1 eQ3P7 eQ3P3; then the set I is f1; 3; 7g :
Let I = fi1; :::; isg : Using the freeness of elements Pi and eQi and the fact that

they are projections and therefore Pmi = Pi and eQmi = eQi for every m � 1; we can
compute the expectation of such a product asX

c ("1; :::; "s; �1; :::; �s)E (Pi1)
"1 :::E (Pis)

"s E
� eQi1��1 :::E � eQis��s ; (82)

where the sum is over "i 2 f0; 1; :::; rg and �i 2 f0; 1; :::; rg : Note that the following
three conditions must hold for the terms in this sum: (i) For each i; either "i � 1;

or �i � 1; or both � 1. (I.e., either E (Pi) or E
� eQi� is present in the product,

they cannot be both absent by the de�nition of the set I .) (ii) For at least one i;
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both "i and �i are � 1: (This condition must hold because of our assumption that we
consider only products with different expectations, so that for at least one i; both Pi
and Qi must be present in the product.) (iii) The coef�cient c ("1; :::; "s; �1; :::; �s)
can depend on the number of elements Pi's and eQi's and on their arrangement in the
product, but it does not depend on n: In particular it can be bounded by a function of
r:

(For example, E
�
P1 eQ3P7 eQ3P3� = E (P1)E (P3)E (P7)E

� eQ3� :)
Since E (Pi) = �=n and E (Qi) = �=n; therefore we can estimate the expecta-

tion of this product as follows:

jE (product)j � c0 (r)
1

n"1+:::+"s+�1+:::+�s
� c0 (r)

1

ns+1
:

If the degree of polynomial is r and the number elements in I is s; then the number
of possible product terms with an index set I that consists of s elements is bounded
by ns (the upper bound on the number of possible choices of the set I that consists of
s elements) multiplied by a certain function f (r) which counts the possible arrange-
ments of Pi and eQi; if the set I with s elements is �xed. Therefore we estimate:

jE (sum of products with set I that consists of s elements)j � c (r)
1

n
:

Finally note that s � r; and therefore we can estimate the expectation of the sum of
those products of Pi and eQi that have expectations different from the corresponding
products of Pi and Qi as rc (r)n�1:
Essentially the same argument can be used to estimate the expectation of the

corresponding products of Pi and Qi: Here, to derive formula (82) (with a possibly
different coef�cient c) we can use the freeness of pairs fPi; Qig ; and the fact that Pi
and Qi are projections, orthogonal to each other.
For example, to calculate E (P1Q3Q1P3) we can �rst use freeness to write:

E (P1Q3Q1P3) = E (P1)E (Q1)E (P3Q3) + E (P3)E (Q3)E (P1Q1)

�E (P1)E (Q1)E (P3)E (Q3) :

And then we can use orthogonality to �nish this calculation as follows:

E (P1Q3Q1P3) = �E (P1)E (Q1)E (P3)E (Q3)

Given formula (82), the argument goes exactly as in the case with Pi and eQi; and
allows us to conclude that the expectation of the sum of the relevant products of Pi
and Qi is bounded by rc00 (r)n�1:
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Therefore, if an integer r is �xed, then, as n grows,E
h
Pr (Sn;�n)� Pr

�
Sn; e�n�i!

0: Therefore (Sn;�n) converges in distribution to (S;�) ; where S and � are free.
This shows that Sn and �n are asymptotically free. QED.
It is possible to extend this result to more than two families of projectors. This

generalized result is as follows:

Proposition 203 Let P (k)i;n ; (where n = 1; 2; :::; i = 1; :::; n; and k = 1; :::; r) be
projections of dimension �(k)=n: Assume that for each n; algebras Ai generated by
sets

n
P
(k)
i;n

or
k=1

are free. Also assume that for each n and i; the projections P (k)i;n

are orthogonal to each other, i.e., P (k)i;n P
(k0)
i;n = 0 for every pair k 6= k0: Let S(k)n =Pn

i=1 P
(k)
i;n : Then the sequences S

(k)
n converge in distribution to freely independent

variables S(k) that have free Poisson distributions with parameters �(k); respectively.
In particular, the sequences S(k)n are asymptotically free.

