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Chapter 1

Foundations

Figure 1.1: Applications of probability theory

1.1 Probability spaces, measures and σ-fields
1.1.1 Intuition

The probability space is a triple (Ω,F ,P), where the sample space Ω is a set
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of outcomes ω, F is a σ-algebra of the events, and P is the probability measure.
Intuitively, the set the sample space Ω represent all possible outcomes ω of

an experiment. However, we observe the outcomes imperfectly and the events
are the subsets A ⊂ Ω for which it is possible to say definitely that either “the
outcome is in A” or “the outcome is not in A.”

When the experiment has a finite number of outcomes, every events is a
finite union of some disjoint elementary events Ai which form a partition of Ω.

Probability is a measure on F , that is, it is a function that maps events
to non-negative numbers, probabilities. In a case of a finite Ω, the probability
of every event A is the sum of probabilities of the elementary blocks of the
partition F which are subsets of A.

The σ-algebras are needed to generalize partitions to the case of infinite and
possibly uncountable Ω.

1.1.2 Probability Space

Definition 1.1.1. Aclass F of subsets of a space Ω is called an algebra (or a
field) if it contains Ω itself and is closed under complements and finite unions.
That is,

1. Ω ∈ F

2. A ∈ F implies Ac ∈ F

3. A,B ∈ F implies A ∪B ∈ F
Note that by DeMorgan’s law, given that F is closed under complement, F

is closed under unions if and only if F is closed under intersections. Therefore,
A,B ∈ F implies A ∪ B ∈ F in the above definition can be replaced with
A,B ∈ F implies A ∩B ∈ F .
Example 1.1.2. Finite unions of all intervals in [0,1].
Definition 1.1.3. A class F of subsets of Ω is a σ-algebra if it is an algebra
and if it is closed under the formation of countable unions. That is,

1. F is an algebra.

2. A1, A2, ... ∈ F implies A1 ∪A2 ∪ .... ∈ F .
(This object is also often called a σ-field.)
An algebra is closed under finite set-theoretic operations whereas a σ-algebra

is closed under countable set-theoretic operations.
Usually in a problem dealing with probabilities, one starts with a small class

of subsets A, for example, with the class of subintervals of [0, 1]. It is possible
that when we perform countable operations on such a class A of sets, we might
end up operating on sets outside the class A.

The σ-algebra generated by A is denoted by σ(A) and defined as the inter-
section of all the σ-algebras containing A. One can check that this intersection
is indeed a σ-algebra. It is clear that it is the smallest σ-algebra containing A.
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Example 1.1.4. The class of all finite unions of intervals (a, b] in Ω : (0, 1] is an
algebra but not σ - algebra.
Example 1.1.5. The class of all subsets of [0, 1] is a σ - algebra.
Example 1.1.6. If A is the class of subintervals (a, b] of Ω = (0, 1], then the
sigma algebra generated by A is denoted by B and is called the Borel σ-algebra.
Its elements are called the Borel sets of the unit interval.

Fact: There exist sets which are not Borel.

Definition 1.1.7. A set function1 µ on a σ-algebra F is a probability measure
if it satisfies the following conditions:

1. 0 ≤ µ(A) ≤ 1 for A ∈ F .

2. µ(∅) = 0, µ(Ω) = 1.

3. If Ai ∈ F is a countable sequence of disjoint sets, then µ (
∪

iAi) =∑
i µ(Ai).

If we relax assumption that µ(Ω) = 1 and require only that 0 ≤ µ(A) for
all A ∈ F , the function µ is called a measure. A probability measure is often
denoted P.

If F is a σ-algebra on Ω, then the pair (Ω,F) is called a measurable space,
and the sets in F are called measurable. If, in addition, P is a probability
measure on F , then the triple (Ω,F ,P) is called a probability measure space or
simply a probability space.

The countable additivity of the probability measure gives rise to the following
properties that are stated in a theorem.

Theorem 1.1.8. Let P be a probability measure on a σ-algebra F .

1. Continuity from below: If An and A lie in F and An ↑ A, then P(An) ↑
P(A).

2. Continuity from above: If An and A lie in F and An ↓ A, then P(An) ↓
P(A).

3. Countable subadditivity: If A1, A2... and
∪∞

k=1Ak lie in F , then

P

( ∞∪
k=1

Ak

)
≤

∞∑
k=1

P(Ak).

Example 1.1.9 (Invariant measure on S1).
Suppose that Ω is the unit circle and F is the class of all subsets of Ω. We

claim that there is no probability measure on F , invariant with respect to all
rotations.

1A set function is a real-valued function defined on some class of subsets of Ω.
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Indeed, let S1 = R/Z and let two points x, y ∈ S1 be equivalent if x−y ∈ Q.
This is a valid equivalence relationship, and by Axiom of Choice we can form
a set A by taking exactly one representative in each equivalence class. Define
Aq = A+ q mod 1 for every rational q.

Then every point in S1 belongs to one of the equivalence classes hence it
equals to a + q for some rational q and some a ∈ A. That is, this point is in
one of A+ q. It follows that S1 is a countable union of Aq. In addition, Aq are
disjoint. Otherwise, A would contain two different representatives from a single
equivalence class. Finally, all Aq should have the same measure by invariance.
However, then either measure of Aq is 0 and then the measure of S1 is 0, or
the measure of Aq is positive and then the measure of S1 is infinite, which
contradicts the definition of the invariant measure.
Example 1.1.10 (Banach - Tarski paradox).

If Ω is S2 and F is the class of all subsets of Ω then there is no finitely-additive
finite measure on Ω, invariant with respect to all rotations.
Example 1.1.11 (Lebesgue measure).

Let Ω = R and B is the Borel sigma-algebra. Then we can define the set-
function µ((a, b]) = b − a for a ≤ b. Lebesgue showed that this function can
be extended to a measure on all sets in the Borel σ-algebra B. This measure is
called the Lebesgue measure. The probability space on [0, 1] can then be defined
by the restriction of µ to the subsets of [0, 1].
Example 1.1.12 (Lebesgue-Stiltjes measure).

More generally one can define the Stieltjes measure on (R,B) by using a
function F with the following properties:
(i) F is nondecreasing.
(ii) F is right continuous, i.e. limy↓x F (y) = F (x).

Theorem 1.1.13. Associated with each Stieltjes measure function F there is a
unique measure µ on (R,B) with µ((a, b]) = F (b)− F (a).

When F (x) = x the resulting measure is the Lebesgue measure.
The proof of this result is non-trivial even in the case of the Lebesque measure

and is based on the Caratéodory Theorem formulated below. We skip it.
The Lebesgue measure can be extended to an even larger class of sets than

Borel sets by adding all sets that are contained in Borel sets of measure zero and
assigning measure zero to them. By passing to a minimal containing σ-algebra,
one obtains a σ-algebra of Lebesgue-measurable sets. It turns out that this σ-
algebra is larger than the Borel σ-algebra, and that the Lebesgue measure can
be extended to this larger algebra.

1.1.3 The Caratéodory Theorem
The Caratéodory Theorem gives the conditions which guarantee that a measure
can be extended from an algebra A to the generated σ-algebra σ(A). It is valid
not only for probability measures but also for general σ-finite measures.
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(The measure µ is called σ-finite if there exists a sequence of sets An ∈ A
so that µ(An) <∞ and

∪∞
n=1An = Ω. For example, any probability measure is

finite and therefore σ-finite. The Lebesgue measure on R is not finite, but it is
σ -finite.)

It turns out that if A is an algebra, then the key condition for the existence
of the measure on the σ-algebra σ(A) is the σ-additivity of the measure µ on
the algebra A. However, since we cannot expect that a countable union of sets
in A is again a set in A, we say that a measure µ is σ-additive on an algebra
A if for every sequence of sets An ∈ A such that

∩
nAn = ∅, it is true that

limn→∞ µ(An) = 0.

Theorem 1.1.14 (Carathéodory). Let µ be a σ-finite, σ-additive measure on
an algebra A. Then µ has a unique extension to a σ-additive measure on σ(A),
the smallest σ-algebra containing A.

The proof of the Charathéodory Theorem is in Appendix. This theorem can
be used to justify the existence of the Lebesgue-Stieltjes measure.

Indeed, in order to prove that the Lebesgue measure can be extended to
all Borel sets, we need to show that it is countably additive on the algebra B0

generated by intervals (a, b]. This algebra consists of finite unions of disjoint
intervals. The following proof of countable additivity is taken from Billingsley
“Probability and Measure”.

For shortness, let us use |I| to denote the length of interval I. That is,
|(a, b]| = (b− a).

Theorem 1.1.15. Consider an interval I = (a, b] and collection of intervals
Ik = (ak, bk), which is either finite or countably infinite.

1. Suppose Ik are disjoint and ∩kIk ⊂ I. Then,
∑

|Ik| ≤ |I|.

2. Suppose I ⊂ ∪kIk. Then |I| ≤
∑

|Ik|.

3. Suppose Ik are disjoint and ∩kIk = I. Then,
∑

|Ik| = |I|.

Proof. Obviously, (3) follows from (1) and (2).
Proof of (1). If the collection is finite, then we prove the statement by

induction. Consider n intervals and suppose they are ordered in such a way
that a1 ≤ . . . ≤ an. Then ∪n−1

k=1Ik ∈ (a, an] and so
∑n−1

k=1 |Ik| ≤ an − a by the
induction hypothesis. Consequently,

∑n
k=1 |Ik| ≤ (an − a) + (bn − an) < b− a.

If the collection is infinite, then
∑n

k=1 ≤ |I| for every n by the finite case,
and the infinite case follows by passing to the limit.

Proof of (2). If the collection is finite, then we again proceed by induction.
Consider the case of n intervals ordered as before, and suppose that an < b ≤
bn. (Otherwise, I is covered by n − 1 interval and the induction hypothesis
immediately applies.) In addition, assume that a < an, or the result is obvious.
Then note that the interval (a, an) must be covered by ∪n−1

k=1Ik. Moreover, since
the intervals Ik are closed on the right, the interval (a, an] is covered and we
can apply the induction hypothesis,

∑n−1
k=1 Ik ≥ an − a. Hence,

∑n
k=1 Ik ≥

(an − a) + (bn − an) ≥ b− a.
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For the infinite collection, we choose an arbitrary ε > 0 and consider the
closed interval [a + ε, b] and open intervals (ak, bk + ε2−k). This is a compact
interval and hence every infinite open cover of the interval contains a finite
sub-cover. We can apply a finite case of (2) to this sub-cover, and find that
b− a− ε ≤

∑∞
k=1(|Ik|+ ε2−k) =

∑∞
k=1 |Ik|+ ε. Taking the limit ε→ 0 on both

sides gives the desired inequality.

In the algebra B0, every set A is a union of the finite number of intervals,
A = ∪n

k=1Ik and the Lebesgue measure is defined as

|A| =
n∑

k=1

|Ik|.

Theorem 1.1.16 (Lebesque measure is countably-additive). The Lebesgue mea-
sure is a (countable-additive) probability measure on the algebra B0.

Proof. Suppose that A = ∪∞
k=1Ak where A and Ak are in B0 and Ak are disjoint.

Then A and Ak are disjoint unions of a finite number of intervals A = ∪n
i=1Ii,

and Ak = ∪nk
j=1J

(k)
j . Then, we consider every of the intervals Ii separately and

note that

Ii = Ii ∩
∞∪
k=1

Ak =

∞∪
k=1

∪nk
j=1(Ii ∩ J

(k)
j ).

Applying Theorem 1.1.15, we have

|A| =
n∑

i=1

|Ii| =
n∑

i=1

∞∑
k=1

nk∑
j=1

|Ii ∩ J (k)
j |

Since J (k)
j ⊂ A, it is covered by ∪n

i=1(Ii ∩J
(k)
j ), and therefore

∑n
i=1 |Ii ∩J

(k)
j | =

|I(k)j |. Hence, changing the order of summation above, we get,

|A| =
∞∑
k=1

nk∑
j=1

|J (k)
j | =

∞∑
k=1

|Ak|.

Ex. 1.1.17. Let us try to construct a measure on the set of rationals in [0, 1],
Q ⊂ [0, 1], which would be similar to Lebesgue measure. Consider the function
P([a, b]) = b−a for all rational 0 ≤ a ≤ b ≤ 1. Can it be extended to an additive
finite measure on the algebra generated by intervals in Q?

It is impossible to extend this measure to a countably additive measure on
the σ-algebra generated by intervals in Q. Indeed, P({q}) = 0 for any set {q}
containing a single rational q while P(Q) = P(

∪
q∈Q q) = 1. Which condition of

the Carathéodory theorem is not satisfied and why?
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Theorem 1.1.18. The Lebesgue-Stieltjes measure is a (countable-additive)
probability measure on the algebra B0.

Sketch of the proof: Theorems 1.1.15 and 1.1.16 show that the Lebesgue
measure is countably-additive. If we want to prove the Lebesque-Stiltjes mea-
sure is countably-additive, the proofs go almost verbatim except at one point.

Recall claim (2) in Theorem 1.1.15: “Suppose I ⊂ ∪kIk. Then |I| ≤
∑

|Ik|.”
For a finite collection Ik the proof is the same. For an infinite collection,

we slightly adapt the proof. Let I = (a, b]. We choose an arbitrary ε > 0 and
consider the closed interval [a+ ε/2, b], the interval (a+ ε, b] and open intervals
(ak, bk + δk), such that F (bk + δk) − F (bk) < ε2−k). This can be done by
right-continuity of F (x).

The interval [a+ ε/2, b] is a compact interval and hence every infinite open
cover of the interval contains a finite sub-cover. This sub-cover also covers
(a+ε, b]. We can apply a finite case of (2) to this sub-cover chosen from intervals
(ak, bk+δk), and find that F (b)−F (a+ε) ≤

∑∞
k=1(|Ik|+ε2−k) =

∑∞
k=1 |Ik|+ε.

Taking the limit ε → 0 on both sides and using again the right continuity of
F (x) gives the desired inequality.

1.1.4 Product measures and Kolmogorov’s extension the-
orem

We now introduce product spaces and product σ-algebras. Given (Ωi,Fi)

measurable sets indexed by i ∈ I, let Ω =
∏

i Ωi the space of sequences ω =
(ω1, ω2, . . .).

The product σ-algebra F on Ω is the σ-algebra generated by the algebra of
the cylinder sets Ai1 × . . .×Ain where i1 < . . . < in are arbitrary finite subsets
of index set I.
Example 1.1.19. We can define a σ-field on Rd as a product of Borel σ-fields on
R. It can be thought of as an algebra generated by all rectangles I1× . . .×Id. It
turns out that it coincide with the Borel σ-field on Rd, that is, with the σ-field
generated by all open sets of Rd. (This is an easy exercise.)

We can also define the probability measure on the product space if the
probability measures Pi on spaces (Ωi,Fi) are given. We start by assigning
each cylinder measure P(Ai1)× . . .× P(Ain) where i1 < . . . < in. We can check
that this measure is σ- additive on the algebra of cylinder sets and then use
the Caratheodory theorem to show that the measure can be extended to a σ-
additive measure on F . The proof of these statements is not trivial even for a
finite number of measure spaces and we are skipping some details here.

The construction for a finite collection of Ω = R gives the Lebesgue measure
on Rd.

For infinite collections there are additional difficulties, which can be over-
come for the case of Borel sets on Ω = R. One formulation of this result is the
Kolmogorov’s extension theorem. Here is a variant of this theorem.
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Let {Pn} be a family of measures on B(Rn), where B(Rn) is the Borel σ -
field on Rn and call this family of measures consistent if Pn+1(B×R) = Pn(B).

Theorem 1.1.20 (Kolmogorov). Let Pn, n = 1, 2, . . . be a consistent family of
probability measures on B(Rn). Then the exists a unique probability measure on
(R∞,F =

∏
B(R)) that agrees with Pn an all cylinder sets that depend on the

first n coordinates.

Proof. The requirement of consistency guarantees that if we can take sufficiently
large number of indices to include all cylinder sets in a finite union or intersec-
tion. In particular, this ensures that we can properly define a finitely-additive
measure on the algebra of cylinder sets.

In order to show countable additivity, we can instead show that the measure
is continuous at the empty set. That is, if we have a decreasing sequence of
cylinder sets Bn such that Bn → ∅, then P(Bn) → 0. Suppose on the contrary
that limP(Bn) = δ > 0. Without loss of generality we can assume that Bn is
supported on the first n indices. We write Bn to denote the corresponding set
in Rn.

The probability measures Pn on B(Rn) have the property that for every Bn

and a given δ > 0, we can find a compact set An which approximates Bn well,
that is, An ⊂ Bn and Pn(Bn\An) ≤ δ/2n+1. We can extend this property from
Rn to cylinder sets supported on the first n coordinates in R∞. Let An denote
the cylinder sets corresponding to An.

Then define Cn = ∩n
k=1Ak. Note that Cn is also supported on the first

n coordinates and every Cn (restriction of Cn to the first n coordinates) is
compact. (This can be proved by induction.)

The benefit of Cn over An is that it is a decreasing family of cylinder sets.
However, it still approximates Bn well,

P(Bn\Cn) ≤
n∑

k=1

P(Bn\Ak)

≤
n∑

k=1

P(Bk\Ak) ≤ δ/2.

The first inequality holds because Bn\Cn = ∪(Bk\Ak), and the inequality in
the second line holds because Bk is a decreasing family of sets.

Since by assumption P(Bn) ≥ δ, hence P(Cn) > δ/2. In addition note that
Cn ⊂ Bn and therefore Cn → 0. The advantage of decreasing sets Cn over Bn

is that the restriction of sets Cn to the first n coordinates are compact.
Now choose a point x(n) in each of the cylinder sets Cn. This gives a sequence

of points x(n) ∈ R∞. Choose a subsequence (n1) such that the first coordinate
of x(n1) converges to a limit x∗1. This is possible because Cn is decreasing,
hence x(n) are all in C1 and restriction of C1 to the first coordinate, C1, is
compact. Then choose a subsequence (n2) of the sequence (n1) such that the
second coordinate of x(n2) converged to a limit x∗2. This is possible for a similar
reason. Proceed further and consider the resulting sequence x∗ = (x∗1, x

∗
2, . . .).
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By construction, (x∗1, . . . , x∗n) ∈ Cn and therefore x∗ ∈ Cn for every n. Hence
x∗ ∈ ∩Cn = ∅, which gives the desired contradiction.

Similar to the previous theorem, the assumption of countable additivity in
the Caratheodory theorem can be checked for infinite products of probability
measures on finite sets, and on [0, 1]. However, it should be noted that it is not
automatically satisfied for arbitrary (Ωi,Fi). Usually one requires additionally
that (Ωi,Fi) is a topological space with Borel-sigma algebra F and that every Ωi

is either compact or satisfy another appropriate condition which might involve
measures Pi.

For example, it is enough if for every ϵ > 0 there exists a compact set Ki

with the measure Pi(Ki) > 1− ϵ.

1.1.5 Absolute continuity and singularity of measures
The same measure space (Ω,F) can have several different probability measures.
A measure µ is called absolutely continuous with respect to measure ν, denoted
µ≪ ν if for each A ∈ F , ν(A) = 0 implies that µ(A) = 0.

For example, consider the case when ν is the Lebesgue measure on R and µ
is the Lebesgue-Stieltjes measure corresponding to function F (x). Then if F (x)
is differentiable then one can show that µ is absolutely continuous with respect
to ν and, if we assume that we know how to integrate with respect to Lebesgue
measure, then one can show that µ(A) =

∫
A
F ′(x)ν(dx).

In contrast, suppose that F (x) is the step function: F (x) = 0 for x < a and
F (x) = 1 for x ≥ a. Then, the measure µ is not absolutely continuous with
respect to Lebesgue measure, because µ({a}) = 1, (µ has an atom at a, and the
Lebesgue measure of a point is zero.

Two measures µ and ν are mutually singular, denoted by µ ⊥ ν, if we can
find two disjoint sets Sµ and Sν , (supports of µ and ν) such that µ(Ω\Sµ) = 0
and µ(Ω\Sν) = 0.

For example, the atomic measure µ above is singular with respect to the
Lebesgue measure ν since we can choose Sµ = {a}, Sν = R\{a}.

In general, a Lebesgue-Stieltjes measure is singular with respect to the
Lebesgue measure if F ′(x) = 0 everywhere except on a set of measure zero.

An interesting fact about Lebesgue-Stieltjes measures is that they can be
singular even if the function F (x) is continuous. An example is given by the
Cantor staircase function which we will consider later.

An abstract form of the theorem about the representation of the absolutely-
continuous Lebesgue-Stieltjes measure through its derivative is the Radon-Nikodým
Theorem.

A real valued function f on a measure space (Ω,F) is called measurable if for
any Borel set A, f−1(A) ∈ F . (In fact it is enough to require that f−1(A) ∈ F
for all open sets A.)

Theorem 1.1.21 (Radon-Nikodým). If µ and ν are two σ-finite measures on
(Ω,F), such that µ≪ ν then there exists a non-negative measurable f , called a
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density, such that

µ(A) =

∫
A

fdν,

for all A ∈ F . For two such densities, f and g, it is true that ν({ω : f(ω) ̸=
g(ω)}) = 0.

The density is called the Radon-Nikodým derivative of µ with respect to ν
and often denoted dµ/dν.