Now we can proceed to the proof of Proposition 199.
Proof: Let f =

Pr
k=1 ck1Ak (x) ; where Ak are disjoint Borel sets. Using the

assumption that n�n (Ak) ! � (Ak) and Lemma 200, we can �nd a free Poisson
random measureM such that

nX
i=1

1Ak (Xi;n)
d!M (Ak) =

Z
R
1Ak (x)M (dx)

as n ! 1: Indeed, it is enough to take a Poisson random measure M with the
intensity measure �:
In addition, by Proposition 203, sums Sk =

Pn
i=1 1Ak (Xi;n) become asymptoti-

cally free for different k as n grows. Since M (Ak) are free by the de�nition of the
free Poisson measure, this implies that

rX
k=1

ck

nX
i=1

1Ak (Xi;n)
d!

rX
k=1

ckM (Ak) =
rX
k=1

ck

Z
R
1Ak (x)M (dx) :

as n!1: Therefore,
nX
i=1

f (Xi;n)
d!
Z
R
f (x)M (dx) ;

where we used the additivity property of the integral with respect to a free Poisson
random measure (see (Barndorff-Nielsen and Thorbjornsen 2005), Remark 4.2(b)).
QED.
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18.4 Convergence with respect to bounded, Borel measurable func-
tions with compact support

The goal of this section is to prove our main Theorem 188.
Consider a bounded, Borel measurable, compactly supported function f : D !

R; such that 0 < f � 1: (A more general case of a function f; which satis�es
C1 < f � C2; can be treated similarly.) For positive integers N = 1; 2; : : : ; and
k = 1; : : : ; N; de�ne the set

A
(N)
k =

�
x 2 D :

k � 1
N

< f (x) � k

N

�
:

The sets A(N)k are disjoint, measurable, and have �nite �-measure. Their union is D:
We de�ne lower and upper approximations to the function f as follows:

lN (x) =
NX
k=1

k � 1
N

1
A
(N)
k
(x) ;

and

uN (x) =
NX
k=1

k

N
1
A
(N)
k
(x) ;

We note that:
(i) lN (x) � uN (x) ;

(ii) lN (x) is an increasing sequence of functions;
(iii) uN (x) is a decreasing sequence of functions, and
iv) limN!1 l

N (x)� uN (x) = 0 uniformly in x:
The functions lN (x) and uN (x) are simple: lN (x) =

PN
i=1 c

(N)
k 1

A
(N)
k
(x) and

uN (x) =
PN

i=1 d
(N)
k 1

A
(N)
k
(x) : Note also that supk

�
d
(N)
k � c

(N)
k

�
= 1=N converges

to zero as N !1:

Let us drop for convenience the superscript N when we consider it as �xed, and
simply write l (x) =

PN
i=1 ck1Ak (x) and u (x) =

PN
i=1 dk1Ak (x) ; where Ak are

disjoint Borel-measurable sets. By Proposition 199, as n!1;

nX
i=1

l (Xi;n)
d!

NX
k=1

ckMk;

where Mk are freely independent Poisson random variables with intensities �k =
� (Ak). Let Fl (x) denote the distribution function of

PN
k=1 ckMk:
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Similarly,
nX
i=1

u (Xi;n)
d!

NX
k=1

dkMk;

and we denote the distribution function of
PN

k=1 dkMk as Fu (x).
Let Ff;n denote the distribution function of

Pn
i=1 f (Xi;n) and let Ff be one of

the limit points of this sequence of distribution functions.