1.2 Random Variables
1.2.1 Random variables as measurable functions

Let (Ω,F) and (S,S) be two measurable spaces. A map X : Ω → S is
measurable or a random variable (concisely denoted r.v.) if the inverse image of
every measurable set is measurable.

X−1(A) ≡ {ω : X(ω) ∈ A} ∈ F for all A ∈ S

An indicator function an event F ∈ F is an example of a random variable
(measurable function) where S = {0, 1} and S = {∅, {0}, {1}, S} is the collection
of all subsets of S. The indicator function is defined as

1F (ω) =

{
1 if ω ∈ F

0 if ω /∈ F

A map from a topological space to another topological space is called Borel
measurable (or B-measurable) if it is measurable with respect to the Borel σ-
algebras on these spaces. The continuous maps are obviously B-measurable.
However the class of B-measurable functions is significantly larger, since the pre-
images of the open sets are not required to be open, as in the case of continuous
functions, but only required to be Borel sets.

A map from Rd to a topological space S is called Lebesgue measurable if the
pre-images of Borel sets are Lebesgue measurable.

The point of the definition of the Borel and Lebesgue measurable functions
is to ensure that the events {ω : f(ω) ∈ A} have a well-defined probability for
sufficiently nice sets of elements in S, that is, for all Borel sets.

Theorem 1.2.1. If maps X1 : (Ω1,F1) → (Ω2,F2) and X2 : (Ω2,F2) → (Ω3,F3)
are measurable, then their composition X2 ◦ X1 : (Ω1,F1) → (Ω3,F3) is also
measurable.
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In particular, the composition of Borel measurable functions is Borel mea-
surable. However, the composition of Lebesgue measurable functions is not
necessarily Lebesgue measurable.
Definition 1.2.2. The Cantor set C ⊂ [0, 1] is defined by removing (1/3, 2/3)
from [0, 1] and then iteratively removing the middle third of each interval that
remains.
Ex. 1.2.3. The Cantor set C is closed. The Lebesgue measure of C is 0.

Example 1.2.4. Define the function F by setting F (x) = 0 for x ≤ 0, F (x) = 1
for x ≥ 1, F (x) = 1/2 for x ∈ [1/3, 2/3], then F (x) = 1/4 for x ∈ [1/9, 2/9],
F (x) = 3/4 for x ∈ [7/9, 8/9], and so on.

It can be checked that F (x) is a non-decreasing continuous function, which
is called the Cantor-Lebesgue function or the Cantor staircase.

Let f : [0, 1] → [0, 1] be the Cantor-Lebesgue function restricted to the inter-
val [0, 1]. This is a monotonic and continuous function, and the image f(C) of
the Cantor set C is all of [0, 1]. Define g(x) = x+f(x). Then g : [0, 1] → [0, 2] is
a strictly monotonic and continuous map, so its inverse h = g−1 is continuous,
too.

Observe that g(C) has measure one in [0, 2]: this is because f is constant on
every interval in the complement of C, so g maps such an interval to an interval
of the same length. It follows that there is a non-Lebesgue measurable subset
A of g(C). (This is by Vitali’s theorem: a subset of R is a Lebesgue null set if
and only if all its subsets are Lebesgue measurable. So if all subsets of g(C) are
Lebesgue measurable, then g(C) has measure null, contradiction.)

Put B = g−1(A) ⊂ C. Then B is a Lebesgue measurable set as a subset
of the Lebesgue null set C, so the characteristic function 1B of B is Lebesgue
measurable.

The function k = 1B ◦h is the composition of the Lebesgue measurable func-
tion 1B and and the continuous function h, but k is not Lebesgue measurable,
since k−1(1) = (1B ◦ h)−1(1) = h−1(B) = g(B) = A.
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1.2.2 Generation of σ-algebras

Let (Xi, i ∈ I) be a family of mappings of a set Ω into measurable spaces
(Si,Si), i ∈ I. Here, I ̸= φ is an arbitrary index set (i.e., possibly uncountable).

For every Xi we can consider X−1
i (Si), the collection of inverse images for

all sets in Si. One can check that these collections are σ-algebras.
Then the smallest σ-algebra generated by X−1

i (Si) is called the σ-algebra
generated by (Xi, i ∈ I) and denoted by σ(Xi, i ∈ I). We can also define it as
the smallest σ-algebra on Ω with respect to which each Xi is measurable.

Here is a theorem that illustrates how these definitions can be used to prove
measurability of functions of several variables.

Theorem 1.2.5. Suppose (Ω,F), (Si,Si), and (T, T ) are measurable spaces,
Xi : Ω → Si, i = 1, . . . , n, are measurable maps, and f is a measurable map from
(S1,S1)× . . .× (Sn,Sn) to (T, T ). Then f(X1, X2, . . . , Xn) is a measurable map
from (Ω,F) to (T, T ).

Proof. In view of Theorem 1.2.1, it suffices to prove that the map X : Ω →
S × . . .× S, defined as ω → (X1(ω), . . . , Xn(ω)), is measurable. To do this, we
observe that the σ - algebra on the product space S × . . . × S is generated by
products A1 × . . .×An, where A1, . . . , An ∈ S. Then,

{X ∈ A1 × . . .×An} =

n∩
i=1

{Xi ∈ Ai} ∈ F ,

and therefore X is measurable.

1.2.3 Distributions

If X is a real r.v. defined on some probability space (Ω,F ,P), then X induces
a probability measure on (R,B) called its distribution measure. By definition,
µ(B) = P(X ∈ B) = P(X−1(B)), as a function of Borel sets B of R . To
show that µ is a probability measure one needs to check countable-additivity.
However, it is simply inherited from the probability space (Ω,F ,P). Namely for
disjoint Bi’s,

µ(∪iBi) = P[X−1(∪iBi)]

= P(∪iX
−1(Bi)) =

∑
i

P(X−1(Bi)) =
∑
i

µ(Bi)

The distribution of a r.v. X can described by its cumulative distribution
function (cdf), F (x) = P(X ≤ x).
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Theorem 1.2.6. A cdf F of every probability measure on R has the following
properties:

1. F is a non-decreasing function of x.

2. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

3. F is right continous, i.e., limy↓x F (y) = F (x)

Proof. Refer to Theorem 1.1. in Durrett on page 4.

Theorem 1.2.7. If F satisfies the properties of Theorem 1.2.6, then it is the
distribution function of a random variable that takes values in R.

This theorem is one of simplest examples when a random variable is con-
structed from a distribution function.

In addition, this theorem gives (in a sense) a new proof that the Lebesgue-
Stieltjes measure on R build from a right-continuous non-decreasing function
is countably-additive. Now this Lebesgue-Stieltjes measure arises as the dis-
tribution measure of the random variable constructed in the theorem. (More
precisely, the theorem implies that a right-continuous non-decreasing function
F (x), with some-additional constraints on its behavior on infinity, defines a
(Lebesgue-Stieltjes) countably-additive probability measure on R.) The down-
side is that this proof is more complicated than the proof we described above.

Figure 1.2: Construction of a r.v. with a given CDF

Proof. We are following Durrett’s book here. Let F : R → [0, 1] have properties
1, 2, 3 in Theorem 1.2.6. We will construct a random variable defined on (Ω =
(0, 1], ′,∞],P) = ((0, 1],B((0, 1]),P), where P denotes the Lebesgue measure,
and show that it has the distribution function F .

The idea of the following proof is that for every ω ∈ (0, 1], we trying to
define X(ω) as the inverse of the function F (x). This is not always possible so
we do it in a sophisticated way.

Note that the set {y : F (y) < ω} is always an open interval of the form
(−∞, α). It is open because otherwise we would have a sequence {αk} with
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αk ↓ α such that F (αk) ≥ ω and F (α) < ω and this would contradict right
continuity.

We define X(ω) = α, or more formally.

X(ω) = sup{y : F (y) < ω}.

One needs to check the measurability of this function, that is, the fact that the
inverse image of every Borel set is Borel. However, we refer to Durrett for this
proof.

Then, note that if we manage to show that the following sets are equal,

{ω : X(ω) ≤ x} = {ω : ω ≤ F (x)}

then the definitions of the distribution function and the Lebesgue measur imply
that

FX(x) := P(ω : X(ω) ≤ x) = P(ω : ω ≤ F (x)) = F (x).

To check the set equality above, observe that ω ≤ F (x) means tautologically
that x is outside of the the set {y : F (y) < ω} which means that x ≥ α = X(ω).

On the other hand, if ω > F (x), then since F is right continuous, there is
an ϵ > 0 so that it is still ω > F (x + ϵ) which means that x + ε is in the set
{y : F (y) < ω}. It follows that x is strictly less than the supremum of this set,
X(ω), that is X(ω) ≥ x + ϵ > x. This completes the proof of the set equality
stated above and therefore completes the proof of the theorem.

Having proved the existence of a r.v. X with distribution function F , the
uniqueness can be checked easily by the π − λ theorem.
Example 1.2.8 (Singular measures).

Recall the Cantor staircase function F (x) from Example 1.2.4. Since this
function is continuous and non-decreasing, it is clear that it is a valid distribution
function.

From the definition, we see that dF/dx = 0 for every x in the complement
of C. As the Lebesgue measure of C is zero, we see that the derivative of F is
zero except on a set of zero Lebesgue measure. Such distribution functions are
called Lebesgue singular distribution functions and the corresponding measures
are called singular measures.

In particular, there is no function f for which F (x) =
∫ x

−∞ f(t) dt holds.
Even discrete distribution functions can be quite complex.

Example 1.2.9 (Distribution function with a dense subset of discontinuities).
Let q1, q2, . . . be an enumeration of the rational numbers and set

F (x) =

∞∑
i=1

2−i
1[qi,∞)(x).

Clearly, such F is non- decreasing, with limits 0 and 1 as x→ −∞ and x→ ∞,
respectively. It is not hard to check that F is also right continuous, hence
a distribution function, whereas by construction F is discontinuous at each
rational number.
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1.2.4 Expected value

Let (Ω,F ,P) be a probability space.

Definition 1.2.10. Let X : Ω → R be a B-measurable random variable. The
expected value of X is defined by

E(X) :=

∫
Ω

XdP =

∫
Ω

X(ω)P(dω) (1.1)

The integral is defined as in Lebesgue integration, whenever
∫
Ω
|X|dP <∞.

Theorem 1.2.11 (Existence of the integral for nonnegative r.r.v.). Let (Ω,F ,P)
be a probability space. There is a unique functional E : X 7→ E(X) ∈ [0,∞] such
that

E(1A) = P(A), ∀ A ∈ F (1.2)
E(cX) = cE(X), ∀ c ≥ 0, X ≥ 0 (1.3)

E(X + Y ) = E(X) + E(Y ), ∀ X,Y ≥ 0 (1.4)
X ≤ Y ⇒ E(X) ≤ E(Y ) (1.5)
Xn ↑ X ⇒ E(Xn) ↑ E(X) (1.6)

Sketch of Proof. From these desired properties, we see immediately how to de-
fine E(X). The procedure is well known from Lebesgue integration. First extend
E from indicators to simple r.v.’s by linearity, then to positive r.v.’s by continuity
from below, and finally check that everything is consistent.

Step 1: Simple random variables
Check that if X =

∑n
i=1 ci1Ai

is a simple random variable, then

E(X) =

n∑
i=1

ciP(Ai) (1.7)

works. Verify that E is well defined, etc.

Step 2: Nonnegative random variables
Now use (1.6) to extend E for general X ≥ 0. We know that there exists
an increasing sequence Xn of simple r.v. with Xn ↑ X. Now see that
E(Xn) ↑ (by monotonicity of E). Define

E(X) = lim
n→∞

E(Xn) (1.8)

Verify again that E(X) is well defined.
Remark: Note that E(X) = +∞ is possible even if P(X < ∞) = 1. As
an example look at G which is a geometric r.v., i.e. P(G = g) = 2−g,∀ g =
1, 2, 3, . . . Note that P(G <∞) = 1, but E(2G) =

∑∞
i=1 2

g2−g = ∞.
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Step 3: Signed random variables
WriteX asX = X+−X−, whereX+ := max(X, 0) andX− := −min(X, 0).
Define E(X) as follows

E(X) = E(X+)− E(X−) (1.9)

provided this expression is not ∞−∞. Such X are quasi-integrable. X is
integrable if E(|X|) <∞.

1.2.5 Independence

Two sub-algebras F1 and F2 of the σ-algebra F in a probability space
(Ω,F ,P) are independent if for every A1 ∈ F1 and A2 ∈ F2, P(A1 ∩ A2) =
P(A1)P(A2).

Random variables X1 and X2 on the same probability space, are independent
if the σ-algebras that they generate are independent. That means that for every
Borel sets B1 and B2 P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2).

In fact it is usually sufficient to check it for a subclass of Borel sets, for
example for intervals (−∞, a].

We can extend this definition to a collection of n ≥ 2 random variables and
even to infinite collections of random variables. In particular, for an infinite se-
quence of real-valued random variables, X1, X2, . . ., the cumulative distribution
function is defined as

FXi
(x) := P (Xi ≤ x).

The random variables X1, X2, . . . , are called independent, if

P

(
n∩

i=1

{Xi ≤ xi}

)
=

n∏
i=1

FXi(xi) (1.10)

for all n ≥ 1 and all choices of (x1, . . . , xn) ∈ Rn, .
Example 1.2.12. Consider

Fi(x) =

∫ x

−∞
fi(y)dy

where fi is the density of Xi. Then, the joint law of independent random
variables X1, . . . , Xn on Rn has the density

h(x) =

n∏
i=1

fi(xi)

with respect to Lebesgue measure dx1 dx2 . . . dxn.
Theorem 1.2.13. If X and Y are independent and E(|X|) < ∞, E(|Y |) < ∞
then E(XY ) = E(X)E(Y ).

This can be proved by using the Fubini theorem.

19



1.2.6 Kolmogorov’s 0-1 Law

Suppose that X1, X2, . . . are independent random variables (not necessarily
real valued). Let F ′

n = σ(Xn, Xn+1, . . .) be the future after time n, that is, the
smallest σ-field with respect to which all the Xm, m ≥ n, are measurable. Let
T = ∩nF ′

n = be the “remote future”, or the tail σ−field.
Example 1.2.14. {ω : Sn(ω) converges} ∈ T .

Theorem 1.2.15 (Kolmogorov’s 0-1 Law). If X1, X2, . . . are independent and
A ∈ T then P(A) = 0 or 1.

We will only sketch the proof. For details, see textbooks.

Proof. The idea is to show that A is independent of itself, that is, P(A ∩ A) =
P(A)P(A), so P(A) = P(A)2, and hence P(A) = 0 or 1. We will prove this in
two steps:

(a) A ∈ σ(X1, . . . , Xk) and B ∈ σ(Xk+1, Xk+2, . . .) are independent.
Proof of (a): If B ∈ σ(Xk+1, . . . , Xk+j) for some j, this is more or less

evident. Passing to the limit j → ∞ needs a justifucation which can be found
in a textbook.

(b) A ∈ σ(X1, X2, . . .) and B ∈ T are independent.
Proof of (b): Since T ⊂ σ(Xk+1, Xk+2, . . .), if A ∈ σ(X1, . . . , Xk) for some

k, this follows from (a). Passing to the limit k → ∞ needs a justification that
can be found in a textbook.

Since T ⊂ σ(X1, X2, . . .), (b) implies that A ∈ T is independent of itself and
the theorem follows.
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Figure 1.3: Everything is conditional

1.3 Conditional Probability & Expectation
1.3.1 Motivation

Calculating conditional probabilities might lead to paradoxes if we are not
careful. This is illustrated by the following example.
Example 1.3.1. Suppose the random variables X and Y have the joint density
function

fXY (x, y) =

{
4xy, if x ∈ [0, 1], y ∈ [0, 1],

0, otherwise.

Find the conditional density of X given that Y = X.
As we will see later, the ambiguity here is created by the condition Y = X.
Consider two different approaches to this problem.
Solution 1.
Let U = X and V = Y −X. Our goal is to find the conditional density of

U given that V = 0.
First, we find the joint density of U and V . We have

fUV (u, v) = fXY (x, y)|J |−1,

where J is the jacobian of the transformation,

J =

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

Therefore, fUV (u, v) = 4u(u+ v), for 0 < u < 1, −u < v < −u+ 1.
The marginal density of V for −1 < v < 0 is

fV (v) = 4

∫ 1

−v

(u2 + uv) du

=
2

3
(1 + v)2(2− v).
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For 0 < v < 1,

fV (v) = 4

∫ 1−v

0

(u2 + uv) du

=
2

3
(v − 1)2(2 + v).

Using either probability density we have fV (0) = 4/3. Therefore,

fU |V (u|v = 0) =
fUV (u, 0)

fV (0)
= 3u2 = 3x2.

Hence,

f(X|Y = X) = 3x2.

Solution 2. Take U = X and W = Y /X. Now, the goal is to find
fU |W (u,w = 1).

We calculate the Jacobian of the transformation as J = 1/x and fUW (u,w) =
fXY (x, y)|J |−1 = 4u3w for 0 < u < 1 and 0 < w < 1/u. The marginal density
of W is fW (w) = w for 0 < w < 1 and fW (w) = 1/w3 for w > 1. In both cases,
fW (1) = 1.

Therefore,

dfU |W (u|w = 1) =
fUW (u, 1)

fW (1)
= 4u3 = 4x3.

Hence,
f(X|Y = X) = 4x3,

which is clearly different from our previous answer.
How can we explain this paradox?
The reason behind it is that the set {Y = X} has zero measure and therefore

we cannot apply the usual formula

fX(x|B)dx =
f(x,B)dx

P (B)
.

In order to make sense, we have to approximate the set {Y = X} by measurable
sets with positive probability. Now, the main problem is that we are not given
a σ-algebra G from which we can take the approximating sets. We can choose
G1 = σ(Y −X) or G2 = σ(Y /X). which consist of the unions of the level sets
of the functions Y −X and Y /X, respectively. Then these two approximations
are different and it turns out that the conditional densities with respect to these
two σ-algebras are different too.
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1.3.2 Definition of conditional expectation

We present the definition of conditional expectation due to Kolmogorov
(1933).

Definition 1.3.2. Given the probability space (Ω,F ,P), some sub-σ-field G ⊂
F , and a random variable X ∈ L1(F) (meaning that X is F-measurable and
E|X| < ∞), the conditional expectation of X given G is the (almost surely
unique) random variable X̂ such that

i. X̂ ∈ L1(G) that is, X̂ is G-measurable; and

ii. E(X̂1G) = E(X1G) for all G ∈ G: that is, X̂ integrates like X over all
G-sets.

The random variable X̂ is denoted by E(X|G).
The conditional expectation can also be defined for non-negative random

variables even if they have infinite expectation.

Theorem 1.3.3. The conditional expectation E(X|G) is unique up to almost
sure equivalence.

Proof. Suppose that two random variables X̂1 and X̂2 are candidates for the
conditional expectation E(X|G). Let Y := X̂1− X̂2. So we have Y ∈ L1(G) and
E(Y 1G) = 0 ∀G ∈ G.

In particular, if we take G = {Y > ε}, then E(Y 1Y >ε) = 0. Since
E(Y 1Y >ε) ≥ εP(Y > ε), we conclude that P(Y > ε) = 0 for every ε > 0.

Interchanging the roles of X1 and X2, we have P(Y < −ε) = 0. And since ε
is arbitrary, P(Y = 0) = 1.

Theorem 1.3.4. The conditional expectation E(X|G) exists for all F measur-
able functions with finite expectation.

The conditional expectation also exists for non-negative F-measurable func-
tions even if their expectation is infinite, but in this case this function can
sometime take value +∞.

We are not going to prove this theorem from the basic principles but rather
point out that it is a consequence of results from either the measure theory or
the theory of Hilbert spaces.

Measure theory proof.

Proof of the existence of conditional expectation via Radon-Nikodym Theorem.
Assume first that X ≥ 0 and define the measure Q on [Ω,G], so that for every
C ∈ G,

Q(C) =

∫
C

XdP = E(X1C)
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. This is a finite measure because E|X| < ∞. Note that Q is absolutely
continuous with respect to P , if we consider P as a measure on (Ω,G). Indeed
if P (C) = 0, then we can approximate X by bounded functions Xn, and use
the dominated convergence theorem to find that

Q(C) =

∫
C

XdP = lim
n→∞

∫
C

XndP = 0.

Then the Radon-Nikodym theorem is applicable and it implies the existence
of the density X̂ = dQ/dP which has all the properties of the conditional ex-
pectation X̂ = E(X|G).

For general X we can employ E(X+|G)− E(X−|G).

[See Durrett for a full proof]
Hilbert space method.
This gives a nice geometric picture for the case when Y ∈ L2(Ω,P). The

proof is based on the following two results from the theory of Hilbert spaces.

Lemma 1.3.5. Every nonempty, closed, convex set E in a Hilbert space H
contains a unique element of smallest norm.

Lemma 1.3.6 (Existence of Projections in Hilbert Space). Given a closed sub-
space K of a Hilbert space H and element x ∈ H, there exists a decomposition
x = y + z where y ∈ K and z ∈ K⊥ (the orthogonal complement).

(See Rudin 87 (p.7̃9) for a full discussion of Lemma 1.3.5.)