Proposition 204 Ff is a distribution function and Fu (x) � Ff (x) � Fl (x) for
every x:

Proof: We will infer this from Lemma 205 below and its Corollary. This lemma
is a particular case of Weyl's eigenvalue inequalities for operators in a von Neumann
algebra of type II1: If FA (x) is the spectral distribution function of a self-adjoint op-
erator A; then we de�ne the eigenvalue function �A (t) = inf fx : FA (x) � 1� tg :
The function �A (t) is non-increasing and right-continuous.
Let us use notation �A (t� 0) to denote lim"#0 �A (t� ") : Then the following

Lemma holds:

Lemma 205 IfA andB are two bounded self-adjoint operators from aW �-probability
space A and if B is non-negative de�nite, then

�A (t) � �A+B (t) � �A (t) + kBk ; and
�A (t� 0) � �A+B (t� 0) � �A (t� 0) + kBk :

Corollary 206 If B � 0; then �A+B � �A; that is, FA+B (x) � FA (x) for each x:

Proof of Lemma 205: This results easily follows from an inequality in (Bercovici
and Li 2001) which states that if (a� "; a) � [0; 1], (b� "; b) � [0; 1] ; and a+b � 1,
then Z a+by

a+b�"
�A+B (t) dt �

Z a

a�"
�A (t) dt+

Z b

b�"
�B (t) dt: (83)

QED.
By Corollary 206, for each n the distribution Ff;n is between the distribution

functions of
Pn

i=1 u (Xi;n) and
Pn

i=1 l (Xi;n) : As n grows, these two sequences of
distribution functions approach Fu (x) and Fl (x) ; respectively. Therefore, every
limit point of Ff;n is between Fu and Fl: The claim that Ff is a distribution function
follows from the fact that both Fu and Fl are distribution functions. QED.
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Now we want to show that F (N)u (x) approaches F (N)l (x) as N grows.
Recall that the Levy distance between two distribution functions is de�ned as

follows:

dL (FA; FB) = sup
x
inf fs � 0 : FB (x� s)� s � FA (x) � FB (x+ s) + s g :

We can interpret this distance geometrically. Let �A be the graph of function FA;
and at the points of discontinuity let us connect the left and right limits by a (vertical)
straight line interval. Call the resulting curve e�A: Similarly de�ne e�B: Let d be the
maximum distance between e�A and e�B in the direction from the south-east to the
north-west, i.e., in the direction which is obtained by rotating the vertical direction
by �=4 counter-clockwise. Then dL (FA; FB) = d=

p
2:

Proposition 207 Let K be the sum of intensities of freely independent Poisson ran-
dom variablesMk and let Fl (x) and Fu (x) be distribution functions of

PN
k=1 ckMk

and
PN

k=1 dkMk Then

dL (Fl; Fu) �
�
2K + 3

p
K + 1

�
sup

1�k�N
(dk � ck) :

Remark: In our case, the �niteness ofK will be ensured by the assumptions that
� is Radon and that f has a compact support.
For the proof of this proposition we need two lemmas. Lemma 208 provides

a bound on the norm of the sum of scaled Poisson random variables in terms of
the sizes of these variables, and Lemma 209 relates the Levy distance between two
random variables to the norm of their difference.

Lemma 208 LetMi; (i = 1; :::; r) be freely independent Poisson random variables,
which have intensities �i; and let bi be non-negative real numbers. Assume thatPr

i=1 �i � K and let b = sup1�i�r bi: Then
rX
i=1

biMi

 � b
�
2K + 3

p
K + 1

�
:

Proof: Let Xi be free self-adjoint random variables that have zero mean. Then
by an inequality from (Voiculescu 1986):

rX
i=1

Xi

 � max
1�i�r

kXik+

vuut rX
i=1

Var (Xi):
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If Yi are free self-adjoint random variables with non-zero mean, and Xi = Yi �
E (Yi) ; then the previous inequality implies that

rX
i=1

Yi

 �
�����
rX
i=1

E (Yi)

�����+


rX
i=1

Xi

+
vuut rX

i=1

Var (Xi)

�
�����
rX
i=1

E (Yi)

�����+ max1�i�r
d (Yi) +

vuut rX
i=1

Var (Yi); (84)

where d (Yi) is the diameter of the support of Yi:
We will apply this inequality to Yi = biMi and estimate each of the three terms

on the right-hand side of (84) in turn:
1) Since E (Mi) = �i; and

P
�i � K; therefore

Pr
i=1 biE (Mi) � bK:

2) The diameter of the support of biMi is less or equal to bi
�
1 +

p
�i
�2 �

b
�
1 + 2

p
K +K

�
:

3) Since Var (Mi) = �i; therefore
pPr

i=1Var (biMi) � b
p
K:

In sum, k
Pr

i=1 biMik � b
�
2K + 3

p
K + 1

�
: QED.

Lemma 209 LetA andB be two bounded self-adjoint operators from aW �-probability
space A and assume that B � A � 0. Then

dL (FA; FB) � kB � Ak :

Proof: Let FA and FB be distribution functions, and �A and �B be the corre-
sponding �-functions. Then we claim that

dL (FA; FB) � sup
0�t�1

j�A (t)� �B (t)j : (85)

Indeed, let the graphs of functions �A and �B be denoted as �A and �B; respectively.
Connecting the left and right limits at the points of discontinuity gives us the curvese�A and e�B: It is easy to see that these curves can be obtained from curves e�A ande�B (i.e., the graphs of FA (x) and FB (x) with connected limits at the points of dis-
continuity) by rotating them around the point (0; 1) counter-clockwise by the angle
�=2 and then shifting the result of the rotation by vector (0;�1) : It follows that the
distance d; which was used in the de�nition of the Levy distance can also be de�ned
as the maximum distance between e�A and e�B in the direction from the south-west to
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the north-east, i.e., in the direction which is obtained by rotating the vertical direction
by �=4 clockwise.
Since �A (t) and �B (t) are non-increasing functions, therefore

d �
p
2 sup
0�t�1

j�A (t)� �B (t)j :

This implies dL (FA; FB) � sup0�t�1 j�A (t)� �B (t)j :
Inequality (85) and Lemma 205 imply the statement of the lemma.
QED.
Now we can prove Proposition 207:
Proof of Proposition 207: Let X =

PN
k=1 (dk � ck)Mk: By Lemma 208,

kXk � b
�
2K + 3

p
K + 1

�
;

where b = sup1�k�N (dk � ck) andK is the sum of the intensities ofMk: By Lemma
209, this implies that

dL (Fl; Fu) � b
�
2K + 3

p
K + 1

�
:

QED.
Using Proposition 207, we can proceed to the proof of Theorem 188. By Propo-

sition 199, we know that if N is �xed and n!1, then

nX
i=1

lN (Xi;n)
d!

NX
k=1

c
(N)
i M

�
A
(N)
k

�
;

and
nX
i=1

uN (Xi;n)
d!

NX
k=1

d
(N)
i M

�
A
(N)
k

�
;

where M is a free Poisson random measure with intensity � (dx) : Let the distribu-
tions of the right-hand sides be denoted as FlN and FuN :
By Corollary 206, FlN is a decreasing sequence and FuN is an increasing se-

quence of distribution functions. In addition, FlN (x) � FuN (x) for every N and x:
Since the sum of intensities of variables M

�
A
(N)
k

�
is less than � (D) < 1 by as-

sumption, therefore Proposition 207 is applicable and we can conclude that the Levy
distance between FlN and FuN converges to zero as N ! 1: Consequently, these
two distributions (weakly) converge to a limit distribution function as N !1.
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Moreover, by the de�nition of the integral with respect to a free Poisson random
measure, this limit equals the distribution function of

R
f (x)M (dx) :

In addition, by Proposition 204 every limit point of the sequence of Ff;n is be-
tween FlN and FuN for everyN; and therefore the sequence of Ff;n also converges to
the distribution function of

R
f (x)M (dx) : QED.