Existence of conditional expectation via Hilbert space projections. Suppose Y ∈
L2(Ω,F ,P). Requirement (ii) demands that for all X X ∈ L2(Ω,G,P),

E
((
Y − E(Y |G)

)
X
)
= 0

which has the geometric interpretation of requiring Y −E(Y |G) to be orthogonal
to the subspace L2(Ω,G,P). Requirement (i) says that E(Y |G) ∈ L2(G).

So E(Y |G) is the orthogonal projection of Y onto the closed subspace L2(Ω,G,P).
The lemma above shows that such a projection is well defined.

The rest of the proof, which we omit, is concerned with extending the result
from L2 -spaces (the random variables with finite 2nd moment) to L1 spaces.
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Figure 1.4: More about conditional probability

1.3.3 Properties of conditional expectation

We record some basic properties of E(·|G) as an operator, X 7−→ E(X|G):

1. Positivity: Y ≥ 0 ⇒ E(Y |G) ≥ 0

2. Linearity: E(aX + bY |G) = aE(X|G) + bE(Y |G)

3. E(·|G) is a projection: E(E(X|G)|G) = E(X|G)

4. E(·|G) is continuous with norm 1 in Lp(Ω,F ,P) spaces for p ≥ 1:

∥E(X|G)∥p ≤ ∥X∥p

and
Xn

2

−→ X implies E(Xn|G)
2

−→ E(X|G)

5. Tower property. If H ⊂ G, then: E
(
E(X|G)|H

)
= E(X|H).

6. If Y ∈ G and E|XY | <∞, then E(XY |G) = E(X|G)Y .
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7. E(·|G) respects monotone convergence:

0 ≤ Xn ↑ X implies E(Xn|G) ↑ E(X|G)

8. If φ is convex and E|φ(X)| < ∞ then a conditional form of Jensen’s
inequality holds: φ

(
E(X|G)

)
≤ E

(
φ(X)|G

)
.

9. E(·|G) is an orthogonal projection in L2: E((X−X̂)Z) = 0 for X̂ = E(X|G)
and all Z ∈ L2(Ω,G,P).

10. Repeated Conditioning: for G0 ⊂ G1 ⊂ . . ., G∞ = σ(∪Gi) and X ∈
Lp(Ω,F ,P) with p ≥ 1,

E(X|Gn)
a.s.−→ E(X|G∞)

E(X|Gn)
p

−→ E(X|G∞)

1.3.4 Conditioning on Random Variables

Returning to the example in Section 1.3.1, note that if we use the σ-algebra
generated by the event {Y = X}, then the conditional expectation is not defined
uniquely. The reason is that this event has zero probability and the uniqueness
holds only up to sets of measure zero.

However, we were able to calculate the conditional density after we refor-
mulated the problem and used a richer σ-algebra. This σ-algebra allowed us to
approximate the sets with zero probability. In this section we talk more about
the concept of conditional densities and, more generally, about the concept of
conditional distributions.

If X and Y are two random variables then we use notation E(Y |X) to denote
E(Y |G) where G is the σ-algebra generated by X.

It is very useful to be able to write formulas like

E(Y |X = x) =

∫
yf(y|x) dy,

where f(y|x) denoted the conditional density. It would be useful to define this
concept with more rigour.

Definition 1.3.7. Let (S,S) and (T, T ) be two measure spaces. A Markov
kernel from (S,S) to (T, T ) is a collection of probability measures Ps on (T, T )
indexed by a parameter s ∈ S. It is supposed to satisfy the measurability
condition: for each A ∈ T , s 7→ Ps(A) is measurable relative to S.

Example 1.3.8. In statistics literature, θ ∈ Θ is a parameter and Pθ is a family
of probability measures on a measurable space of “data”: (X,X ).
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Definition 1.3.9. Let X : Ω 7→ S and Y : Ω 7→ T be to random variables on
(Ω,F ,P). Then a regular conditional distribution for Y given X is a Markov
kernel Px such that the joint distribution of (X,Y ) has the property

P(X ∈ A, Y ∈ B) =

∫
A

Px(B)P(X ∈ dx)

The regular conditional distributions allows us to calculate the conditional
expectations in a straightforward way:

E(Y |X = x) =

∫
yPx(dy).

The regular conditional distributions usually but not always exist. We will
not go in details of this.
Example 1.3.10 (If joint density exists).

If X, Y have density f(x, y) relative to dx, dy for some reference measures
dx on (S,S) and dy on (T, T ), then

Px(dy) =
f(x, y)

fX(x)
dy,

where fX is the marginal density of X.
Example 1.3.11 (Discrete conditional probability distribution).

A point (X,Y ) is picked proportional to length measure on the perimeter
of an equilateral triangle with vertices (0, 0), (1, 0) and ( 12 ,

√
3
2 ). What is the

conditional distribution of Y given X = x?
First, observe that X is uniform on [0, 1] and Y ∼ 1

3 · δ0 + 2
3 · U [0,

√
3
2 ].

For 0 ≤ x ≤ 1
2 the only possible values of Y consistent with X = x are y = 0

or y =
√
3x. Thus

P(Y > 0|0 ≤ x ≤ 1

2
) =

P(Y > 0, 0 ≤ x ≤ 1
2 )

P(0 ≤ x ≤ 1
2 )

=
1
3
1
2

=
2

3

More generally, choose ε > 0 and 0 < x < 1/2 − ε. Then, it is not difficult to
convince yourself by calculating lengths of intervals that

P(Y > 0|x < X < x+ ε) =
P(Y > 0, x < X < x+ ε)

P(x < X < x+ ε)
=

2

3

and therefore
P(Y = 0|x < X < x+ ε) =

1

3

By taking the limit ε→ 0, for 0 ≤ x ≤ 1
2 , the conditional distribution is

Px =
1

3
δ0 +

2

3
δ√3x,
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where δa denotes the atomic probability measure concentrated at a. A similar
calculation can also be done for 1

2 ≤ x ≤ 1.
The conditional densities and distributions can also be helpful to calculate

the marginal densities. If the marginal density of X and the conditional density
of Y given X are known, then the marginal density of Y can be calculated as

fY (y)dy =

∫
fY |X(y|x)fX(x)dx.

Figure 1.5: Bleak future for probabilists
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Chapter 2

Convergence

2.1 Weak Law of Large Numbers

The Weak Law of Large Numbers is a statement about sums of indepen-
dent random variables. Before we state the WLLN, it is necessary to define
convergence in probability.

Definition 2.1.1. Given a sequence of r.v’s Yn defined on a probability space
(Ω,F ,P), say Yn converges in probability to Y , Yn

P−→ Y , if Y is a r.v. on (Ω,F),
and for all ϵ > 0,

lim
m→∞

P(|Yn − Y | > ϵ) = 0.

Theorem 2.1.2 (Weak Law of Large Numbers). Let X,X1, X2, . . . be a se-
quence of i.i.d. random variables with E|X| < ∞ and define Sn = X1 +X2 +
· · ·+Xn. Then

Sn

n

P−→ EX.

Proof. In this proof, we employ the common strategy of first proving the result
under an L2 condition (i.e. assuming that the second moment is finite), and
then using truncation to get rid of the extraneous moment condition.

First, we assume EX2 <∞. By independence of Xi,

Var
(
Sn

n

)
=

1

n2

n∑
i=1

Var(Xi) =
Var(X)

n
.

By Chebychev’s inequality, ∀ ϵ > 0,

P
(∣∣∣∣Sn

n
− EX

∣∣∣∣ > ϵ

)
≤ 1

ϵ2
Var

(
Sn

n

)
=

Var(X)

nϵ2
→ 0.

Thus, Sn

n

P−→ EX under the finite second moment condition. To transition
from L2 to L1, we use truncation. For 0 < x <∞ let
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Xxk = Xk1(|Xk|≤x)

Yxk = Xk1(|Xk|>x)

Then, we have Xk = Xxk + Yxk and

Sn

n
=

1

n

n∑
k=1

Xxk +
1

n

n∑
k=1

Yxk

= Uxn + Vxn

By monotonicity of expectation, we have

E

∣∣∣∣∣ 1n
n∑

k=1

Yxk

∣∣∣∣∣ ≤ 1

n

n∑
k=1

E|Yxk| = E(|X|1(|X|>x)) → 0, x→ ∞,

where the last convergence can be shown by using the dominated convergence
theorem.

Fix 1 > ϵ > 0 and choose x such that

E
(
|X|1(|X|>x)

)
= E|Yx1| < ϵ2.

Let µx = E(Xx1) and µ = E(X). Then, we also have

|µx − µ| ≤ |E(Yx1)| < ϵ2 < ϵ.

Let Bn = {|Uxn − µx| > ϵ} and Cn = {|Vxn| > ϵ}. Noting that E(X2
xk) ≤

x2 < ∞, we can apply the Weak Law of Large Numbers to Uxn. Thus, we
choose N > 0 such that ∀ n > N ,

P(Bn) = P(|Unx − µx| > ϵ) < ϵ.

Now, by Markov’s inequality, we also have

P(Cn) = P(|Vxn| > ϵ) ≤ E|Vxn|
ϵ

≤ E|Yx1|
ϵ

≤ ϵ

But on Bc
n ∩ Cc

n = (Bn ∪ Cn)
c, we have |Uxn − µx| ≤ ϵ and |Vxn| ≤ ϵ, and

therefore ∣∣∣∣Sn

n
− µ

∣∣∣∣ ≤ |Uxn − µx|+ |Vxn|+ |µx − µ| ≤ 2ϵ+ ϵ2 ≤ 3ϵ.

Thus, ∀ n > N ,

P
(∣∣∣∣Sn

n
− EX

∣∣∣∣ > 3ϵ

)
≤ P(Bn ∪ Cn) ≤ 2ϵ.
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2.2 Strong Law of Large Numbers
2.2.1 Almost Sure Convergence

Here our goal is to show that the law of large number holds with respect
to a stronger concept of convergence, the almost sure convergence of random
variables.

First, we show some preliminary results that show that it makes sense to
say that a sequence of random variables converges with probability 1.

This can be done in several ways. If we are considering the real-valued
random variables, then we can use the fact that R is linearly ordered and the
convergence of a sequence xn is equivalent to the statement that the lim supxn
and lim infxn are equal.

Theorem 2.2.1. If X1, X2, . . . are measurable real-valued functions on (Ω,F),
then infXn, supXn, lim infXn, and lim supXn are also measurable.

Proof. We only need to prove that the pre-images of the sets (−∞, a) are mea-
surable. First,

{infXn < a} =
∪
n

{Xn < a},

which is a measurable set.
Similarly,

{lim infXn < a} =
∩
m

∪
n≥m

{Xn < a},

which is also measurable.
The argument for supXn and lim supXn proceed in the same way.

Difference of measurable functions is measurable. Hence lim supn→∞Xn −
lim infn→∞Xn is a random variable. Hence,

Ω0 ≡
{
ω : lim

n→∞
Xn exists

}
=

{
ω : lim sup

n→∞
Xn − lim inf

n→∞
Xn = 0

}
is a measurable set and its probability is well defined.

Definition 2.2.2. If Xn(ω) converges for almost all ω, i.e., P(Ω0) = 1, we say
that Xn converges almost surely (a.s.) to X = lim infn→∞Xn.

It is also said that Xn(ω) converges almost everywhere (a.e.) or with proba-
bility 1. The notation is Xn

a.s.−→ X.
Note that in general we consider two random variables as equivalent (“equal

in a wide sense”), if they differ only on the set of measure 0. So we could take
lim supn→∞Xn instead of lim infn→∞Xnin the definition of the almost sure
convergence.

The second way is more general and works for random variables Xn that take
values in a metric space S. In this case we start with the distribution measures
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µX1
on S, µX1,X2

on S2 = S ×S, and generally, µX1,...,Xn
on Sn = S × . . .×S.

By the Kolmogorov extension theorem, one can define a measure µ∞ on S∞, the
space of infinite sequences. Recall that a sequence x = (x1, x2, . . .) is convergent
to a if it belongs to the set

A =

∞∩
k=1

∞∪
n=1

∩
i≥n

{
x : d(xi, a) <

1

k

}
So we say that a sequence of random variables Xn almost surely converges

to a limit a if µ∞(A) = 1.
Question: What is the difference between almost sure convergence and con-

vergence in probability? Is any of them implies the other one?
It is a theorem that almost sure convergence implies convergence in proba-

bility. (See Appendix for a proof.) However the converse is not true, and there
are sequences of random variables that converge in probability but not almost
surely.
Example 2.2.3 (Moving blip).

On Ω = [0, 1] with Borel σ-algebra and Lebesgue measure, define Xn(ω) =
1(xn,xn+1)(ω) where the interval (xn, xn+1) is wrapped around the unit circle.
Let xn be any sequence such that xn grows monotonically → ∞ and xn+1 −
xn → 0 (e.g. xn = 1 + 1

2 + · · · + 1
n ( mod 1), or xn = logn( mod 1)). Then

P(|Xn| > ϵ) = xn+1 − xn → 0 for any fixed ε > 0 and therefore Xn
P−→ 0, but

for any ω and arbitrary N we can find n > N so that Xn(ω) = 1. Hence for all
ω the sequence Xn does not converge to 0 (or any other value). In particular,
Xn does not converge to 0 almost surely.

2.2.2 Borel-Cantelli Lemmas

Our target will be to prove that Sn/n converges to EX not only in proba-
bility but also almost surely, so we are going to develop tools for establishing
almost sure convergence.

First, note that the convergence of a sequence xn to a limit x means that
for every open interval I around x, the sequence xn will be outside the interval
for only a finite number of times. Hence, we are interested in calculating the
probability that an event Xn ∈ I happens only a finite number of times. This
calculation can be done by using the Borel - Cantelli lemmas.

Let us introduce some notation. Let An be a sequence of events. Then we
can define a new event {An i.o.},

{An i.o.} = lim supAn = lim
m→∞

∪
n≥m

An

=
∩
m

∪
n≥m

An.

32



In words, {An i.o.} consists of outcomes ω that are in infinitely many An,
that is, they repeat infinitely often.

Similarly, we define {An ev.} as the set of outcomes ω, which are in all An

except for a finitely many n. Here “ev.” stands for eventually.
Formally,

{An ev.} = lim infAn = lim
m→∞

∩
n≥m

An

=
∪
m

∩
n≥m

An.

Of course, {An ev.} ⊂ {An i.o.}, and
P(An ev.) ≤ P(An i.o.)

Recall that for real valued random variables Xn and X,

{Xn → X} = {ω : Xn(ω) → X(ω)}
= {ω : ∀ϵ > 0, |Xn(ω)−X(ω)| ≤ ϵ eventually}

Thus,

Xn
a.s.−→ X ⇔ P{ω : ∀ϵ > 0, |Xn(ω)−X(ω)| ≤ ϵ eventually} = 1

⇔ ∀ϵ > 0, P(|Xn −X| ≤ ϵ ev.) = 1
⇔ ∀ϵ > 0, P(|Xn −X| > ϵ i.o.) = 0

(The if and only if statement in the second line of this display holds because
the event in the first line is the intersection of the events in the second line, and
the intersection can be made countable by taking only rational ϵ.)

Let the event An := {|Xn −X| > ϵ}. Then, we are motivated to find useful
conditions for P(An i.o.) = 0.

Recall that {An i.o.} =
∩

n

∪
m≥nAm.

Theorem 2.2.4 (Borel-Cantelli Lemmas). Let (Ω, F,P) be a probability space
and let (An) be a sequence of events in F. Then,

1. If
∑

n P(An) <∞, then P(An i.o.) = 0.

2. If
∑

n P(An) = ∞ and An are independent, then P(An i.o.) = 1.
[In the following we will mostly use BCL(1), however BCL(2) is also some-

times useful and it should be noted that there are some substitutes for indepen-
dence in BCL(2).]

Proof. (Of BCL I)
P(An i.o.) = lim

m→∞
P(∪n≥mAn)

≤ lim
m→∞

∞∑
n≥m

P(An) = 0 since
∞∑
i=1

P(An) <∞.
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Proof. (Of BCL II) Assume that ΣP(An) = ∞ and the An’s are independent.
We will show that P(Ac

n ev.) = 0, which implies that P(An i.o.) = 1.

P(Ac
n ev.) = lim

n→∞
P(∩m≥nA

c
m) = lim

n→∞

∏
m≥n

P(Ac
m) (2.1)

= lim
n→∞

∏
m≥n

(1− P(Am)) ≤ lim
n→∞

∏
m≥n

exp (−P(Am)) (2.2)

= lim
n→∞

exp

−
∑
m≥n

P(Am)

 = 0

since
∑

m≥n P(Am) = ∞, for every n.
For (2.1), we used the following fact (due to the independence of An):

P(∩m≥nA
c
m) = lim

N→∞
P(∩n≤m≤NA

c
m) = lim

N→∞

∏
n≤m≤N

P(Ac
m) =

∏
n≤m

P(Ac
m).

For (2.2), 1− x ≤ exp(−x) was used.

Here is an example that the assumption of independence in BCL(2) is essen-
tial. Consider the space Ω = (0, 1] with the σ-algebra B of Borel subsets, and
the Lebesgue measure as P. The events An = (0, 1/n] ∈ B. Then, P(An) = 1/n,∑

P(An) = ∞, but P(An i.o.) = P(∅) = 0.

Example 2.2.5. Consider random walk in Zd, where S0 = 0, Sn = X1+ · · ·+Xn,
for n = 1, · · · , and Xi are i.i.d. variables in Zd. In the simplest case, each Xi

has uniform distribution on 2d possible ± vectors. For example, if d = 3, we
have 23 = 8 neighbors 

(+1,+1,+1)
...

(−1,−1,−1)

 .

Note that each coordinate of Sn does a simple coin-tossing walk independently.
It is true that

P(Sn = 0 i.o.) =
{

1 if d = 1 or 2 (recurrent),
0 if d ≥ 3 (transient), (2.3)

and we can prove the transiency by using the Borel-Cantelli lemma.

Proof of Transience for d ≥ 3. Let us start with d = 1, then P(S2n+1 = 0) = 0
and

P(S2n = 0) = P(n “+1” and n “−1” among Xn) (2.4)

=

(
2n

n

)
2−2n (2.5)

∼ c√
n

as n→ ∞. (2.6)
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where we used the independence of Xn and the Stirling formula to approximate
the binomial coefficient.

Since the coordinates of S2n are independent for a fixed n, we have more
generally

∞∑
n=0

P(Sn = 0) ≈
∞∑

n=0

(
c√
n

)d

=

{
∞ d = 1, 2

Ad <∞ d = 3, 4, · · · (2.7)

Thus, for d ≥ 3,
∑

n P(S2n = 0) <∞, and (BC I) implies transiency.

We cannot use this method to prove recurrency for d ≤ 2, since the events
S2n = 0 are dependent. The recurrency in this case is proved by other methods,
which allow one to handle the events that are dependent in a certain controlled
way. Usually, this is done by tools from the theory of Markov chains.

2.2.3 SLLN with with finite 4-th moment

The following is a version of the Law of Large Numbers, in which the con-
vergence holds almost surely.

Theorem 2.2.6. If X1, …, Xn, …, is a sequence of independent identically
distributed random variables with E|Xi|4 = C <∞, then

lim
n→∞

Sn

n
= lim

n→∞

X1 + . . .+Xn

n
= E(X1)

with probability 1.

Proof. We can assume without loss of generality that E[Xi] = 0 . Otherwise,
just take Yi = Xi − E[Xi].

A simple calculation shows

E[(Sn)
4] = nE[(X1)

4] + 3n(n− 1)E[(X1)
2]2 ≤ nC + 3n2σ4,

and by applying a Chebychev type inequality using fourth moments,

P[
|Sn|
n

≥ δ] = P[|Sn|4 ≥ (nδ)4] ≤ nC + 3n2σ4

n4δ4
.

Hence,
∞∑

n=1

P
[
|Sn|
n

≥ δ

]
<∞,

and we can now apply the Borel-Cantelli Lemma (BC I) to conclude that these
events will happen only finitely many times.
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The weak convergence of Sn/n holds whenever i.i.d Xn have finite mean.
The result about strong convergence of Sn/n in Theorem 2.2.6 assumes that
the fourth moment of Xi exists. Can this assumption be weakened?

The method we used relied on the existence of the fourth moment. If we
will try to repeat it with the second moment instead of the fourth, then we find
that

P[
|Sn|
n

≥ δ] = P[|Sn|2 ≥ (nδ)2] ≤ C

nδ2
,

and the sum of the probabilities does not converge.
On the other hand, if we consider partial sums Sn2 instead of Sn, we would

find that
P[

|Sn2 |
n2

≥ δ] = P[|Sn2 |2 ≥ (n2δ)2] ≤ C

n2δ2
.

Hence the subsequence Sn2/n2 converges almost surely to 0.
After some reflection, one can notice that it is possible to extract the almost

surely convergent subsequence from any given subsequence of Sn/n.
This gives some hope that it is possible to prove the Strong Law of Large

Numbers using the following theorem.

Theorem 2.2.7. Let yn, n = 1, 2, . . ., be a sequence of elements of a topological
space. If every subsequence ym, {m} = A ⊂ N has a further subsequence yl,
{l} ⊂ A that converges to y, then yn → y.

Proof. If yn ↛ y then there is an open set G containing y and a subsequence
ynm

with ynm
/∈ G for all m. But then clearly no subsequence of ynm

converges
to y.