This completes the proof of Theorem 188.

19 Free Extremes

19.1 De�nition of order statistics

Let us start with a heuristic motiviation of the de�nitions to follow. LetX1; :::; Xn be
Hermitian positive-de�nite matrices and t be a real positive number. For each Xi we
can de�ne a linear subspace Vi (t) spanned by eigenvectors of Xi with eigenvalues
which are less or equal to t. Alternatively, we can think about Vi (t) as a space of
directions, which operators Xn

i dilate by less or equal to tn for every integer n � 1:
The intersection of these subpaces, V 0 (t) ; is the subspace of the directions, such that
whatever direction v 2 V 0 (t) and whatever n � 1 are given, none of operators Xn

i

dilates the direction v by more than tn times: The subspaces V 0 (t) are increasing
with t and using the spectral resolution theorem we can associate an operator

R
t

dPV 0(t) (t)with this family of subspaces. This operator is natural to call the maximum
ofX1; : : : ; Xn: The spectral distribution function of this operator evaluated at t equals
the dimension of the subspace V 0 (t) : This distribution function is the extremal (not
necessarily free) convolution of distribution functions of X1; :::; Xn in the sense of
(Ben Arous and Voiculescu 2006).
When we try to apply this reasoning and de�ne the 2-nd order statistic instead

of the maximum, we run into a dif�culty. Indeed, in this case it is natural to look
at vectors v for which there is exactly one of Xi that has the property that for some
n; the operator Xn

i dilates v by more than tn times. If V 1 (t) denotes this set of
directions, then we can write this set algebraically as

V 1 (t) =
n[
i=1

" \
j 6=i

Vj (t)

!
\ (HnVi (t))

#
;

where H is the space where Xi acts. A slightly different possibility would be to
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de�ne this set as

V 1 (t) =
n[
i=1

" \
j 6=i

Vj (t)

!
\
�
Vi (t)

?
�#

Unfortunately, whichever of these two de�nitions we use, V 1 (t) is not a linear sub-
space, so we can neither use the spectral resolution theorem, nor calculate its dimen-
sion.
One natural way out of this dif�culty is to consider the linear span of the set

V 1 (t). We prefer a similar but an analytically easier alternative. First, we de�ne the
sum of projections on subspacesWi (t) = Vi (t)

?. Let us call this sum Y (t) : Note
that if this sum of projections evaluated at a vector v equals zero, then x belongs to
\Vi (t) = V 0 (t) : Moreover, it is intuitively clear that if this sum is evaluated at v
and the result of this evaluation, hv; Y (t) vi ; is small, then either v belongs to Vi (t)
for the majority of i; or v deviates outside of many Vi (t) but only by a very small
amount. In the �rst case, only a small number of operatorsXi are such that for some
n, the operator Xn

i dilates v by more than tn: In the second case there can be many
such Xi but then Xn

i dilate v by not much more than tn:
This suggest introducing the set of directions on which the sum of projections

on subspaces Wi (t) is small. The great advantage of this new set is that it is a
linear space and we can both measure its dimension and apply the spectral resolution
theorem.
Now, after this intuitive introduction, we turn to a rigorous de�nition.
Let X1; :::; Xn be freely independent self-adjoint random variables and let Xi

have the distribution Fi: De�ne projections Pi (t) = 1(t;1) (Xi) and consider the
variable

Yn (t) =
nX
i=1

Pi (t) :

De�nition 2. For every real k � 0; we say that F (n) (tjk) =: E
�
1[0;k] (Yn (t))

�
is

the distribution function of k-th order statistic of the sequence X1:::Xn; and that it
is the k-th order free extremal convolution of distributions Fi:
We need to check that this is a consistent de�nition, and that F (n) (tjk) is indeed

a distribution function for each k � 0:
For convenience we will omit index n in the following argument.
It is easy to see that F (tjk) is non-decreasing in t: Indeed, let t0 � t: Then for

each i; Pi (t0) � Pi (t), and therefore, Y (t0) � Y (t) : It follows that 1[0;k] (Y (t0)) �
1[0;k] (Y (t)) ; and therefore F (t0jk) � F (tjk) :
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This function is also right-continuous in t. First, note that if tm # t; then Pi (tm)
d!

Pi (t). Since operators Pi are freely independent for diffferent i; this implies that
Y (tm)

d! Y (t) as tm # t. Indeed, the operators Y (tm) and Y (t) are uniformly
bounded (kY (tm)k � n and kY (t)k � n), and the moments of the distribution of
Y (tm) converge to the corresponding moments of the distribution of Y (t) :
Let the distribution functions of Y (tm) and Y (t) be denoted as Gm (x) and

G (x) ; respectively. Then E
�
1[0;k] (Y (tm))

�
= Gm (k) and E

�
1[0;k] (Y (t))

�
=

G (k) : The convergence Y (tm)
d! Y (t) implies that Gm (k) ! G (k) as m ! 1;

for all k at which G (k) is continuous. We will prove that, moreover, even if G (x)
has a jump at x = k; then the sequence Gm (k) still converges to G (k) : At this
point of the argument, it is essential that tm converges to t from above and therefore
Gm (k) � G (k) :

Indeed, by seeking a contradiction, suppose that Gm (k) does not converge to
G (k) : Take " such that Gm (k) � G (k) > " for all m; and take k0 > k such that
(1) k0 is a point of continuity of G (x) ; and (2) G (k0) � G (k) < "=2: Such k0

exists because G (x) is right-continuous. Since Gm (k) is increasing, we conclude
that Gm (k0)�G (k0) > "=2 for allm: But this means that Gm (x) does not converge
to G (x) at a point of continuity of G (x) ; namely, at k0: This is a contradiction, and
we conclude that Gm (k) converges to G (k) for all k:
Finally, as t ! 1; Pi (t)

d! 0: Therefore Y (t) d! 0; and 1[0;k] (Y (t))
d! I:

Hence F (tjk)! 1 and we conclude that F (tjk) is a valid distribution function.
Consider now the special case when k = 0: In this case F (n) (tj0) is the dimension

of the nill-space of Y (t) ; which equals to the dimension of the intersection of the
nill-spaces of Pi (t) =: 1(t;1) (Xi) : It is easy to see that this coincides with the
de�nition of the free extremal convolution of the distributions Fi (x) ; which was
introduced in (Ben Arous and Voiculescu 2006).

19.2 Limits of the distributions of free extremes

Now let us investigate the question of the limiting behavior of the distributionsF (n) (tjk)
when n!1: The limits are described in Theorem 191.
Proof of Theorem 191: For each n we re-de�ne:

Yn (t) =

nX
i=1

1(t;1)

�
Xi � an
bn

�
=


Mn; 1(t;1)

�
;

whereMn is the free point process associated with the triangular array (Xi � an) =bn:
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The bracket


Mn; 1(t;1)

�
converges in distribution to a random variableCt, which

is a free Poisson random variable with the intensity � (t) = � logG (t) : Then,
in order to calculate the limit of F (k)n (t) for n ! 1; we only need to calculate
E1[0;k] (Ct) ; that is, the distribution function of Ct at k: Let us denote the distribu-
tion function of Ct as Gt (x) ;
For k < 0; we have Gt (k) = 0: For k = 0;

Gt (0) =

�
1� � (t) ; if � (t) � 1;

0; if � (t) > 1:

For k > 0;

Gt (k) =

8>>>><>>>>:
Gt (0) ; if k <

�
1�

p
� (t)

�2
;

G (0) +
R k�
1�
p
�(t)

�2 pt (�) d�; if k 2
��
1�

p
� (t)

�2
;
�
1 +

p
� (t)