Unfortunately, this method does not work since one can show the following
result.

Lemma 2.2.8. Xn
P−→ X if and only if for every subsequence Xnm

there exists
a further subsequence Xnmk

that converges almost surely to X.

We will prove only forward direction.

Proof of forward direction: If Xn
P−→ X then there exists ϵk ↓ 0 such that∑

k P(|Xnk
−X| > ϵk) <∞. For example, we can take ϵk = 1/k and choose nk

so that P(|Xnk
−X| > 1/k) ≤ 1/2k.

Then,
∑

k P(|Xnk
−X| > ϵk) <∞, and by BCL I we can conclude that Xnk

→
X a.s.

This result implies that almost sure convergence of random variables does
not come from a topology on the space of random variables.

Indeed, if it were, then Lemma 2.2.8 and Theorem 2.2.7 would jointly imply
that every sequence, which converges in probability, also converges almost surely.
However, we know that this is not true.

To summarize, the Theorem 2.2.7 does not seem to be helpful for proving
Strong Law of Large numbers under weaker conditions. In fact, Kolmogorov
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has found an ingenious way to use the convergence of subsequences to prove
the Strong Law of Large Numbers under the assumption of the finite second
moment. This argument can be found in Appendix.

However, there is another, even more powerful method which shows that the
existence of the first moment is sufficient for the validity of strong law of large
numbers. This method is due to Kolmogorov and Khinchin.

2.2.4 Kolmogorov’s SLLN

Can one prove the SLLN under the same assumptions as in the WLLN, –
identically distributed random variables Xi with finite mean? Surprisingly, the
answer is “yes”. The proof introduces a new important idea that the convergence
of averages is closely related to the convergence of certain series. However, even
with this idea in mind, the proof works as a bit of magic.
Theorem 2.2.9 (Kolmogorov’s SLLN). Let X1, X2, ... be i.i.d. with E|Xi| <
∞, EXi = 0, and let Sn = X1 + ...+Xn. Then Sn/n→ 0 with probability 1 as
n→ ∞.

The plan of the proof is as follows: by truncation and centering we will
introduce a new sequence of random variables Ŷi which are independent although
not identically distributed. These new random variables will have zero mean
and the following properties:

1. n−1
∑n

i=1 Ŷi converges a.s. if and only if n−1
∑n

i=1Xi converges a.s.;

2. If these two series converge they converge to the same limit, and

3. The series
∑∞

k=1 VarŶk/k2 <∞.
Then we apply another of the great Kolmogorov’s theorems, that say that the
convergence of series

∑∞
k=1 VarŶk/k2 implies the almost sure convergence of the

series
∑∞

k=1 Ŷk/k. The we will use a classical lemma by Kronecker that says the
the convergences of these series implies that the sequence n−1

∑n
k=1 Ŷk → 0,

and we are done.
We will need two lemmas that relate convergence of averages to convergence

of sequences and series.
Lemma 2.2.10 (Toeplitz). Suppose that a sequence {xn} converges to x. Then,

x1 + . . .+ xn
n

→ x.

Proof. For an ε > 0, let n0 be such that |xj − x| < ε/2 for all j > n0. Then,
choose n1 > n0 such that 1

n1

∑n0

j=1 |xj − x| < ε/2. Then, for n > n1,∣∣∣ 1
n

n∑
j=1

xj − x
∣∣∣ ≤ 1

n1

n0∑
j=1

|xj − x|+ 1

n

n∑
j=n0+1

|xj − x| ≤ ε.
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Lemma 2.2.11 (Kronecker). Suppose that {yj} is a sequence of numbers such
that

∑
(yj/j) converges. Then,

y1 + y2 + . . .+ yn
n

→ 0.

Proof. Let Sn =
∑n

j=1(yj/j) for n > 0 and S0 = 0. Then

n∑
j=1

yj =

n∑
j=1

j(Sj − Sj−1) = nSn −
n∑

j=1

Sj−1.

Hence,

1

n

n∑
j=1

yj = Sn − 1

n

n∑
j=1

Sj−1.

By assumption, Sn converges to a number x. Hence, by the Toeplitz lemma,
1
n

∑n
j=1 Sj−1 → x, and 1

n

∑n
j=1 yj → 0.

Proof of Theorem 2.2.9. We define truncated random variables

Yn =

{
Xn, if |Xn| ≤ n,

0, if |Xn| ≥ n,

and their centered variants, Ŷn = Yn − EYn. and also define

an = P[Xn ̸= Yn],

bn = E[Yn],
cn = Var(Yn).

First we note that∑
n

an =
∑
n

P[X1 ≥ n] ≤ E|X1| ≤ ∞.

(The inequality in the middle is an easy exercise.) By the Borel-Cantelli lemma
(BC1), this implies that P(Xn ̸= Yn i.o.) = 0. In particular this means that
Sn

n → 0 a.s. if and only if (Y1 + . . .+ Yn)/n→ 0 a.s.
Then, the biases of the truncated variables go to zero.

lim
n→∞

bn = 0,

because

|EYn| = |E(Yn −Xn)| ≤
∫
|Xn|>n

|Xn(ω)| dP(ω)

=

∫
|X1|>n

|X1(ω)| dP(ω) → 0, as n→ ∞.
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By the Toeplitz lemma, this implies that 1
n

∑n
j=1 bj → 0 and therefore, (Y1 +

. . .+ Yn)/n→ 0 a.s. if and only if ((Y1 − b1) + . . .+ (Yn − bn))/n→ 0 a.s.
Finally, observe that the variances of the truncated variables, cj = Var(Yj),

cannot grow too fast, ∑
n

cn
n2

<∞.

Indeed, let α denote the common distribution of Xi. Then,∑
n

cn
n2

≤
∑
n

EY 2
n

n2
=
∑
n

∫
|x|≤n

x2

n2
dα

=

∫
x2

∑
n≥x

1

n2

 dα ≤ C

∫
|x| dα <∞.

In the last inequality, we used the fact that∑
n≥x

1

n2
≤ C

x

for all x ≥ 1, for a suitable choice of C.
By the Kronecker lemma, the convergence ((Y1−b1)+ . . .+(Yn−bn))/n→ 0

would follow from the convergence of the series
∑∞

n=1(Yn− bn)/n. We conclude
the proof by noting that the condition

∑
n

VarYn

n2 < ∞ implies the almost sure
convergence of

∑∞
n=1(Yn−bn)/n by Theorem 2.2.12, which we prove below.

Theorem 2.2.12 (Kolmogorov and Khinchin). Let Xn be a sequence of inde-
pendent random variables and EXn = 0. Then if

∑
n EX2

n <∞, then the series∑
nXn converges with probability 1.

The proof of this important theorem is based on the Kolmogorov’s maximal
inequality. Let Sk =

∑k
j=1Xk and define

Tn(ω) = sup
1≤k≤n

|Sk(ω)| = sup
1≤k≤n

|
k∑

j=1

Xj(ω)|.

Theorem 2.2.13 (Kolmogorov’s Inequality). Assume that EXi = 0 and Var(Xi) =
σ2
i ≤ ∞ and let s2n =

∑n
j=1 σ

2
j . Then

P{Tn ≥ l} ≤ s2n
l2
.

The important point here is that the estimate depends only on s2n and not
on the number of summands. In fact the Chebyshev bound on Sn is

P{|Sn| ≥ l} ≤ s2n
l2

and therefore the supremum over k does not cost anything.

39



Proof. Let us define the events

Ek = {|S1| < l, . . . , |Sk−1| < l, |Sk| ≥ l}.

Then {Tn ≥ l} is a disjoint union of Ek. If we use the independence of Sn − Sk

and Sk1Ek
that only depends on X1, . . . , Xk, then we can write

P{Ek} ≤ 1

l2

∫
Ek

S2
k dP

≤ 1

l2

∫
Ek

(
S2
k + (Sn − Sk)

2
)
dP

=
1

l2

∫
Ek

(
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
)
dP

=
1

l2

∫
Ek

S2
n dP

Summing over k from 1 to n,

P{Tn ≥ l} ≤ 1

l2

∫
Tn≥l

S2
n dP ≤ s2n

l2
.

The proof of Theorem 2.2.12 is based on the fact that the sequence {Sn =
X1 + . . .+Xn} converges to S if and only if

P
{

sup
p,q≥n

|Sp − Sq| ≥ ε} → 0,

as n→ ∞ for every ε > 0.
Recall that a sequence of numbers {ξn}is called Cauchy (or fundamental) if

Mn := supp,q≥n |ξp − ξq| → 0 as n → ∞, and that it is a fact of real analysis
that a sequence is convergent if and only if it is Cauchy.

Lemma 2.2.14. A random sequence ξn is Cauchy with probability 1 if and only
if for all ε > 0, P[Mn ≥ ε] → 0 as n→ ∞.

Proof. Let Bε
k,l = {ω : |ξk − ξl| ≥ ε}, and

Bε =

∞∩
n=1

∪
k≥n,l≥n

Bε
k,l.

Then ξn(ω) is not fundamental if and only if ω ∈ ∪ε>0B
ε. By continuity of

probability measure, P(∪ε>0B
ε) = 0 if and only if P(Bε) for all ε > 0. This

holds if and only if for all ε ≥ 0,

lim
n→∞

P
[ ∪
k≥n,l≥n

Bε
k,l

]
= 0,

and this exactly the condition that P[Mn ≥ ε] → 0 as n→ ∞.
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Proof of Theorem 2.2.12. We want to show that Sn = X1 + . . .+Xn is Cauchy
a.s. By the previous lemma it is enough to show that P(Mn > ϵ) → 0 for all
ε > 0, where Mn = supp,q≥n |Sp − Sq|.

Let M∗
n := supp≥n |Sp − Sn|. By the triangle inequality,

|Sp − Sq| ≤ |Sp − Sn|+ |Sq − Sn| ⇒ M∗
n ≤Mn ≤ 2M∗

n,

so it is sufficient to show that M∗
n

P→ 0.
For all ϵ > 0,

P
(

sup
p≥n

|Sp − Sn| > ϵ

)
= lim

N→∞
P
(

max
n≤p≤N

|Sp − Sn| > ϵ

)

≤ lim
N→∞

N∑
i=n+1

σ2
i

ϵ2
=

∞∑
i=n+1

σ2
i

ϵ2

where we applied Kolmogorov’s inequality in the second step. Since by assump-
tion,

∑∞
i=1 σ

2
i <∞,

lim
n→∞

P
(

sup
p≤n

|Sp − Sn| > ϵ

)
= 0,

the sequence Sn is Cauchy with probability 1, and therefore Sn converges almost
surely.

Remark: Just orthogonality rather than independence of the Xis is not
enough to get an a.s. limit. Counterexamples are hard. According to classical
results of Rademacher-Menchoff, for orthogonal Xi the condition∑

i

(log2 i)σ2
i <∞

is enough for a.s. convergence of Sn, whereas if bi ↑ with bi = o(log2 i) there
exist orthogonal Xi such that

∑
i biσ

2
i <∞ and Sn diverges almost surely.

When we have some additional information on the moments of the random
variables Xn, the strong law can be improved by using Kolmogorov’s method.
Theorem 2.2.15. Let X1, X2, ... be i.i.d. with EXi = 0, EX2

i = σ2 <∞, and
let Sn = X1 + ...+Xn. If ϵ > 0, then

Sn

n1/2(logn)1/2+ϵ
→ 0

with probability 1 as n→ ∞.
Proof. Let an = n1/2(logn)1/2+ϵ for n ≥ 2 and a1 > 0. Then,

∑
n

Var(Xn/an) = σ2

 1

a21
+
∑
n≥2

1

n(logn)1+2ϵ

 <∞.

So by Theorem 2.2.12,
∑

nXn/an converges with probability 1, and an appli-
cation of the Kronecker Lemma delivers the result.
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2.2.5 Connection to Ergodic Theorem
We can think about the SLLN as a consequence of an ergodic theorem.

Recall that if (M,B, µ) is a probability space, then T :M →M is a measure-
preserving transformation of M , if it is measurable and µ(T (−1)A) = µ(A) for
any A ∈ B. Transformation T is called ergodic if every invariant subset have
measure 0 or 1. The Birkgoff ergodic theorem says that for any measurable
function f and ergodic T , we have

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =

∫
f(x)µ(dx)

for µ-almost all x. This has a striking resemblance to Kolmogorov’s SSLN. In
fact, it turns out that one can derive the SSLN as a consequence of the ergodic
theorem by defining a suitable space M .

If we have a sequence of i.i.d. real-valued random variables Xi defined on
(Ω,F ,P), then can define a product space M =

∏∞
i=1 R with the product σ-

algebra B̂, and the measure µ, which is a product of the distribution measures
µi of the random variables Xi. We define the functions Yi : M → R that map
(ω̂1, ω̂2, . . .) to ω̂i and observe that Xi and Yi have the same distribution:

µ(Y1 ∈ A1, . . . , Yn ∈ An) = P(X1 ∈ A1, . . . , Xn ∈ An).

We also have a shift operator T onM that maps (ω1, ω2, ω3, . . .) to (ω2, ω3, ω4, . . .).
It is clear that this operator is measure-preserving in the sense that µ(T−1(A)) =

µ(A), for any measurable set A ∈ F̂ .

Lemma 2.2.16. Transformation T is ergodic.

This requires a proof and the ideas of the proof are similar to the ideas
behind the proof of the Kolmogorov’s zero-one theorem. What is used is that µ
is a product measure generated by cylinder sets. See a book on ergodic theory
for a proof.

In addition, Yi(ω̂) = ω̂i = Y1(T
i−1ω̂).

So by Birkgoff’s ergodic theorem, it follows that

1

n

n∑
i=1

Yi(ω̂) =
1

n

n−1∑
k=0

Y1(T
kω̂) → ÊY1 = EX1,

µ almost surely. It remains to get back from measure µ and functions Yi to
random variables Xi and measure P.

Let C ⊂ M be the set of sequences (xi) ∈ M such the 1
n

∑n
i=1 xi converges

to E(X1). Then the assertion 1
n

∑n
i=1Xi converges to E(X1) almost surely

means that P(ω, (Xk(ω)) ∈ C) = 1. This is equivalent to the statement that
µ(ω̂, (Yk(ω̂)) ∈ C) = 1 because Xk and Yk have the same distribution measure
µ on M . And as we have just seen, µ(ω̂, (Yk(ω̂)) ∈ C) = 1 because of Birkgoff’s
ergodic theorem.
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Figure 2.1: What is a truly random number?
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Chapter 3

Central Limit Theorem

3.1 Convergence in Distribution

The strong law of large numbers, the ergodic theorem, and similar results
state that a certain property holds almost surely or with probability 1. One
problem is that for uncountably infinite spaces Ω, they are not verifiable exper-
imentally: it is not possible to observe an infinite sequence.

In addition, if the convergence holds for almost every point in an interval, it
will not tell us if it holds on a specific point, or at all rational points, or at all
algebraic points. All these point sets have the Lebesgue measure of zero.

So, from the practical point of view we might be more interested in learning
something about the distribution of random sums with many terms rather than
in proving that almost always these sums converge to zero.

In this chapter we will define the convergence in distribution, learn how to
prove this convergence by using appropriate test function, and derive a proto-
typical limit theorem, the Central Limit Theorem for random sums.

3.1.1 Definitions and Skorohod’s theorem
Definition 3.1.1. Let Xn be a sequence of real-valued random variables and
FXn

(x) be their distribution functions, FXn
(x) = P(Xn ≤ x). Then Xn con-

verges in distribution to X, Xn
d→ X if FXn(x) → FX(x) for all x at which

FX(x) is continuous.

We call this type of convergence of random variables convergence in distri-
bution or weak convergence.

Note. This is really a notion of convergence of distribution measures of Xn

rather than of convergence of random variables Xn themselves. The random
variables Xn can even be defined on different spaces.

The convergence almost surely and convergence in probability imply the
convergence in distribution (exercise). In order to talk about reverse implication
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we need to make sure that random variables are define on the same probability
space.

Let us right Y d
= X to denote that random variables Y and X have the same

distribution.
Theorem 3.1.2 (Skorokhod). Xn

d→ X ⇐⇒ there exists a probability space
with random variables Yn and Y , such that Yn

d
= Xn, Y

d
= X and Yn

a.s.→ Y .
Proof. Let Ω = [0, 1], F is the Borel sets and P is the Lebesque measure. Define
Yn and Y as follows. Let

Fn(x) = P(Xn ≤ x) ,

F (x) = P(X ≤ x) ,

and define
Yn = F−1

n (ω) = sup{y : Fn(y) < ω},
Y = F−1(ω) = sup{y : F (y) < ω}.

See the book for the details of the proof.

The following result is an application of the above.

Theorem 3.1.3. Xn
d→ X if and only if for every bounded continuous function

f : R→ R
E[f(Xn)] → E[f(X)] .

Proof. If Xn
d→ X, then by using Skorokhod’s theorem we can assume that

Xn
a.s.→ X. Then by continuity of f , we have f(Xn)

a.s.−→ f(X), and also it is
easy to check that the sequence f(Xn) is almost surely bounded. Therefore, we
can take expectations and use the bounded convergence theorem.

In the opposite direction, see Resnick.

Using this property we can give a different definition of the convergence in
distribution, which applies to a more general class of random variables.
Definition 3.1.4. Let S be a metric space, and B be the Borel σ−field on
S. Let P1, P2, · · · be a sequence of probability measures on (S,B). Say Pn

converges in distribution to P or Pn
d−→ P for some probability measure P on

(S,B), if ∫
f dPn →

∫
f dP

for every bounded continuous function f : S → R.
This type of convergence is also often called weak convergence or weak⋆

convergence. The limits are unique because one can show that if∫
f dP =

∫
f dQ for all bounded continuous f ,

then P (A) = Q(A) for all A ∈ B.
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3.1.2 Characterization of Weak Convergence

Theorem 3.1.5. Let Pn, n = 1, 2, . . ., and P be probability measures on
R. The following are equivalent:

1.
∫
fdPn →

∫
fdP for all bounded continuous f ;

2. Same for all infinitely differentiable functions with all bounded derivatives
C∞;

3. Pn(−∞, x] → P (−∞, x] for all x at which x→ P (−∞, x] is continuous;

4. Condition 1 for all f such that f is bounded and continuous except on a
set of P measure 0; and

5. Condition 3 with Pn(C) for all C closed, or with Pn(O) for all O open.

Proof. 1 ⇒ 3:
Define fu,v by

fu,v(x) =


1 if x ≤ u

0 if x ≥ v

linear if u ≤ x ≤ v.

For ϵ > 0,

fx−ϵ,x ≤ 1(−∞, x] ≤ fx,x+ϵ.

Write Pf for
∫
fdP . So if Pn → P , then

Pnfx−ϵ,x ≤ Pn(−∞, x] ≤ Pnfx,x+ϵ.

Let n→ ∞,

Pfx−ϵ,x ≤ lim inf
n→∞

Pn(−∞, x] ≤ lim sup
n→∞

Pn(−∞, x] ≤ Pfx,x+ϵ

and

P (−∞, x− ϵ] ≤ Pfx−ϵ,x ≤ P (−∞, x] ≤ Pfx,x+ϵ ≤ P (−∞, x+ ϵ].

Now assume y → P (−∞, y] is continuous at y = x. Let ϵ → 0, we see that by
taking ϵ sufficiently small we can make Pfx−ϵ,x and Pfx,x+ϵ as close as we like
to P (−∞, x]. Then we can conclude

lim inf
n→∞

Pn(−∞, x] = lim sup
n→∞

Pn(−∞, x] = P (−∞, x].
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3 ⇒ 1:
To show this we use another approximation. 3 gives

Pnf → Pf for f = 1(−∞, x] where x is a continuity point of the distribution of P .
(3.1)

First observe that the set of continuity points of P is dense in R, as there
are only countably many jumps of x → P (−∞, x]. Second, note that we can
extend (3.1) from indicators to finite linear combinations of such indicators, i.e.
to step functions.

Now, let f be continuous and bounded in magnitude by M . Choose some
target ϵ > 0 and choose B so that B and −B are both continuity points of the
limit distribution x → P (−∞, x] and P (−B,B]c < ϵ. Note that there exists
n(ϵ) such that Pn(−B,B]c < 2ϵ for all n ≥ n(ϵ).

Next, choose a step function s so that

|s(x)− f(x)| ≤ ϵ

for all x ∈ (−B,B] and s = 0 outside (−B,B] (this can be done by uniform
continuity of f on [−B,B]).

Also
|Pnf − Pns| ≤ 2ϵM + ϵ (3.2)

for n ≥ n(ϵ). (Note that our s depends on ϵ.)
Choose n even larger so that |Pns−Ps| ≤ ϵ. Thus, by the triangle inequality,

|Pnf − Ps| ≤ 2ϵM + 2ϵ.

We also have (3.2) for n→ ∞, so we can replace Pn by P and put it all together
to get

|Pnf − Pf | ≤ 4ϵM + 4ϵ

for all sufficiently large n.

3.2 Characteristic functions

In the previous section we have seen that a sequence of measures µn converges
weakly if for every test function from a suitable family (continuous functions,
indicators of (−∞, x] and so on), the integrals agains µn converge to the integral
against the limit measure µ. A very useful family of test functions is given by
functions ft(x) = eitx, where t is a parameter.

Definition 3.2.1. If µ is a probability measure on the real line R, then its
characteristic function is defined by

φ(t) =

∫
eitx dµ.
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It is easy to see that this is a bounded complex-valued function |φ(t)| < 1,
well-defined for every probability measure µ. The fact that the characteristic
function is well-defined for any µ is the main benefit of it over the moment-
generating function mX(T ) := E(etX).

One of the most important properties of characteristic functions is that it
can be well approximated uniformly by its Taylor series.

Theorem 3.2.2. Let X be a random variable with characteristic function φ(t).
If E|X|n < ∞ for some n ≥ 1, then (i) the r-th derivative φ(r)(t) exists every-
where for every r ≤ n, (ii) φ(r)(0) = irEXr, and (iii)

φ(t) =
∑
r=0

n
(it)r

r!
EXr +

(it)n

n!
εn(t),

where |ε(t)| ≤ 3E|X|n, and εn(t) → 0, as t→ 0.

The basis for applications of characteristic functions is the following theorem.

Theorem 3.2.3 (Levy - Cramer Continuity Theorem). Let φn(t) be the charac-
teristic functions of measures µn on the real line. If for every real t, the sequence
φn(t) converges to φ(n), which is a characteristic function of a measure µ, then
µn converge weakly to µ.

3.3 Central Limit Theorem
3.3.1 Introduction

Theorem 3.3.1 (CLT). LetX1, X2, · · · be i.i.d. with E(Xn) = µ, Var(xn) =
σ2 <∞. If Sn = X1 + · · ·+Xn, then

Sn − nµ

σ
√
n

d−→ N(0, 1)

This is a particular case of a more general theorem: the Lindeberg - Feller
CLT.

There are two approaches to the proof of Central Limit Theorems. One is
to show the convergence of the characteristic functions.

The second approach, due to Lindeberg, uses only the continuously differ-
entiable test functions.

Let us prove here Theorem 3.3.1 by using characteristic functions.

Proof. Let φ(t) = Eeit(X1−µ). Then, by independence,

φn(t) := E exp
(Sn − nµ

σ
√
n

)
=
[
φ
( t

σ
√
n

)]n
.
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By Theorem 3.2.2,

φ(t) = 1− σ2t2

2
+ o(t2),

for t→ 0. Hence, for a fixed t and n→ ∞,

φn(t) =
[
1− σ2t2

2σ2n
+ o
( 1
n

)]n
→ e−t2/2.

Hence by Theorem 3.2.3, the distribution measure of Sn−nµ
σ
√
n

converges to the
measure of the standard Gaussian random variable.

3.3.2 Triangular Arrays

If we study the sums of random variables which are independent but not
necessarily identically distributed, then a language of triangular arrays is useful.
Therefore, throughout this section we shall study the sequence of sums

Si =
∑
j

Xij

obtained by summing the rows of a triangular array of random variables

X11, X12, . . . , X1n1

X21, X22, . . . . . . , X2n2

X31, X32, . . . . . . . . . , X3n3

...
...

...
...

(In the formula for Si, i ranges over {1, 2, . . .}, and j ranges over {1, 2, . . . , ni}.)
It will be assumed throughout that the triangular arrays we consider satisfy

Three Triangular Array Conditions:

1. For each i, the ni random variables Xi1, Xi2, . . . , Xini
in the ith row are

mutually independent.

2. E(Xij) = 0 for all i, j, and

3.
∑

j EX2
ij=1 for all i.

We have some remarks for these conditions:

• It is not assumed that random variables in each row are identically dis-
tributed.

• It is not assumed that different rows are independent. In fact, they are
not in a common application of triangular arrays to the study of sums
Sn = X1 +X2 + . . .+Xn.

• It will usually be the case that ni → ∞ as i→ ∞.
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3.3.3 The Lindeberg Condition and Some Consequences

Theorem 3.3.2 (Lindeberg’s Theorem). Suppose that in addition to the
Triangular Array Conditions, a triangular array satisfies Lindeberg’s condition:

∀ϵ > 0, lim
i→∞

ni∑
j=1

E[X2
ij1(|Xij | > ϵ)] = 0 (3.3)

Then Si
d−→ N (0, 1).

The Lindeberg condition makes precise in what sense the random variables
must be relatively negligible with respect to the sum for the CLT to hold. It
says that for arbitrarily small fixed ϵ > 0, the terms with absolute value greater
than ϵ contribute negligibly small to the total variance in a row i, as i increases.

Another natural condition is as follows:

∀ϵ > 0, lim
i→∞

max
j

P(|Xij | > ϵ) = 0. (3.4)

An array with property (3.4) is said to be uniformly asymptotically negligible
(UAN). One can show that this condition is implied by the Lindeberg’s condi-
tion, but not vice-versa.

A converse to Lindeberg’s Theorem is as follows:

Theorem 3.3.3 (Feller’s Theorem). If a triangular array satisfies the Tri-
angular Array Conditions and is UAN, then Si

d−→ N (0, 1) (if and) only if
Lindeberg’s condition (3.3) holds.

Proof. See Billingsley, Theorem 27.4, or Kallenberg, 5.12.

3.3.4 The Lyapounov Condition

A condition stronger (but often easier to check) than Lindeberg’s is the Lya-
pounov condition:

∃δ > 0 such that lim
i→∞

∑
j

E|Xij |2+δ = 0 (3.5)

Lemma 3.3.4. Lyapounov’s condition implies Lindeberg’s condition.

Proof. Fix any ϵ, δ > 0. For any random variable |X| > ϵ, we have

X2 =
|X|2+δ

|X|δ
≤ |X|2+δ

ϵδ

Thus for any random variable X we have

E[X2
1(|X| > ϵ)] ≤ E|X|2+δ

ϵδ
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Take X = Xij to be the elements of our triangular array, and take δ to be the
value from Lyapounov’s condition. Then we can sum over j on the RHS and
take the limit as i→ ∞ on both sides to get the Lindeberg’s condition.

Theorem 3.3.5 (Lyapounov’s Theorem). If a triangular array satisfies the
Triangular Array Conditions and the Lyapounov condition (3.5), then Si

d−→
N (0, 1).

This follows from Lindeberg’s Theorem, but we prove it with δ = 1 below.

3.3.5 Preliminaries to the proof of Lyapounov’s Theorem

We prove the Lyapunov’s CLT by using the Lindeberg method and we need
two preliminary facts. First:

Lemma 3.3.6. If X ∼ N (0, σ2), Y ∼ N (0, τ2) are independent, then X+Y ∼
N (0, σ2 + τ2).

Proof. Either

1. use the formula for the convolution of densities, or

2. use characteristic or moment generating functions, or

3. use the radial symmetry of the joint density function of i.i.d. N (0, σ2+τ2)
random variables U and V to argue that U sin θ+V cos θ ∼ N (0, σ2+τ2).

Take sin(θ) =
(

σ2

σ2+τ2

)1/2
.

To see how rotational invariance is unique to the normal distribution, see
Kallenberg 13.2.

Second:

Lemma 3.3.7. Si
d−→ Z if and only if limi→∞ Ef(Sx) = Ef(Z) for all

f ∈ C3
b(R), the set of functions from R to R with three bounded, continuous

derivatives.

Proof. See Durrett, Theorem 2.2, and use that C3
b(R) is dense in Cb(R).

3.3.6 Proof of Lyapounov’s Theorem

This proof illustrates the general idea of the proof of Lindeberg’s theorem,
and avoids a few tricky details which will be dealt with later.
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Proof. With n fixed, let X1, X2, . . . , Xn be independent random variables, not
necessarily identically distributed. Suppose EXj = 0 and let σ2

j = E(X2
j ) <∞.

Then for S =
∑n

j=1Xj we have σ2 := VarS =
∑n

j=1 σ
2
j . Note:

1. If ∀j, Xj ∼ N (0, σ2
j ), then S ∼ N (0, σ2) by Lemma 10.5.

2. Given independent random variables X1, X2, . . . , Xn with arbitrary distri-
butions, we can always construct a new sequence Z1, Z2, . . . , Zn of normal
random variables with matching means and variances so that all of Zi

and Xi are mutually independent. This may involve changing the basic
probability space, but that does not matter because the distribution of S
is determined by the joint distribution of (X1, X2, . . . , Xn), which remains
the same.

Let

S :=S0 := X1 +X2 +X3 + . . .+Xn,

S1 := Z1 +X2 +X3 + . . .+Xn,

S2 := Z1 + Z2 +X3 + . . .+Xn,

...
...

...
T :=Sn := Z1 + Z2 + Z3 + . . .+ Zn,

We want to show that S is ”close” in distribution to T , i.e., that Ef(S) is close
to Ef(T ) for all f ∈ C3

b(R) with uniform bound K on f and its first three
derivatives: |f (i)|, i = 1, 2, 3.

By the triangle inequality,

|Ef(S)− Ef(T )| ≤
n∑

j=1

|Ef(Sj)− Ef(Sj−1)|. (3.6)

Let Rj be the sum of the common terms in Sj−1 and Sj . Then Sj−1 = Rj +Xj

and Sj = Rj + Zj . Note that by construction, Rj and Xj are independent, as
are Rj and Zj .

We need to compare Ef(Rj + Xj) and Ef(Rj + Zj). By the Taylor series
expansion up to the third term,

f(Rj +Xj) = f(Rj) +Xjf
(1)(Rj) +

X2
j

2!
f (2)(Rj) +

X3
j

3!
f (3)(αj),

f(Rj + Zj) = f(Rj) + Zjf
(1)(Rj) +

Z2
j

2!
f (2)(Rj) +

Z3
j

3!
f (3)(βj),

where αj is a point between Rj and Rj +Xj and βj is a point between Rj and
Rj + Zj .
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So, assuming that the X’s have a finite third moments, and noting that the
Z’s do as well (see below), we can take expectations in each of these identities
and subtract the resulting equations. Using independence and the fact that X
and Z agree on their first and second moments, we see that everything below
the third order cancels. Therefore,

|Ef(Sj)− Ef(Sj−1)| = |Ef(Rj +Xj)− Ef(Rj + Zj)| (3.7)

=

∣∣∣∣∣EX3
j

3!
f (3)(αj)− E

Z3
j

3!
f (3)(βj)

∣∣∣∣∣ (3.8)

≤ K

6
(E|Xj |3 + E|Zj |3). (3.9)

Let c be the third moment of a standard normal random variable. This is
finite since,

c = 2

∫ ∞

0

x3
1√
2π

exp{−x2/2} dx = 2 · 2√
2π

<∞

Therefore, E|Zj |3 = cσ3
j .

Jensen’s inequality implies that ∥X∥2 = (E|X|2) 1
2 ≤ (E|X|3) 1

3 = ∥X∥3, so
σ3
j ≤ E|Xj |3, and therefore E|Zj |3 = cσ3

j ≤ cE|Xj |3, for each j.
Applying this to (3.9), we get

K

6
(E|Xj |3 + E|Zj |3) ≤

K(1 + c)

6
E|Xj |3.

Now, from (3.6), we get

|Ef(S)− Ef(T )| ≤ K(c+ 1)

6

n∑
j=1

E|Xj |3, (3.10)

So far we have only considered one row of the array, but (3.10) is in fact true
for every row with K and c unchanged and T having the same distribution. For
each i we have,

|Ef(Si)− Ef(T )| ≤ K(c+ 1)

6

ni∑
j=1

E|Xij |3, (3.11)

Now, assuming Lyapounov’s condition holds for δ = 1, the RHS of (3.11)
goes to zero as i→ ∞.

By Lemma 10.6, Si
d−→ N (0, 1) as i→ ∞.

3.3.7 Proof of Lindeberg’s Central Limit Theorem

For Lyapounov’s version of the CLT, we looked at a triangular array {Xij}
with EXij = 0, EX2

ij = σ2
ij ,
∑ni

j=1 σ
2
ij = 1. Taking Si = Xi1+Xi2+· · ·+Xini , we
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saw that we could prove Si
d−→ N (0, 1) assuming that limi→∞

∑ni

k=1 E|Xij |3 =
0.

This is a condition on third moments - we would like to see if a weaker
condition will suffice. We used third moments in a Taylor series expansion as
follows:

f(R+X) = f(R) +Xf (1)(R) +
X2

2!
f (2)(R) +

X3

3!
f (3)(α), (3.12)

where α is a point between R and R+X.
Roughly, without the third moments assumption, the above expression is

bad when X is large – although the first two moments exist, we might have
E|X|3 = ∞. The idea now is to use the form in equation (3.12) when X is small
and to make use of

f(R+X) = f(R) +Xf (1)(R) +
X2

2!
f (2)(γ) (3.13)

where γ is a point between R and R+X, when X is large.
Equating these expansions (3.12) and (3.13) for f(R +X), we get an alter-

native form for the remainder in (3.12):
X3

6
f (3)(α) =

X2

2
f (2)(γ)− X2

2
f (2)(R) (3.14)

=
X2

2
[f (2)(γ)− f (2)(R)]1(|X| > ϵ) (3.15)

+
X3

6
f (3)(α)1(|X| ≤ ϵ) (3.16)

for ϵ > 0. Thus, for f with |f (i)| ≤ K for i = 2, 3, we get∣∣∣∣X3

6
f (3)(α)

∣∣∣∣ ≤ KX2
1(|X| > ϵ) +

K

6
|X|31(|X| ≤ ϵ) (3.17)

≤ KX2
1(|X| > ϵ) +

K

6
ϵX2, (3.18)

an alternative to the upper bound K
6 |X|3, which we used in (3.9).

Now we return to the setup of section 10.5 and use our new result to get
more refined bounds. From (3.6) and (3.8), we had

|Ef(S)− Ef(T )| ≤
nj∑
j=1

∣∣∣∣∣EX3
j

6
f (3)(αj)− E

Z3
j

6
f (3)(βj)

∣∣∣∣∣
Using (3.6), the new bound for X3

j (3.18), the assumption that |f (3)| < K, and
since E|Zj |3 = cσ3

j , we get

|Ef(S)− Ef(T )| ≤
n∑

j=1

[
KEX2

j 1(|Xj | > ϵ) +
K

6
ϵEX2

j

]
+

n∑
j=1

K

6
cσ3

j(3.19)

= K

n∑
j=1

EX2
j 1(|Xj | > ϵ) +

K

6
ϵσ2 +

cK

6

n∑
j=1

σ3
j (3.20)
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As i→ ∞ (going down the rows of the triangular array), the first term goes to
zero by the Lindeberg condition. The last term goes to zero since

n(i)∑
j=1

σ3
ij ≤

(
max

1≤j≤n(i)
σij

) n(i)∑
j=1

σ2
ij = σ2 max

1≤j≤n(i)
σij ,

which tends to zero by (??). Only K
6 ϵσ

2 remains, and letting ϵ→ 0 finishes the
argument.

Figure 3.1: The first application of Markov chains was to the linguistic study of
Pushkin’s poem “Eugene Onegin”. In the picture (by Ilya Repin), Eugene
Onegin kills his friend Vladimir Lensky
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Chapter 4

Markov Chains

4.1 Basic Definitions
4.1.1 Transition Matrix

Let S be a countable set, and Xn, n ≥ 0, be a sequence of random variables
that take values in the state space S. (We will often identify S with a subset
of integers.) We say that Xn is a discrete-time Markov chain with the initial
probability distribution λ on S, and transition matrix P if

1. P(X0 = i) = λi;

2. P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = Pin,in+1 .

This definition allows us calculate the joint distributions. For every sequence
of states, (i0, . . . , in)

P(X0 = i0, . . . , Xn = in) = λi0Pi0,i1Pi1,i2 . . . Pin−1,in .

In particular if we some over all i0, . . . in−1, we will find the marginal distribution
of Xn,

P(Xn = j) = (λPn)j .

Here Pn is the n-th power of the matrix P , λPn denote the product of vector
λ by matrix Pn, and (λPn)j is the j-th component of this product.

It follows that

P(Xn = j|X0 = i) = (Pn)ij .

We will often write the conditional probabilities P(A|X0 = i) as Pi(A), so,
for example, the previous result is Pi(Xn = j) = (Pn)ij .
Example 4.1.1 (Random walk on a graph).
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Recall that a graph G = (V,E) is a set of vertices V and a set of edges E,
which are simply a pair of vertices E ⊂ V ×V . We will usually assume that the
graph is simple, that is, that there are no multiple edges (edges with the same
endpoints) and that there are no loops, edges that have the same vertex as both
endpoints. The edges (v1, v2) and (v2, v1) are not distinguished, so the graph is
undirected. A degree of a vertex v, denoted d(v), is the number of edges which
are incident to v, that is, that have v as one of its endpoints.

Now we define a Markov chain which is called a simple random walk on
G. The states are vertices and the transition probability Puv = 1/d(u). The
interpretation is that if there is a particle at vertex u, it has equal probabilities
move along each of the edges incident to u.

Exercises
Ex. 4.1.2. Let X0 be a random variable with values in a countable set I. Let
Y1, Y2, …be a sequence of independent random variables, uniformly distributed
on [0, 1]. Suppose that we are given a function G : I × [0, 1] → I and define
inductively Xn+1 = G(Xn, Yn+1).

Show that (Xn)n≥0 is a Markov chain and express its transition matrix P
in terms of G. Can all Markov chains be realized in this way? How would you
simulate a Markov chain using a computer?
Ex. 4.1.3. Suppose that Z0, Z1, …are i. i. d. random variables such that
Zi = 1 with probability p and Zi = 0 with probability 1 − p. Set S0 = 0,
Sn = Z1 + . . .+ Zn. In each of the following cases determine whether (Xn)n≥0

is a Markov chain.

Xn = Sn,

Xn = S0 + . . .+ Sn,

Xn = (Sn, S0 + . . .+ Sn).

In the cases where Xn is a Markov chain, find its state-space and transition
matrix, and in the cases where it is not a Markov chain give an example where
P (Xn+1 = i|Xn = j,Xn−1 = k) is not independent of k.
Ex. 4.1.4. Flip coins (Xn = 0 or 1), where each coin flip has parameter p = 3/4
if the last 3 outcomes are 1’s, and p = 1/2 otherwise. For example, P(X4 =
1|X1 = 0, X2 = 1, X3 = 1) = 1/2.

1. Is {Xn} a Markov chain?

2. Let Zn = (Xn, Xn+1, Xn+2). Argue that {Zn} is a Markov chain and give
the transition matrix.

Ex. 4.1.5. Let Xn be a Markov chain with transition matrix P .

1. Find

P(Xn = j|Xn−1 = i,Xn+1 = j).

2. Calculate this probability when Xn is a simple random walk (up one with
probability p and down one with probability q).
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4.1.2 Communicating classes and irreducible Markov chains

AMarkov chain can be thought of as a non-deterministic automaton, with
fixed probabilities of transition from one state to another. In this cases, it is
often useful to re-present the chain by a directed graph. Each vertex in this
graph represent a state, and state i is connected by a directed edge to j if there
is a non-zero probability of transition from i to j. One can think about the
probability as a label on this graph.

In this way we obtain an identification of Markov chains with weighted di-
rected graphs, and an evolution of a Markov chain can be represented by a
random walk on the graph.

Sometimes, it is possible to divide the state space of the Markov chain in
pieces, so that the behavior of Markov chain is easier to analyze by consid-
ering each piece individually. These pieces are called communicating classes.
(In graph theory, they are called strongly connected components, and can be
calculated by using Kosaraju’s algorithm.)

Namely, we say that i leads to j and write i→ j, if

Pi(Xn = j for some n ≥ 0) > 0.

We say that i communicates with j and write i ↔ j, if both i → j and j → i.
It is easy to see that this is an equivalence relation and therefore it partitions
the state space into equivalence classes, which we call communicating classes.

Definition 4.1.6. A Markov chain is called irreducible if it has only one com-
municating class.

We say that a class is closed if the conditions i ∈ C and i → j imply that
j ∈ C. That is, the chain cannot go from a closed class outside. A single state
i is called absorbing if {i} is a closed class.

Figure 4.1

Example 4.1.7. Consider the chain in Figure 4.1. The arrows represent transi-
tions with non-zero probabilities. For this chain, the classes are {1, 2, 3}, {4},
and {5, 6}, and the only closed class is {5, 6}.
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Ex. 4.1.8. Show that every transition matrix on a finite state-space has at least
one closed communicating class. Find an example of a transition matrix with
no closed communicating class.

4.1.3 Invariant distribution

Ameasure (or distribution) λ on a countable state space is a (non-zero) vector
with non-negative entries. We call it a probability distribution if the sum of the
entries is 1.

If P is the transition matrix of a Markov chain then a measure π is called
invariant if

πP = π

The terms equilibrium or stationary measure are also used to mean the same.
The definition of the invariant distribution implies that if Xn is distributed

according to π then Xn+1 will also be distributed according to π.
Note that

∑
j Pij = 1 for all i, which means that matrix P has a right

eigenvector with eigenvalue 1 that has all its entries equal to 1. From an alge-
braic viewpoint an invariant measure is a left eigenvector of the matrix P with
eigenvalue 1. This gives us a practical method for computation of the invariant
distribution if the state space is finite (and not too large).

In addition, from the properties of the eigenvectors, we can immediately
conclude that for every finite Markov chain, the invariant distribution always
exists, although it might be non-unique. It is also clear that we can normalize
it so that the invariant distribution is actually a probability distribution.