�2�
;

1 if k >
�
1 +

p
� (t)

�2
:

where

pt (�) =

q
4� � (1� � (t) + �)2

2��
:

Then, we compute Gt (k) � F (tjk) as a function of t for a �xed k: Let ��1 (x)
denote the solution of the equation �t = x:

For k = 0:

F (tjk) =
�

0; if t � ��1 (1) ;

1� � (t) ; if t > ��1 (1) :

For k 2 (0; 1):

F (k) (t) =

8>>>>>>>>>><>>>>>>>>>>:

0; if t < ��1
��
1 +

p
k
�2�

;R k�
1�
p
�(t)

�2 pt (�) d�; if t 2
�
��1

��
1 +

p
k
�2�

; ��1 (1)

�
;

1� � (t) +
R k�
1�
p
�(t)

�2 pt (�) d�; if
�
t 2 ��1 (1) ; ��1

��
1�

p
k
�2��

;

1� � (t) ; if t > ��1
��
1�

p
k
�2�

:
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For k � 1; we have:

F (tjk) =

8>>>>>>>>>><>>>>>>>>>>:

0; if t < ��1
��
1 +

p
k
�2�

;R k�
1�
p
�(t)

�2 pt (�) d�; if t 2
�
��1

��
1 +

p
k
�2�

; ��1 (1)

�
;

1� � (t) +
R k�
1�
p
�(t)

�2 pt (�) d�; if
�
t 2 ��1 (1) ; ��1

��
1�

p
k
�2��

;

1; if t > ��1
��
1�

p
k
�2�

:

Combinining these cases, we obtain the following equation:

F (tjk) =

8>>>>>>>>>><>>>>>>>>>>:

0; if t < ��1
��
1 +

p
k
�2�

;R k�
1�
p
�(t)

�2 pt (�) d�; if t 2
�
��1

��
1 +

p
k
�2�

; ��1 (1)

�
;

1� � (t) +
R k�
1�
p
�(t)

�2 pt (�) d�; if
�
t 2 ��1 (1) ; ��1

��
1�

p
k
�2��

;

1� � (t) 1[0;1) (k) ; if t > ��1
��
1�

p
k
�2�

:

QED.

Example 210 Distributions from the domain of attraction of �� law

Consider the case of convergence to the law �� ; when the constants an and bn are
chosen in such a way, that the limit law is G (x) = exp

�
�x��

�
for x > 0:Then we

can conclude that the limit distribution of the k order statistic is given as follows:

F (tjk) =

8>>>>>>>>>>><>>>>>>>>>>>:

0; if t <
�
1 +

p
k
��2=�

;R k
(1�t��=2)

2 pt (�) d�; if t 2
��
1 +

p
k
��2=�

; 1

�
;

1� t�� +
R k
(1�t��=2)

2 pt (�) d�; if t 2
 
1;

��
1�

p
k
�2��1=�#

;

1� t��1[0;1) (k) ; if t >
��
1�

p
k
�2��1=�

;

where

pt (�) =

q
4� � (1� t�� + �)2

2��
:

196



We illustrate this result for some particular values of � and k:
Consider k = 0: Then

F (tj0) =
�

0; if t < 1;
1� t�� ; if t � 1:

This is the Type 2 (�Pareto�) limit distribution in De�nition 6.8 of (Ben Arous and
Voiculescu 2006).
It is interesting to note that if k > 1; then for all suf�ciently large t; F (tjk) = 1:

This can be interpreted as saying that the scaled k order statistic is guaranteed to be
less than t0 for a suf�iciently large k: In another interpretation, this result means that
for our choice of scaling parameters an and bn and for every k > 1;

nX
i=1

1(bnt+an) (Xi)

 < k

if t and n are suf�ciently large:
A similar situation occurs in the classical case if the initial distribution (i.e. the

distribution of Xi) is bounded from above. In this case the limit distribution is also
bounded from above. In contrast, in the free probability case this situation occurs
even if the initial distribution is unbounded from above. Our previous example shows
that this situation occurs even if the initial distribution has heavy tails.
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A Appendix: Distributions and Their Transforms
Semicircle

Density & atoms 1
2�

p
4� x2�[�2;2] (x)

Cauchy transform 1
2

�
z �

p
z2 � 4

�
K-function 1

z
+ z

S-transform not de�ned
Moments m2k =

1
k+1

�
2k
k

�
; m2k+1 = 0:

Cumulants c1 = 1; ci = 0 for i 6= 1

Marchenko-Pastur

Density & atoms
p
4x�(1��+x)2

2�x
�h
(1�

p
�)

2
;(1+

p
�)

2
i (x)

and an atom at 0 with mass (1� �) if � < 1

Cauchy transform 1��+z�
p
(1��+z)2�4z
2z

K-function 1
z
+ �

1�z
S-transform 1

�+z

Moments
Cumulants ci = � for all i:

Bernoulli
Density & atoms Atom at 0 with probability q; and

atom at 1 with probability p:
Cauchy transform z�q

(z�1)z

K-function 1+z�
p
(1�z)2+4pz
2z

S-transform 1+z
q+z

Moments mi = q for all i
Cumulants

Arcsine
Density & atoms �[�2;2](t)

�
p
4�t2

Cauchy transform 1p
z2�4

K-function 1
z

p
1 + 4z2

S-transform not de�ned
Moments mn =

�
2k
k

�
if n = 2k; = 0 if n = 2k + 1

Cumulants
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Index
addition formula, 40
additive free convolution, 37
annihilation operator, 30
arcsine law, 29

Bai's theorems, 57
Bernoulli random variable

K-function, 68
Berry-Esseen inequality, 90

Cauchy transform, 37
characterization, 55
uniform convergence, 57

Central Limit Theorem, 74
circular system, 24
CLT, see Central Limit Theorem
convergence in distribution, 14
creation operator, 30
cyclic representation, 125
cyclic vector, 125

domain of attraction, 66

expectation, 12
faithful, 12
normal, 12
tracial, 12

Fock space, 29
free additive convolution, 37
free independence, 16
free multiplicative convolution, 48
free product, 20
freeness, 16

approximate, 25

asymptotic, 24

Haar-distributed unitary operator, 19
in free group algebra, 29
represented by Toeplitz r.v., 34

Herglotz' representation, 54

in�nitely-divisible distribution
additive, 63
multiplicative, 69

joint moment, 14
joint moment map, 13

K-function, 38
estimate on coef�cients, 62

Lagrange's inversion formula, 58
multivalued case, 63

Marchenko-Pastur distribution, 39
Cauchy transform, 39
compound, 64
convergence of free additive convo-

lutions, 68
K-function, 39

multiplication formula, 48

Nevanlinna's representation, 55
non-commutative probability space, 11

bounded operators algebra, 13
commutative probability space, 12
�nite von Neumann algebra, 13
free products, 20
matrix algebra, 12
operator-valued, 14
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Toeplitz operators, 30

Perron-Stieltjes inversion formula, 56
Poisson distribution, seeMarchenko-Pastur

distribution
Poisson distribution (free), 68
Poisson kernel, 69
Poisson transform, 69

R-transform, 39
random variables, 13

equivalent, 14
star-equivalent, 14

representation
of a moment sequence by an opera-

tor, 31
of operator by another operator, 31

S-transform, 48
Schwarz' formula, 54
semicircle distribution, 22

Cauchy transform, 24
K-function, 38
Toeplitz operator representation, 34

semicircular system, 22
�-function, 68
spectral probability measure, 15
superconvergence, 105
symbol of a Toeplitz operator, 41

Toeplitz random variables, 30
trace, 12

vacuum vector, 30
Voiculescu transform, 40
von Neumann algebra

N (Fk), 27
of free group, 27
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