For infinite chains the invariant distribution not necessarily exists even if do
not require it to be a probability distribution. Here is an example.

Here is an example of a chain without an invariant measure.
Example 4.1.9. Consider the chain on {0, 1, 2, . . .} with the transition probabil-
ities

pi,i+1 = pi, pi,0 = 1− pi =: qi,

where pi ∈ (0, 1). We are going to show that for a suitable choice of qi, the
chain do not have a non-trivial invariant measure.

Let π be an invariant measure. Then, by definition,

π0 =

∞∑
i=0

qiπi,

πi = pi−1πi−1, for i ≥ 1.

The last equality implies that π1 = p0π0, π2 = p1p0π0, and so on. Assume
π0 > 0, since otherwise the measure is trivial. Then, πi < π0 for all i ≥ 1.
Hence, from the first equation, we get
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π0 < π0

∞∑
i=0

qi,

Take qi = 2−i−1, then
∑∞

i=0 qi = 1 and π0 < π0, which is a contradiction.
We will consider the question of the invariant measure existence for infinite

chains in a later section.

4.1.4 Time reversal

It is an interesting question of whether one can infer a direction of time from
the evolution of a Markov chain.

First of all, is a sequence Xn, Xn−1, . . . , X0, a Markov chain?
We calculate

P(Xk = ik|Xk+1 = ik+1, . . . , Xn = in) =
P(Xk = ik)

P(Xk+1 = ik+1)
Pikik+1

.

In general, the quantity on the left depends on k and is different for different
choices of the initial distribution of X0 in the original chain. So, we have a
Markov chain with changing transition probabilities.

However, if we assume that the the original distribution was invariant, then
Xn is distributed according to the invariant distribution π, and the reversed
sequence of Xk is a Markov chain with constant transition probabilities, given
by

P̂ji =
πi
πj
Pij .

Theorem 4.1.10. Let Xn be an irreducible Markov chain with transition matrix
P and let X0 distributed according to the invariant distribution π. Let N > 0
and set Yn = XN−n for n = 0, 1, . . . N . Then Yn is a Markov chain with the
initial distribution π and the matrix P̂ , determined by equations πjP̂ji = πiPij.

Proof. We have

P(Y0 = a, . . . , YN = z) = P(X0 = z, . . . , XN = a)

= πzPzyPyx . . . Pba

= P̂yzπyPyx . . . Pba

= · · ·
= πaP̂ab . . . P̂xyP̂yz,

where we applied the definition of P̂ several times. This equality implies that Yi
is a Markov chain with initial distribution π and the transition matrix P̂ .
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In particular, a Markov chain cannot be distinguished from its time-reversal
if

πjPji = πiPij

These equations are called the detailed balance equations. If a chain satisfies
these equations then it is called reversible. It turns out that reversible Markov
chains are easier to understand than non-reversible chains.

In fact, it is redundant to require that the distribution in the detailed balance
equations is invariant.

Lemma 4.1.11. If distribution λ satisfy λjPji = λiPij, then λ is invariant.

Proof.

(λP )i =
∑
j

λjPji =
∑
j

λiPij = λi.

This gives us a convenient tool for finding the invariant distribution of a
chain.
Example 4.1.12 (Random walk on a graph).

Consider a graph G with vertices i ∈ V . A degree (or valence) of a vertex
i is the number of edges incident with i. A random walk on the graph G has
the transition matrix P with entries Pij = 1/di if (i, j) is an edge, and Pij = 0
otherwise. Here di denotes the degree of the vertex i. It is easy to check that P
satisfies the detailed balance condition with λi = di. It follows that the random
walk is reversible with the invariant measure π = di.

If the graph G is not regular, that is, if it has vertices of differing degrees,
then this invariant measure is not uniform. Vertices with larger degree will
be visited more often than vertices with smaller degree. What if we want to
have at our disposal a Markov chain on the graph G that would have the same
transitions, – from a vertex to their neighbors, – but that would have a uniform
distribution on vertices?

In this case, we can use a lazy random walk. Namely, suppose d = max{d1, . . . , d|V |}
is the maximum vertex degree in the graph. Then we set Pij = 1/d if j ̸= i,
and Pii = 1− di/d. In other words, if di < d then with positive probability the
particle will stay at vertex i and wait for the next time period. It is easy to see
from the detailed balance equation that the uniform distribution is invariant for
this chain.

In Figure 4.2, a non-reversible chain is presented. It is clear from symmetry
that the invariant distribution is uniform, but then the detailed balance equation
is not satisfied: Pji ̸= Pij .

Exercises
Ex. 4.1.13. In each of the following cases determine whether the stochastic
matrix P is reversible:
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Figure 4.2: An example of a non-reversible chain: a random walk with a bias.

1. [
1− p p
q 1− q

]
;

2.  0 p 1− p
1− p 0 p
p 1− p 0

 ;

3. The state space is {0, 1, . . . , N} and pij = 0 if |j − i| ≥ 2.

4. The state space is I = {0, 1, 2, . . .}, p01 = 1, and pi,i+1 = p, pi,i−1 = 1− p
for i ≥ 1.

5. pij = pji for all i, j ∈ S.

Ex. 4.1.14. A Markov chain with the state space {0, 1, 2} has the transition
probability matrix

P =

0.4 0.4 0.2
0.6 0.2 0.2
0.4 0.2 0.4

 .
After a long period of time, you observe the chain and see that it is in state 1.
What is the conditional probability that the previous state was state 2? That
is, find

lim
n→∞

P(Xn−1 = 2|Xn = 1).
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4.1.5 Markov Chains for Sampling

An important application of Markov chains occurs in the situation when we
want to sample from a specific distribution on a complicated state space. This
sample will serve as a mean to understand the state space better. In this case,
we often want to construct a Markov chain that will explore the state space and
that will have this target distribution as its equilibrium distribution.

There is a family of algorithms invented for this specific task which are known
under the general name of the Markov Chain Monte Carlo (MCMC) algorithm.

In fact there are many such algorithms for various problems and here we will
only look at a single simple example.

Figure 4.3: An example of a feasible state on a the 8-by-8 lattice graph. Black and
white circles represent 1’s and 0’s, respectively.

Example 4.1.15 (The hard-core model).
Let G be a graph with vertex set V and edge set E. A configuration is an

assignment of 0’s and 1’s to the vertices, and an assignment is feasible if no two
1’s occupy adjacent vertices. We prescribe the same probability to each feasible
configuration. (An example of a feasible configuration on a lattice graph is
shown in Figure 4.3.

A possible question for such a model could be about the expected number
of 1’s in a random feasible configuration.

It is not clear how to answer this question theoretically, and in order to an-
swer this question by using simulations we want to be able to sample from the
uniform distribution on the space of all feasible configurations. For this purpose,
we can use a suitably designed Markov chain Xn on the state space of configu-
rations. Let Xn(v) denote the assignment that the configuration Xn prescribes
to the vertex v. Then the chain has the following transition mechanism.
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1. Pick a vertex v at random (uniformly). If any of the neighbors of v takes
value 1 in Xn, repeat a random choice of v.

2. If all neighbors of v take value 0 in Xn, then toss a fair coin. If the coin
comes up heads, then set Xn+1(v) = 1, otherwise let Xn+1(v) = 0.

3. For all w ̸= v, set Xn+1(w) = Xn(w).

We claim that its invariant distribution is uniform on the set of all feasible
configurations. We prove it by showing that the chain is reversible with respect
to the uniform distribution. Essentially this mean that the probability to get
from configuration ω1 to configuration ω2 is the same as the probability to get
from ω2 to ω1.

Indeed, if ω2 ̸= ω1, then the probability of transition from a feasible ω1 to ω2

is non-zero if and only if the configurations are different at exactly one vertex v.
Probability to choose this vertex is the same in both configuration. This vertex
must be surrounded by zeros or one of these configurations is not feasible, so
it is not in state space. And if this vertex is chosen then the probability of
transition from ω1 to ω2 equals 1/2 and it is the same as the probability to go
from ω2 to ω1.

By results that will follow, the distribution of the chain converges to in-
variant. So, if we run the chain for a sufficiently large time T , then we will
eventually get a state Xn which is close to a sample point from a uniform dis-
tribution. Repeating this procedure N time we will get a sample of N random
assignments which will be approximately i.i.d and we can use the to estimate
the expected number of 1’s.

This algorithm is an example of “a Gibbs sampler”, or “Glauber dynamics”.
The characteristic features of this type of algorithms is that they operate on
states which can be represented as assignments s(v) on a certain set of vertices
v ∈ V . The updates (transitions) of an assignment are done locally, on a single
vertices v of the set V . The key point is that an assignment on v is set to a
particular value with the probability equal to the conditional probability of this
value given the values on other vertices w’s, and the conditional probability is
calculated assuming the joint distribution π.

It is the fact that these conditional probabilities have a simple form is what
makes this method useful.

In order to see that this chain is reversible with the invariant distribution π,
note that only possible transitions are between states that differ in only one v.
In this case, we have
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π
(
[s, ŝ]

)
P[s,ŝ],[s′,ŝ] = π

(
[s, ŝ]

)
P
(
[s′, ŝ]

∣∣∣ŝ)
= π

(
[s, ŝ]

) π
(
[s′, ŝ]

)
∑

t π([t, ŝ])

= π
(
[s′, ŝ]

)
P
(
[s, ŝ]

∣∣∣ŝ)
= π

(
[s′, ŝ]

)
P[s′,ŝ],[s,ŝ],

where s and s′ denote the assignments on v in two neighboring configurations,
and ŝ denotes the assignment on vertices w different from v. Hence, the detailed
balance condition holds and the chain is reversible.

The calculation is almost tautological, and it becomes useful only when the
conditional probabilities are easy to calculate.

4.2 Hitting times and absorption probabilities

The hitting time of a subset A is the random variable

HA = inf{n ≥ 0 : Xn ∈ A}.

The conditional expectation of HA given that the chain starts at i is denoted
by kAi , and the conditional probability that Xn ever hits A is called the hitting
probability of A and denoted

hAi = Pi(H
A <∞).

Theorem 4.2.1. The vector of hitting probabilities hA is a minimal non-
negative solution to the system of linear equations

hAi = 1, for i ∈ A, (4.1)

hAi =
∑
j

Pijh
A
j , for i /∈ A. (4.2)

Minimality means that for any other non-negative solution hA, it must be
that hAi > hAi for every i.

In words, the function hi is P -harmonic at the states i which are outside of
the set A, that is, the value of h at state i is a weighted average of values of h at
the neighbors of i. The values of h at states i which are in A give a boundary
condition h = 1 for this harmonic function.

Proof. First, we show that the vector of hitting times must satisfy the equations
(4.1) and (4.2). Obviously, it satisfies the first equation. For the second, we write

hAi =
∑
j

Pi(H
A <∞|X1 = j)Pij

65



Since i /∈ A the event HA < ∞ depend only on X1, X2, . . . and therefore by
Markov property we have that Pi(H

A < ∞|X1 = j) = Pj(H
A < ∞) = hAj .

Therefore,

hAi =
∑
j

Pijh
A
j ,

and the second equality is proved.
Next we establish that for every other solution x, xi ≥ hAi . If i ∈ A then

xi = hAi = 1. If i /∈ A, then

xi =
∑
j

Pijxj =
∑
j∈A

Pij +
∑
j /∈A

Pijxj

= Pi(X1 ∈ A) +
∑
j /∈A

Pijxj

= Pi(X1 ∈ A) +
∑
j /∈A

Pij

(∑
k∈A

Pjk +
∑
k/∈A

Pjkxk

)
= Pi(X1 ∈ A) + Pi(X1 /∈ A,X2 ∈ A) +

∑
j /∈A

∑
k/∈A

Pjkxk

If we repeat this procedure for n steps, we find that

xi =Pi(X1 ∈ A) + . . .+ Pi(X1 /∈ A, . . .Xn−1 /∈ A,Xn ∈ A)

+
∑
j1 /∈A

. . .
∑
jn /∈A

Pj1,j2 . . . Pjn−1,jnxjn

≥ Pi(H
A ≤ n).

By taking the limit we find that xi ≥ Pi(H
A <∞) = hAi .

Theorem 4.2.2. The vector of mean hitting times kA is the minimal non-
negative solution to the system of linear equations

kAi = 0, for i ∈ A, (4.3)

kAi = 1 +
∑
j /∈A

Pijk
A
j , for i /∈ A. (4.4)

Proof. First, we show that kA satisfies the equations (4.3) and (4.4). The first
one is evident. If we assume that i /∈ A, then

kAi = Ei(H
A) =

∑
j

Ei(HA|X1 = j)Pi(X1 = j)

By the Markov property, Ei(HA|X1 = j) = 1 + Ej(HA), and therefore,

kAi = 1 +
∑
j /∈A

Pijk
A
j ,
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which shows that equation (4.4) also holds.
Suppose now that x is a solution of (4.3) and (4.4). Then, for i ∈ A,

xi = kAi = 0. If i /∈ A, then

xi = 1 +
∑
j /∈A

pijxj = 1 +
∑
j /∈A

pij

(
1 +

∑
k/∈A

pjkxk

)
= Pi(H

A ≥ 1) + Pi(H
A ≥ 2) +

∑
j /∈A

∑
k/∈A

pijpjkxk

By repeating this procedure and taking the limit we find that

xk ≥
∞∑

n=1

Pi(H
A ≥ n) = Ei(H

A) = kAi ,

which shows that kAi is a minimal solution and completes the proof.

Figure 4.4: The birth-and-death chain

Example 4.2.3 (Birth-and-death chain). Consider the Markov chain in Figure
4.4 The state 0 is the absorbing state and we wish to calculate the absorption
probability hi = Pi(“hit 0”).

We have h0 = 1 and hi = pihi+1 + qihi−1 for i ≥ 1. The latter equation
implies that pi(hi − hi+1) = qi(hi−1 − hi), so if we introduce ui = hi−1 − hi,
then we can write

ui+1 =
qi
pi
ui =

qiqi−1 . . . q1
pipi−1 . . . p1

u1 = γiu1,

where the last equality defines γi.
Since u1 + . . .+ ui = h0 − hi, so

hi = 1− u1(γ0 + . . .+ γi−1),

where γ0 = 1.
If
∑∞

i=0 γi = ∞, then the restriction hi ∈ [0, 1] forces u1 = 0 and hi = 1 for
all i. (Extinction is inevitable.)

However, in the case when
∑∞

i=0 γi = A <∞, we can take a u1 in the region
[0, A−1], and then the solution is

hi =

∑∞
j=i γj∑∞
j=0 γj

< 1,

which shows that for every i there is a positive probability of survival.
Exercises
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Figure 4.5: An example of a discrete-time Markov Chain

Ex. 4.2.4. Consider the Markov chain shown in Figure 4.5. For this chain, show
that

1. The probability of hitting 6, starting from 0, is 1/4.

2. The probability of hitting 3, starting from 1, is 1.

3. It takes on average 3 steps to hit 3 starting from 1.

Ex. 4.2.5. Consider the Markov chain on states {0, 1, 2, 3, 4} whose transition
matrix is

P =


q p 0 0 0
q 0 p 0 0
q 0 0 p 0
q 0 0 0 p
0 0 0 0 1

 ,
where p+ q = 1. Determine the mean time to reach state 4 starting from state
0.

4.3 Recurrence and transience

Consider the event “Xn = i for infinitely many n”. By a very general result
due to Kolmogorov, this event can only have the probability 0 or 1. If the
probability is 0 then we call state i transient. If it is 1, then we call it recurrent.

In order to define a useful criterion for whether a state is transient or recur-
rent, we define passage times T (r)

i . They are defined inductively. Let T (0)
i = 0

and define the first passage time as

Ti = T
(1)
i = infn ≥ 1: Xn = i,

where the infimum of the empty set is ∞ by convention. This random variable
is also called the return probability.
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Figure 4.6: Passage Times

In general, the passage time number r + 1 is defined as

T
(r+1)
i = infn ≥ T

(r)
i + 1: Xn = i.

The length of the r-th excursion is defined as S(r)
i = T

(r)
i −T (r−1)

i if T (r−1)
i <∞,

and 0, otherwise. These definitions are illustrated in Figure 4.6
Define also the number of visits to i as

Vi =

∞∑
n=0

1Xn=i.

The expectation of Vi is

EiVi =

∞∑
n=0

Ei1Xn=i =

∞∑
n=0

Pi{Xn = i} =

∞∑
n=0

Pn
ii

Theorem 4.3.1. There can be only two situations:

1. State i is recurrent, P{Ti <∞} = 1 and
∑

n P
n
ii = ∞;

2. State i is transient, P{Ti <∞} < 1 and
∑

n P
n
ii <∞;

The proof of this theorem is based on two lemmas.

Lemma 4.3.2. S(r)
i is independent of {Xm,m ≤ T

(r−1)
i } conditional on {T (r−1)

i ≤
∞}, and

P[S(r)
i = n|{T (r−1)

i ≤ ∞}] = Pi(Ti = n).

This lemma is a consequence of the strong Markov property of Markov
chains. Essentially, if {T (r−1)

i ≤ ∞}, then at time t = T
(r−1)
i , the process

X is at Xt = i, and its future behavior is the same as that of the original pro-
cess started from X0 = i. In particular, the time before the first new return to
i, S(r)

i has the same distribution as that of the first return Ti.
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Lemma 4.3.3.

Pi(Vi > r) =
[
Pi(Ti <∞)

]r
.

Proof. Note that the event {Vi > r} is the same as {T (r)
i <∞}. For r = 0, the

claim of the lemma is true. For positive r, we use induction:

Pi(Vi > r + 1) = Pi(T
(r)
i <∞ and S

(r+1)
i <∞)

= Pi(S
(r+1)
i <∞|T (r)

i <∞)Pi(T
(r)
i <∞)

= Pi(Ti <∞)Pi(T
(r)
i <∞) =

[
Pi(Ti <∞)

]r+1

.

Proof of Theorem 4.3.1. By Lemma 4.3.3, if P{Ti <∞} = 1, then

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r) = 1,

so i is recurrent and
∑
Pn
ii = Ei(Vi) = ∞.

On the other hand, if P{Ti <∞} < 1, then using Lemma 4.3.3 again,

∑
Pn
ii = Ei(Vi) =

∞∑
r=0

Pi(Vi > r)

=
1

1− P{Ti <∞}
<∞,

which implies that Pi(Vi = ∞) = 0 and, therefore, i is transient.

Corollary 4.3.4. The states of a communicating class are either all transient
or all recurrent.

This follows because for i and j in the same communicating class it is easy
to show that

∑
Pn
ii and

∑
Pn
jj are both convergent or both divergent.

Hence we can talk about recurrent and transient classes. It is clear from the
definition of the recurrent class that we cannot leave it forever. In other words,
the following statement holds.

Corollary 4.3.5. Every recurrent class is closed. In particular, if x is a recur-
rent state, and x leads to y, then y is in the same class as x and is recurrent.

For finite classes we also have a converse statement.

Corollary 4.3.6. Every finite closed class is recurrent.

Indeed, if a class is closed and finite, then P(‘‘i is visited infinitely many
times ”) > 0 for at least one i. This implies that the class is recurrent.

It can happen, however that an infinite closed class is transient.
We also have the following simple result.
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Theorem 4.3.7. Suppose that chain is irreducible and recurrent. Then, for all
states j, we have

P[Tj <∞] = 1.

The meaning of the theorem is that if we start with arbitrary state i we will
reach any other state j in finite time with probability 1. Intuitively, the idea of
the proof is that if it were that Pi[Tj < ∞] < 1 for some pair of states i and j,
then there would be a possibility that the chain reaches i and then j will not
be visited infinitely often. This would contradict the recurrency.

Proof. Since

P(Tj <∞) =
∑
i

Pi(Tj <∞)P(X0 = i),

it is enough to prove that Pi[Tj <∞] = 1 for all i.
Since the chain is recurrent, therefore

Pj(Xn = j for infinitely many n) = 1.

By irreducibility, we can choose m such that Pm
ji > 0, and then we write

Pj(Xn = j for infinitely many n) = Pj(Xn = j for some n > m)

=
∑
k

Pj(Xn = j for some n > m|Xm = k)Pj(Xm = k)

=
∑
k

Pk(Tj <∞)Pm
jk .

Since
∑

k P
m
jk = 1, it must be that Pk(Tj <∞) = 1 for all k such that Pm

jk > 0,
in particular, for k = i.

Examples
Example 4.3.8 (Simple symmetric random walk on Z). Simple symmetric walk
on Z has the transition probabilities Pi,i−1 = Pi,i+1. Then, it is easy to see that

P 2n
ii =

(
2n

n

)
2−2n.

By using Stirling’s formula for the factorial one can show that P 2n
ii = c/

√
n,

and therefore the chain is recurrent by Theorem 4.3.1.
Example 4.3.9 (Simple symmetric random walk on Z2 and Z3). By significantly
more complicated combinatorics, one can show that P 2n

ii = c/n and P 2n
ii =

c/n3/2 in the cases of symmetric random walk on Z2 and Z3, respectively. Hence,
by Theorem 4.3.1, the random walk is still recurrent in the case of Z2, but it is
transient in the case of Z3.
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Example 4.3.10 (Birth and death chain). Consider a variant of the birth and
death chain. Recall that the probability of transitions are pi,i+1 = pi > 0 for
i ≥ 0 and pi,i−1 = qi for i > 0. In addition, we assume that p00 = 1− p0. Here
the state 0 is not absorbing and the chain is irreducible. When is it recurrent?

From the analysis in Example 4.2.3, we know that

hi = P{“hit 0 starting with state i”} = 1

if and only if
∑
γi = ∞, where

γi =
qiqi−1 . . . q1
pipi−1 . . . p1

We can write

P0(T0 <∞) = P00 + P01h1,

If
∑
γi = ∞, then h1 = 1 and therefore P0(T0 < ∞) = 1. So the state 0 is

recurrent. Since the chain is irreducible, it is recurrent.
Conversely, if the chain is recurrent then, P(T0 < ∞) = 1, and therefore

h1 = 1 and
∑
γi = ∞.

Hence, the birth and death chain is recurrent if and only if
∑
γi = ∞.

Exercises
Ex. 4.3.11. Consider a Markov chain having state space {0, 1, . . . , 6} and tran-
sition matrix 

1
2 0 1

8
1
4

1
8 0 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1

2 0 1
2

0 0 0 0 1
2

1
2 0

0 0 0 0 0 1
2

1
2


1. Determine which states are transient and which states are recurrent.

2. Find the hitting probabilities hi0 for i = 0, . . . , 6.

Ex. 4.3.12. Consider a Markov chain on non-negative integers such that, start-
ing from x, the chain goes to state x + 1 with probability p > 0, and goes to
state 0 with probability q = 1− p > 0.

1. Show that this chain is irreducible.

2. Find P0(T0 = n), n ≥ 1.

3. Show that this chain is recurrent.
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Ex. 4.3.13. Let Xn be a Markov chain on {0, 1, . . . , } with transition probabil-
ities given by p01 = 1, pi,i+1 + pi,i−1 for i ≥ 1, and

pi,i+1 =
( i+ 1

i

)2
pi,i−1,

for i ≥ 1. Show that if X0 = 0, then the probability that Xn ≥ 1 for all n ≥ 1
is 6/π2.
Ex. 4.3.14. For the Markov chain in the previous example, show that

P(Xn → ∞ as n→ ∞) = 1.

Suppose, instead, the transition probabilities satisfy

pi,i+1 =
( i+ 1

i

)α
pi,i−1.

For each α ∈ (0,∞) find the value of P(Xn → ∞ as n→ ∞).
Ex. 4.3.15. A random sequence of non-negative integers Fn is obtained by
setting F0 = 0 and F1 = 1 and, once F0, . . . , Fn are known, taking Fn+1 to be
either the sum or the difference of Fn−1 and Fn, each with probability 1/2. Is
Fn a Markov chain?

By considering the Markov chain Xn = (Fn−1, Fn), find the probability that
Fn reaches 3 before first returning to 0.

Draw enough of the flow diagram for Xn to establish a general pattern.
Then, using the strong Markov property, show that the hitting probability for
(1, 1) starting from (1, 2) is (3−

√
5)/2.

Deduce that Xn is transient. Show that, moreover, with probability 1, Fn →
∞ as n→ ∞.

4.4 More about invariant distributions
4.4.1 The existence of an invariant distribution

When does an infinite Markov chain has an invariant distribution? First of
all we can ask the question about the existence of an invariant measure, when
we do not require that the measure of the whole space equals 1.

An essential feature of Example 4.1.9 is that probability mass escapes to
infinity. If we exclude this possibility by requiring that the chain is recurrent, we
find that the invariant measure always exists. (However, note that the invariant
distribution can also exist for transient chains, so the requirement that the chain
is recurrent is only a sufficient condition.)

In fact we can identify the invariant measure (up to a scale) as a expected
time spend between visits to a particular state. The choice of this reference
state is irrelevant.
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Let k be a state and define γki as the expected time spent in i between visits
to k,

γki = Ek

Tk−1∑
n=0

1{Xn=i}.

We are going to show that for an arbitrary choice of the initial state k, the
vector π := γk is a positive invariant measure.

Theorem 4.4.1. An irreducible and recurrent Markov chain always has an
invariant measure π such that πi > 0 for all i.

Proof. Since the chain is recurrent and Tk < ∞ with probability 1, and since
XTk

= X0 = k, we can also change limits in the sum and write

γki = Ek

Tk∑
n=1

1{Xn=i}.

This expression can be written as

γki =

∞∑
n=1

Ek1{Xn=i and n≤Tk}

=

∞∑
n=1

Pk{Xn = i and n ≤ Tk}

=
∑
j

∞∑
n=1

Pk(Xn−1 = j,Xn = i and n ≤ Tk).

Then, we can write

Pk(Xn−1 = j,Xn = i and n ≤ Tk} = P(Xn = i|Xn−1 = j and n ≤ Tk)

×P(Xn−1 = j and n ≤ Tk)

The event {n ≤ Tk} means that X1 ̸= k, . . .Xn−1 ̸= k, and therefore we can use
the Markov property and write

Pk(Xn−1 = j,Xn = i and n ≤ Tk} = PjiP(Xn−1 = j and n ≤ Tk)

Hence

γki =
∑
j

Pji

∞∑
n=1

Pk(Xn−1 = j, and n− 1 ≤ Tk − 1)

=
∑
j

Pji

∞∑
m=0

Ek1(Xm = j, and m ≤ Tk − 1)

=
∑
j

γkj Pji

74



This shows that γkP = γk. Since γkk = 1, the measure is non-zero. It remains
to show that it is bounded for every i and that it is positive. By irreducibility
for some n and m, Pn

ik > 0 and Pm
ki > 0. Then γki ≥ γkkP

m
ki > 0, and γki P

n
ik ≤

γkk = 1. This completes the proof.

[Exercise: Why doesn’t this proof work for the situation in Example 4.1.9?]
In fact, for irreducible and recurrent chains, the invariant measure is unique

up to a multiplication.

Theorem 4.4.2. If P is an irreducible and recurrent Markov chain and π is
an invariant measure such that πk = 1. Then π = γk.

We omit the proof. Let us repeat that besides the existence and uniqueness,
the two previous theorem show that the invariant measure of a state i is propor-
tional to the expected time spend in the state i between two consecutive visits
to some state k.

When can we say that the invariant measure of an irreducible recurrent chain
is actually a probability distribution?

Recall that a state i is recurrent if Pi(Ti < ∞) = 1, where Ti is the first
return time. If in addition the expected return time is finite, mi = Ei(Ti) <∞,
then the state is called positive recurrent. A recurrent state which fails to have
this stronger property is called null recurrent.

Theorem 4.4.3. Let P be irreducible. Then the following are equivalent:

1. every state is positive recurrent;

2. some state is positive recurrent;

3. P has an invariant probability distribution.

Moreover, if one of these conditions holds and π is the invariant probability
distribution, then the expected first return time Ei(Ti) = 1/πi.

This theorem gives another interpretation for the invariant distribution for
recurrent chains. The measure πi is the inverse of the expected return time for
the state i.

Proof. (i) ⇝ (ii), obviously.
(ii) ⇝ (iii). The sum

∑
j γ

i
j is the expected time before the first return to

i, mi. (It is the expected time spend in all other states before the return to i.)
By the definition of positive recurrence mi is finite. Hence, πj = γij/mi defines
an invariant distribution.

(iii) ⇝ (i). Take a state k. By irreducibility, πk =
∑

i πiP
n
ik > 0 for some n.

Set λi = πi/πk. Then, λ ≥ γk by Lemma 4.4.4 below. Hence

mk =
∑
i

γki ≤ πi
πk

=
1

πk
<∞,

and k is positive recurrent.
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Lemma 4.4.4. Let P be irreducible and let λ be an invariant measure for P
with λk = 1. Then λ ≥ γk.

Proof. By invariance and the assumption that λk = 1, we can write

λj =
∑
a ̸=k

λaPaj + Pkj

=
∑
a,b̸=k

λbPbaPaj +
∑
a̸=k

PkaPaj + Pkj

= . . .

We can continue this expansion and note that the first term is always positive.
Than by reading the remaining terms from left to right we find that

λj ≥ Pk(X1 = j and Tk ≥ 1) + Pk(X2 = j and Tk > 2) + . . .

However, this is exactly the expected time spend by the chain Xn at j before
the return to k. Hence, λj ≥ γkj .

Example 4.4.5 (Simple symmetric walk on Z). It is easy to check that for the
symmetric walk on Z, the only invariant measure with π0 = 1 is the constant
measure πi = 1. This measure is not a probability distribution and therefore
we conclude that all states of this chain are null-recurrent, ETi = ∞.
Example 4.4.6 (Birth and death chain). Consider the birth-and-death chain
from Example 4.3.10. The invariant distribution π has to satisfy equations

πi−1Pi−1,i + πi+1Pi+1,i = πi,

which we can write as

πi−1pi−1 + πi+1qi+1 = πi,

or

qi+1πi+1 − piπi = qiπi − pi−1πi−1

= qi−1πi−1 − pi−2πi−2

= . . .

= q1π1 − p0π0.

However, another invariance equation gives us

π1P10 + π0P00 = π0,

which simplifies to π1q1 = π0p0.
It follows that

qi+1πi+1 − piπi = 0,

πi+1 =
pi
qi+1

πi,
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for all i ≥ 0, and by induction,

πi =
p0
q1
. . .

pi−1

qi
π0.

This gives us an invariant measure. This measure is a distribution, if and only
if

∞∑
i=1

p0
q1
. . .

pi−1

qi
<∞.

Note that in Example 4.3.10, we showed that the chain is recurrent if and only
if

∞∑
i=1

q1
p1
. . .

qi
pi

= ∞.

Consequently, the chain is null-recurrent if and only if this holds simultaneously
with the condition

∞∑
i=1

p0
q1
. . .

pi−1

qi
= ∞.

4.4.2 Convergence

In many cases, we are interested not in calculating the invariant distribution
but in sampling from it. This becomes especially relevant if the state space is
very large and we cannot even enumerate it efficiently. In these cases the idea is
to run the chain for a sufficiently long time so that the it becomes in an almost
stationary distribution.

This idea is based on the phenomenon of the convergence of the chain prob-
ability distribution to the stationary distribution. Namely, as chain Xn evolves,
the transition probabilities Pn

ij become independent from the initial state i and
converge to the invariant distribution πj . In order to formulate the precise
result, we need another definition.

We say that a state i is aperiodic if Pn
ii > 0 for all sufficiently large n.

Lemma 4.4.7. Suppose that Markov chain P is irreducible and has an aperiodic
state i. Then for all states j and k, Pn

jk > 0 for all sufficiently large n. In
particular, all states are aperiodic.

Theorem 4.4.8 (Convergence to equilibrium). Let P be irreducible and ape-
riodic, and suppose that P has an invariant distribution π. Then Pn

ij → πj as
n→ ∞ for all i and j.

Note: This is equivalent to the following statement. Let λ be any distribu-
tion, and suppose that X0 has distribution λ. Then, P(Xn = j) → πj as n→ ∞
for all j.
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Proof. Let Yn be a Markov with the same transition matrix as Xn and with Y0
distributed according to the invariant distribution π. Assume that Xn and Yn
are independent.

Let T = inf{n ≥ 1 : Xn = Yn = b}, where b is a particular state.
The process Wn = (Xn, Yn) has the state space that consists of pairs (i, k).

It has transition probabilities Pi,k→j,l = PijPkl and initial distribution λiπk.
By aperiodicity of the chain P{Xn = i, Yn = k} = P{Xn = i}P{Yn = k} > 0

for all sufficiently large n, which implies that (Xn, Yn) is irreducible. In addition
it has an invariant distribution πiπk.

By Theorem 4.4.3, the chain is positive recurrent, which implies that E(T ) <
∞ and in particular P(T <∞) = 1.

We claim that for any n ≥ 1,

P(Xn = y, T ≤ n) = P(Yn = y, T ≤ n). (4.5)

Indeed, for every m ≤ n, we have

P(Xn = y|T = m) = P(Yn = y|T = m),

since both probabilities equal Pn−m
b,y for n > m and δb,y for n = m.

This implies that

P(Xn = y|T ≤ n) = P(Yn = y|T ≤ n),

and therefore that equality (4.5) holds.
It follows that

|P(Xn = j)− π| = |P(Xn = j)− P(Yn = j|
= |P(Xn = j and n < T )− P(Yn = j and n < T )|
≤ P(n < T ).

And P(n < T ) → 0, as n→ ∞, because

E(T ) =
∞∑

n=0

P(T > n) <∞.

This completes the proof.

4.4.3 Ergodic theorem

It is possible to interpret the invariant distribution as the long-run proportion
of time spend by the Markov chain in each state. This result is called the ergodic
theorem. Define Vi(n) as the number of visits to i before time n:

Vi(n) =

n−1∑
k=0

1{Xk=i}.

Then, Vi(n)/n is the proportion of time before n spent in state i.
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Theorem 4.4.9 (Ergodic theorem). Let Xn be an irreducible Markov chain.
Then

P
(Vi(n)

n
→ 1

mi
as n→ ∞

)
= 1,

where mi = E(Ti) is the expected return time to state i. Moreover, in the positive
recurrent case, for any bounded function f , we have

P
( 1
n

∑
k=0

n− 1f(Xk) → f as n→ ∞
)
= 1,

where

f =
∑
i

πifi,

and πi is the unique invariant distribution.

Proof. For a transient case, the result is clear because then Vi(n) is finite and
mi is infinite.

For the recurrent case, we note that

S
(1)
i + . . .+ S

(Vi(n)−1)
i ≤ n ≤ S

(1)
i + . . .+ S

(Vi(n))
i ,

where S(r)
i is the time between visits to i number (r − 1) and number r.

By strong Markov property the random variables S(r)
i are independent and

identically distributed, with expectation EiS
(r)
i = mi. By the strong law of

large numbers, with probability 1,

lim
t→∞

S
(1)
i + . . .+ S

(t)
i

t
= mi.

and since the chain is recurrent, Vi(n) → ∞ with probability 1. It follows that
with probability 1,

n

Vi(n)
→ mi, as n→ ∞,

or

Vi(n)

n
→ 1

mi
, as n→ ∞.

For the second statement we assume without loss of generality that |f | ≤ 1
and note that∣∣∣ 1

n

∑
k=0

n− 1f(Xk)− f
∣∣∣ = ∣∣∣∑

i

(Vi(n)
n

− πi
)
fi

∣∣∣ ≤∑
i

∣∣∣Vi(n)
n

− πi

∣∣∣
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The last sum can be estimated as follows, for an arbitrary choice of a set of
states J ,∑

i

∣∣∣Vi(n)
n

− πi

∣∣∣ ≤∑
i∈J

∣∣∣Vi(n)
n

− πi

∣∣∣+∑
i/∈J

(Vi(n)
n

+ πi

)
=
∑
i∈J

∣∣∣Vi(n)
n

− πi

∣∣∣+ 1−
∑
i∈J

Vi(n)

n
+
∑
i/∈J

πi

=
∑
i∈J

∣∣∣Vi(n)
n

− πi

∣∣∣+∑
i∈J

(
πi −

Vi(n)

n

)
+ 2

∑
i/∈J

πi

≤ 2
∑
i∈J

∣∣∣Vi(n)
n

− πi

∣∣∣+ 2
∑
i/∈J

πi

Then, for an arbitrary choice of ε, one can find a finite set J , so that 2
∑

i/∈J πi <

ε/2. We know that
∣∣∣Vi(n)

n − πi

∣∣∣ → 0 for every fixed i with probability 1. Since

J is finite it follows that
∑

i∈J

∣∣∣Vi(n)
n − πi

∣∣∣ → 0 with probability 1. Together,
this ensures that

1

n

∑
k=0

n− 1f(Xk)− f → 0,

with probability 1.

Exercises
Ex. 4.4.10. Five balls are distributed between two urns, labelled A and B. Each
period, and urn is selected at random, and if it is not empty, a ball from that
urn is removed and placed into the other urn. In the long run, what fraction of
time is urn A empty?
Ex. 4.4.11. Consider the following transition matrix.

P =


1/2 0 0 0 1/2
0 1/2 0 1/2 0
0 0 1 0 0
0 1/4 1/4 1/4 1/4

1/2 0 0 0 1/2

 .
Find all invariant distributions of the corresponding Markov chain.
Ex. 4.4.12. A particle moves on eight vertices of a cube in the following way:
at each step the particle is equally likely to move to each of the free adjacent
vertices, independently of its past motion. Let i be the initial vertex occupied
by the particle, o be the vertex opposite i. Calculate each of the following
quantities.

1. the expected number of steps until the particle returns to i;

2. the expected number of visits to o, until the first return to i;

3. the expected number of steps until the first visit to o.
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4.4.4 Another example of the Markov Chain Monte Carlo
(MCMC) algorithm

Here we present another example of the MCMC algorithm. This example
is a baby-version of some problems from Bayesian statistics. In contrast to
everything in previous sections, in this example the state space is uncountable,
so we allow the Markov chain to take continuous values.

Consider that observations Yi are independent for i = 1, 2, . . . , n and have
the distribution

yi ∼ N (µ, τ−1).

We model µ, τ−1 as random variables with prior distribution

µ ∼ N (θ0, φ
−1
0 ),

τ ∼ Γ(α0, β0),

and µ and τ are independent under prior distribution.
It is assumed here that the parameters of the prior distribution are known.

(The choice of the prior is one of the fundamental issues in Bayesian statistics.)
We would like to sample from the posterior joint distribution of the µ and

τ with the goal to learn about some statistics of this distribution.
By Bayes’ formula the posterior distribution is

π(µ, τ |y) = f(y|µ, τ)π(µ, τ)
f(y)

=
f(y|µ, τ)π(µ, τ)∫∫
f(y|µ, τ)π(µ, τ) dµ dτ

(4.6)

It is clear that

f(y|µ, τ)π(µ, τ) = (2π)−n/2τn/2 exp
(
− τ

2

∑
i

(yi − µ)2
)

× (2π)−1/2φ
1/2
0 exp

(
− φ0

2
(µ− θ0)

2
)

× β−α0
0 Γ(α)−1τα0−1e−β0τ .

In this example, the denominator in (4.6) can be obtained by direct numeric in-
tegration of this formula and the statistics of the posterior distribution π(µ, τ |y)
can be calculated by the direct numeric integration against this distribution.

However, in more complex examples, the number of parameters is typically
larger than two, and the direct integrations are difficult.

Instead, we want to sample points (µi, τi) from the posterior distribution
π(µ, τ |y) without explicitly calculating this distribution.

In order to do this, we build a Markov chain on the state space of the pairs
(µ, τ) so that the invariant distribution of this chain coincides with the posterior
distribution π(µ, τ |y).
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We will use the Gibbs sampler to build this chain. Given a realization of
(µj , τj), we will update µj and τj in an alternating fashion, keeping the other
variable fixed. The probabilities of the updates will be conditional probabilities
given the value of the other variable fixed.

These conditional probability distributions are easy to compute:

π(µ|y, τ) = N (θn, φn),

where

θn =
φ0θ0 + τ

∑
i yi

φ0 + nτ
,

φn = φ0 + nτ,

and

π(τ |µ, y) = Γ(αn, βn),

where

αn = α0 +
n

2
,

βn = β0 +
1

2

∑
i

(yi − µ)2.

In a more complicated case we havem groups of observations, with n observa-
tions in which of them. So, our data is Yij, where i = 1, . . . , n and j = 1, . . . ,m.
The model is

Yij = N (µj , τ
−1).

The prior distributions on the parameters are as before,

µj ∼ N (θ0, φ
−1
0 ),

τ ∼ Γ(α0, β0),

It is easy to calculate the joint distribution and to conclude that the posterior
conditional distributions on µj and τ , are the normal and the gamma distribu-
tions, respectively, with the parameters

θj,n =
φ0θ0 + τ

∑
i yij

φ0 + nτ
,

φn = φ0 + nτ,

and

αn = α0 +
mn

2
,

βn = β0 +
1

2

∑
i,j

(yij − µj)
2.

Then, the samples from the posterior distribution π(µ, τ |y) can be calculated
by a Gibbs sampler method.
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Chapter 5

Martingales

5.1 Filtrations and Stopping Times

Filtrations, stopping times, and martingales are all related to the idea of “the
information available at the present time.” This is represented by an increasing
family of σ-fields indexed by time and random variables measurable with respect
to these σ-algebras.

Definition 5.1.1. A filtration F0 ⊂ F1 ⊂ F2 ⊂ . . ., is an increasing sequence
of σ-algebras.

We use F∞ to denote σ(
∪∞

n=0 Fn).
The σ-algebra Fn is often interpreted as a σ-algebra generated by “events

that are determined by time n.”
For example, if X1, X2, . . . is a sequence of random variables on probability

space (Ω,F ,P), then it defines a filtration

F0 = {∅,Ω} ⊂ F1 = σ(X1) ⊂ F2 = σ(X1, X2) ⊂ . . .

Conversely we say that a sequence of random variables {Xn} is adapted to a
filtration {Fn} if Xn is measurable with respect to Fn for all n ≥ 1. (Sometimes
we will abuse notation and write Xn ∈ Fn to indicate that Xn is measurable
with respect to Fn.)

A sequence of random variables {Xn} is predictable if Xn is measurable with
respect to Fn−1, for all n ≥ 1.

Definition 5.1.2. A stopping time T is a random variable T : Ω → Z+ ∪ {∞}
such that the event {T = n} is Fn-measurable: for every n <∞, {T = n} ∈ Fn.

Intuitively, if Xi is the size of your win/loss at time i in a casino, then your
decision to stop the game at the end of period n should not depend on the value
of Xi for i > n.
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Example: Consider the filtration generated by random variables Xi, i =
1, . . . , N , and the random variable

T = first index i ≤ N s.t. Xi = max
1≤j≤N

Xj .

Then,

(T = n) = (X1 < Xn, . . . , Xn−1 < Xn, Xn+1 ≤ Xn, . . . , XN ≤ Xn).

Clearly (T = n) ∈ FN , but (T = n) /∈ Fn in general. So, T is not a stopping
time. Another example is T = sup{n : Xn ∈ A}, the time of the last visit to a
set A.

Another example of a strategy which is not a stopping time is the following
rule for cooking toast: “cook toast until 10 seconds before it starts to smoke.”

Here are examples of valid stopping times.

• Constant stopping time: T (ω) = k.

• The time of the first visit to a set A, that is, T = inf{n : Xn ∈ A}.

• If T is a stopping time and f(t) : Z+ → Z+ is a non-decreasing function
that has the property that f(t) ≥ t for all t ∈ Z+, then T ′ = f(T ) is again
a stopping time.

• If T1 and T2 are stopping times, so are T1 ∧ T2 and T1 ∨ T2.

The last property implies that any stopping time T is an increasing limit of
bounded stopping times Tn = T ∧ n.

Just as we have σ-algebras Fn associated with constant times, we do have a
σ-algebra FT associated to any stopping time. This is the information we have
when we observe the chain up to time T . Formally,

FT = {A : A ∈ F∞ and A ∩ {T ≤ n} ∈ Fn for each n}.

One can check from the definition that T is FT measurable and so is XT on the
set T <∞.

5.2 Definition of Martingales

An {Fn}-adapted sequence of random variables {Xn} is a martingale with
respect to Fn if

1. E|Xn| <∞, and

2. E(Xn+1|Fn) = Xn for every n ≥ 0.
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We define X0 = EX1 for convenience.
It is useful to think about a martingale Xn as total winnings in a fair game.
From the definition of a martingale and the tower property of the conditional

expectations, it is immediate that E(Xp|Fn) = Xn for p > n.
An adapted sequence with finite means is called a submartingale if Xn ≤

E(Xn+1|Fn), and is called a supermartingale if Xn ≥ E(Xn+1|Fn).
Super-martingale is not an especially “super” thing. It represents winnings

in a losing game where your expected wealth in the next hour is less than it is
now.

Note that if {Xi} is a submartingale then {−Xi} is a supermartingale and
vice versa. For that reason we will usuall formulate results either only for
submartingales or only for supermartingales. For the other case, the results can
be obtained by obvious transformations.

Note also that a martingale is both a submartingale and a supermartingale.
For a submartingale Xn, we have that E(Xn ≤ E(Xn+1)). So, a submartin-

gale increases on average and it can be seen as a stochastic analogue of a non-
decreasing sequence. In particular, we will see later that if a submartingale is
bounded from above then it converges.

We can define Yi+1 = Xi+1 −Xi and see that

E(Yi+1|Fi) = 0 for every i ≥ 0.

Such sequences are called martingale differences. If Yi is a martingale difference,
then we can recover the corresponding martingale as

Xn = X0 + Y1 + Y2 + . . .+ Yn.
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Examples of Martingales

1. (Sums of independent random variables.) If Yi is a sequence of
independent random variables such that E|Yi| < ∞ for all i ≥ 1 and Xn =∑n

i=1 Yi then the sequence {Xn} is a martingale.
2. (Learning Martingale.) If {Fi} is an increasing sequence of σ-algebras

and X is an integrable random variable on (Ω,F ,P), we define Xi = E(X|Fi).
Then Xi is a martingale with respect to {Fi}.

3. (Martingale Transforms.)

Definition 5.2.1. Suppose Xn is a martingale with respect to {Fn}, Yn are the
differences Xn −Xn−1, and an is a predictable sequence (that is, an ∈ Fn−1).
Then, a martingale transform Xn = (a ·Xn) is given by the formula

X ′
n = X ′

n−1 + anYn. (5.1)

Lemma 5.2.2. If Xn is a Fn-martingale, and an is a predictable sequence such
that anXn integrable for each n, then (a ·X) is an Fn-martingale.

Proof. Yn = (a ·X)n is an Fn-martingale if

E(Yn − Yn−1|Fn−1) = E(an(Xn −Xn−1)|Fn−1) = 0.

Using an ∈ Fn−1, Xn−1 ∈ Fn−1 and Xn a martingale, we have

E(Yn − Yn−1|Fn−1) = an(E(Xn|Fn−1)−Xn−1) = 0.

Now, how we can generate submartingales?

Lemma 5.2.3. Suppose {(Xi,Fi)} is a martingale and φ is a convex function
of one variable such that φ(Xi) is integrable for every i. Then {(φ(Xi),Fi)} is
a submartingale.

Proof. This is a consequence of Jensen’s inequality for conditional expectations.

In particular, for any p ≥ 1, if {Xi} is a martingale and E|Xi|p < ∞ for all
i, then {|Xi|p} is a submartingale. For example, if p = 2, then we see that the
variance of {Xi} is increasing with i.

The following inequality generalizes Markov’s inequality to the setting of
martingale sequences.

Theorem 5.2.4 (Doob’s inequality I). Suppose {Xi} is a martingale sequence
of length n. Then

P
{
ω : sup

1≤i≤n
|Xi| ≥ l

}
≤ 1

l

∫
|Xn| dP
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Proof. Let us define S(ω) = sup1≤j≤n |Xj(ω)| and E = {ω : S(ω) ≥ l}.
We can represent E as a union of disjoint events Ej , where Ej is the event

that S(ω) achieved l for the first time at time j.

Ej = {ω : |X1(ω)| < l, . . . , |Xj−1| < l, |Xj | ≥ l}.

We have
P(Ej) ≤

1

l

∫
Ej

|Xj | dP ≤ 1

l

∫
Ej

|Xn| dP

The second inequality follows from the fact that |Xj | is a submartingale. In
particular E(|Xn| |Fj) ≥ |Xj | a.e. and Ej ∈ Fj . Summing up the inequality
over j = 1, . . . , n we obtain

P
{
ω : sup

1≤i≤n
|Xi| ≥ l

}
≤ 1

l

∫
E

|Xn| dP ≤ 1

l

∫
|Xn| dP.

In the proof, we could have started with

P(Ej) ≤
1

lp

∫
Ej

|Xj |p dP

and then we would obtained for p ≥ 1,

P(E) ≤ 1

lp

∫
E

|Xn|p dP

In particular, for p = 2, this gives a generalization of Kolmogorov’s inequality
for sums of independent random variables.

Theorem 5.2.5. If Xn is a martingale and T is a stopping time, then Xn∧T

is also a martingale.

Proof. This follows from Lemma 5.2.2. Indeed, an = 1(T>n−1) ∈ Fn−1 is the
predictable bounded sequence and Xn∧T = (an ·Xn). Hence it is a martingale.

What about the random variable XT ? These are your winnings at the stop-
ping time. Can we claim that EXT = X0?

Now, if Xn is a martingale and T is a stopping time bounded by b, then

E(XT ) = E(XT∧b) = X0,

because XT∧b is a martingale by Theorem 5.2.5.
In the case of an unbounded stopping time T , we have that XT∧n → XT a.s,

as n→ ∞.
Hence, if we could exchange expectations and limits, then we would write:

E(XT ) = E
(

lim
n→∞

XT∧n

)
= lim

n→∞
E(XT∧n) = X0. (5.2)

However, this exchange is not always valid.
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Example 5.2.6. Consider a random symmetric walk Sn starting at S0 = 1 and
let T = inf{n|Sn = 0}.

Then we have EST = 0 because P(T < ∞) = 1, so we eventually hit zero
with probability 1. However, this is different from S0 = 1. Despite the fact that
we play a fair game, we will eventually lose.

In fact the basic theorems of real analysis imply that a sufficient condition
for validity of the exchange is that the sequence of random variables Xn is
uniformly bounded. Hence if Xn is a martingale, T is a stopping time, and
XT∧n is uniformly bounded then EXT = X0.

5.3 Stopping times and martingales: Examples
Example 5.3.1 (Gambler ruin).

Suppose that we have a coin, with probability p of heads, q = 1 − p of
tails. Let us define i.i.d. random variables Xi by Xi = 1 when the ith coin toss
is a head, and −1 when the ith coin toss is a tail.

Define S0 = a where a is a positive integer, and let Sn = S0+X1+ . . .+Xn.
Let T = inf{n : Sn = 0 or b} for b > a an integer. We argue that P(T <∞) = 1
and we want to find P(ST = b) and P(ST = 0).

First, consider the case of a fair coin p = q = 1/2. We know that Sn is a
martingale. What we really need is that E(ST ) = ES0 = a, which holds here
because ST∧n is uniformly bounded. If Tx = inf{n|Sn = x}, then

E(ST ) = 0× P(T0 < Tb) + b×
(
1− P(T0 < Tb)

)
= a.

and

P(ST = 0) = P(T0 < Tb) = 1− a

b
.

Now consider the unfair case p ̸= q. Here Sn is not a martingale and so the
idea is to find a suitable h(x) such that h(Sn) is a martingale.

If h(Sn) were a martingale, we would have that h(x) = ph(x+1)+qh(x−1).
So let us try h(x) = zx, where z will be determined. Then, we should have
zx = pzx+1 + qzx−1, and in particular, z = pz2 + q. The roots of this quadratic
equation are 1 and q

p . So we conclude that ( qp )
Sn is a martingale.

For T = inf{n : Sn = 0 or b}, we observe that (q/p)ST is bounded between
(q/p)0 and (q/p)b, so (q/p)Sn∧T is a bounded martingale. This implies that
E[(q/p)ST ] = (q/p)a, where S0 = a.

Therefore,

P(ST = b)(q/p)b + P(ST = 0)(q/p)0 = (q/p)a.

We also have
P(ST = b) + P(ST = 0) = 1.
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Solving these two equations, we obtain

P(ST = b) =
(q/p)a − 1

(q/p)b − 1

and
P(ST = 0) =

(q/p)b − (q/p)a

(q/p)b − 1
.

Example 5.3.2 (Wald’s First Identity). Let X1, X2, X3, ... be i.i.d. random vari-
ables with E|Xi| < ∞, Sn = X1 +X2 + ... +Xn, and Fn = σ(X1, X2, ..., Xn).
If T is a stopping time for filtration {Fn} and E(T ) <∞, then EST = EX1ET .

Proof.

EST = E

(
T∑

n=1

Xn

)
= E

( ∞∑
n=1

Xn1(T≥n)

)
=

∞∑
n=1

E(Xn1(T≥n))

Note that event (T ≥ n) is measurable with respect to Fn−1. (At the end
of period n − 1 we know that we have not yet stopped and therefore T ≥ n,
although we do not know if we stop at period n.) Since Xn is independent of
Fn−1, therefore,

EST = EX1 E

( ∞∑
n=1

1(T≥n)

)
= EX1ET.

Ex. 5.3.3. If Xn is a martingale such that the differences Yn = Xn −Xn−1 are
all square integrable, show that for n ̸= m, E(YnYm) = 0. Therefore

E(X2
n) = E(X2

0 ) +

n∑
j=1

EY 2
j .

If, in addition, supn E[X2
n] < ∞, then show that there is a random variable

X such that
lim
n→∞

E(|Xn −X|2) = 0.

Example 5.3.4 (Wald’s second identity). Let X1, X2, . . . be i.i.d. with EXn = 0
and EX2

n = σ < ∞. If T is a stopping time with ET < ∞ then show that
ES2

T = σ2ET .

Proof. Recall that Fn = σ(X1, . . . , Xn). Let Mn := S2
n − nσ2, where σ2 =

E[X2]. Check that Mn is a martingale:

E[Mn+1|Fn] = E[S2
n+1 − (n+ 1)σ2|Fn]

= E[S2
n + 2Xn+1Sn +X2

n+1 − (n+ 1)σ2|Fn]

= S2
n − nσ2

= Mn.
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First, if P(T ≤ N) = 1 for some non-random N < ∞. Then, we know
0 = E[M0] = E[MT ] = E[S2

T − Tσ2]. Hence, in this case E[S2
T ] = E[T ]σ2.

Now consider the general case where only ET < ∞ is assumed. We have
E[S2

T∧n] = E[T ∧ n]σ2 for every n = 1, 2, 3, . . .. Since T ∧ n is an increasing
sequence of positive random variable bounded by T and converging a.s. to T as
n increases, hence E[T ∧ n] ↑ E[T ] <∞.

There is a possibility that STn
converges to ST a.s. but not in L2. This could

prevent us from taking the limit on the left-hand side of E[S2
T∧n] = E[T ∧ n]σ2.

In order to rule out this possibility, note that ST∧n is a martingale with square
integrable increments and E[S2

T∧n] = E[T∧n]σ2 < σ2E[T ] <∞. So, by applying
the result in Exercise 5.3.3 to martingale ST∧n, we find that ST∧n converges to
a limit in L2. Since we know that ST∧n → ST a.s., the limit in L2 is also ST .
Therefore E[S2

T ] = limn→∞ E[S2
T∧n] = E[T ]σ2.

5.4 Martingale convergence theorem

Figure 5.1

Suppose that Xn, n ≥ 0 is a martingale modeling the fortune of a
gambler (who is playing a fair game) at time n, and let a and b be two real
numbers such that X0 ≤ a < b. Upcrossing is defined as a situation when a
sequence of random variables goes from below the lower threshold a to above
the upper threshold b (see Figure 5.1).

Let Ua,b(n) be the number of upcrossings of [a, b] by the sequenceX0, X1, . . . , Xn

and Ua,b be the number of upcrossings of [a, b] by the entire sequence (so Ua,b

can be infinite).
If Xn is a stock price, and you buy a stock whenever Xn ≤ a and sell it

when Xn ≥ b, then every time that an upcrossing completes, you make a profit
of at least $(b− a). Our goal is to study the number of upcrossings.
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Recall that a super-martingale Xn is a stochastically declining sequence
when E(Xn+1|Fn) ≤ Xn.

Theorem 5.4.1 (Doob’s Upcrossing Inequality). Let {Xn} be a supermartin-
gale, and EX0 < a < b. Then for every n,

EUa,b(n) ≤
E(a−Xn)

+

b− a
≤ |a|+ E|Xn|

b− a
.

This theorem allows us to conclude that for L1-bounded martingales (i.e.,
when the sequence E|Xn| is bounded), the total number of upcrossings Ua,b

is bounded with probability one. Indeed, EUa,b(n) is increasing and bounded.
Hence EUa,b = limn→∞ EUa,b(n) < ∞ and this implies that Ua,b is bounded
with probability 1.

Proof. Let C1 = 1{X0<a}, and

Cn = 1{Cn−1=1}1{Xn−1≤b} + 1{Cn−1=0}1{Xn−1<a} for n ≥ 2.

In words, Cn equals 1 when either Cn−1 = 1 and the stock price at time n−1 was
less than upper threshold b or if Cn−1 = 0 but the prices at time n− 1 dropped
below lower threshold a. That is Cn is 1 if the trader uses the upcrossing
strategy by trading one share of stock.

Define Yn = (C · X)n. This is the wealth of the trader at time n. The
sequence Cn is predictable and bounded, and therefore Yn is a supermartingale.
Hence EYn < 0. On the other hand, it is obvious from the picture that

Yn(ω) ≥ (b− a)Ua,b(n)(ω)− (a−Xn(ω))
+.

Every upcrossing of [a, b] increases the Y -value by at least (b − a), while the
(a−Xn(ω))

+ overestimates the loss during the last interval of play.
By taking expectations on both sides, we find that

(b− a)EUa,b(n) ≤ E(a−Xn)
+,

as claimed.

If {Xn} is a supermartingale and supn E|Xn| <∞, then {Xn} is called L1 -
bounded supermartingale.

Theorem 5.4.2 (Doob’s Martingale Convergence Theorem). If {Xn} is an L1-
bounded supermartingale, then as n→ ∞, Xn converges almost surely to a limit
X with E|X| <∞.

Proof. From the upcrossing inequality we can infer that for every interval [a, b]
the number of upcrossings is finite with probability 1.

If Xn does not converge, then either there is an interval that is crossed in-
finitely many times, which is impossible by the above argument, or Xn converges
to +∞ or −∞.
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However the latter is impossible by Fatou’s lemma:

E(|X∞|) = E(lim inf |Xn|) ≤ lim infE(|Xn|)
≤ supE(|Xn|) <∞,

so that
P(X∞ is finite) = 1.

Corollary 5.4.3. If {Xn} is a non-negative supermartingale, then X∞ =
limXn exists almost surely.

Proof. The martingale {Xn} is bounded in L1, since E|Xn| = E(Xn) ≤ E(X0).

5.5 Uniformly integrable martingales

Sometimes we are interested to know when the limit of a martingale se-
quence has the expectation equal to the limit of expectations.

In general, convergence in probability can be upgraded to convergence in L1

if the converging sequence of functions Xn is uniformly integrable (“UI”). (See
Appendix.)

A class C of random variables is called uniformly integrable (UI) if given
ε > 0, there exists K ∈ [0,∞) such that

E(|X|I|X|≥K) ≤ ε

for all X ∈ C.
Note that if the sequence Xn is uniformly integrable then it is automatically

L1 bounded.
If, in addition, Xn is a martingale, then by Doob’s theorem we can conclude

that Xn converges a.s. to an integrable r.v. X∞, and, by uniform integrability,
EXn → EX.

There are two useful sufficient conditions for Xn to be a uniformly integrable
(UI) martingale. First, if Xn is Lp-bounded for a p > 1, then Xn is uniformly
integrable. (If Xn is only L1-bounded than it is not necessarily UI.)

Second, if Xn = E(X|Fn) for an integrable r.v. X and a filtration {Fn},
then Xn is uniformly integrable.

This is a consequence of the following result.

Theorem 5.5.1. Let X ∈ L1(Ω,F ,P) and let G vary over all sub-σ-fields of
F . The family {E(X|G) : G ⊂ F} is uniformly integrable.

For the proof we need a lemma. Let us write E(X;A) to denote E(X1A).

Lemma 5.5.2. Suppose X ∈ L1(Ω,F ,P). Then, given ϵ > 0, there exists a
δ > 0 such that for every A ∈ F , P(A) < δ implies that E(|X|;A) < ϵ.
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Proof of Lemma. If the conclusion is false, then, for some ϵ0 > 0, we can find
a sequence An of elements of F , such that P(An) < 2−n and E(|X|;An) ≥ ϵ0.
Let

H = lim supAn =
∩
m

∪
n≥m

An = {ω : ω ∈ An for infinitely many n}.

Then by Borel-Cantelli Lemma, P (H) = 0, however, |X|1An
is bounded above

by a integrable |X| hence, the ‘Reverse’ Fatou Lemma shows that the expec-
tation when we pass in the limit to |X|1An can only jump upward, hence
E(|X|;H) ≥ ϵ0, and we have arrived at the required contradiction.

Proof of Theorem: 5.5.1. We denote E(X|G) byXG . Let ϵ > 0 be given. Choose
δ > 0 such that, for all A ∈ F ,

P(A) < δ implies that E(|X|;A) < ϵ.

Choose K so that K−1E(|X|) < δ
By Jensen’s inequality for conditional expectations, |XG | ≤ |X|G .
Hence E|XG | ≤ E|X|, and

KP(|XG | > K) ≤ E|XG | ≤ E|X|,
so that

P(|XG | > K) < δ.

Since {|XG | > K} ∈ G, hence
E(|XG |; {|XG | > K}) ≤ E(|X|G ; {|XG | > K})

= E(|X|; {|XG | > K}) ≤ ϵ,

where the equality holds by the definition of the conditional expectation.

This situation is in fact the most general as the following theorem shows.
Theorem 5.5.3. Let X be a UI martingale. Then X∞ : = limXn exists a.s.
and in L1. Moreover for every n,

Xn = E(X∞|Fn).

Proof. We already know that X converges a.s. and L1. It remains to show the
last property. Let A ∈ Fn and let r ≥ n. Then

|E(Xr;A)− E(X∞;A)| ≤ E(|Xr −X∞|;A)
≤ E(|Xr −X∞|) → 0,

as r → ∞, because Xr converges to X∞ in L1. On the other hand we know by
martingale property that

E(Xr;A) = E(Xn;A).

By taking the limit r → ∞ we find that
E(X∞;A) = E(Xn;A),

which means by definition that Xn = E(X∞|Fn).
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5.6 Regular stopping times

In many cases we don’t have a uniformly integrable or even L1 - bounded
martingale, so we cannot use the criterion of the previous section directly. In
these cases, we hope that we can stop martingales so that the “stopped” mar-
tingale is uniformly integrable.

Definition 5.6.1. A stopping time T is called regular for the martingale {Xn}
if the martingale {Xn∧T } is uniformly integrable.

For example, for a random walk Sn that starts from a > 0 and b > a, the
stopping time T = inf{n : Sn ≥ b or Sn ≤ 0} is regular, because the stopped
martingale is bounded.

Theorem 5.6.2. Let Sn = Y1 + . . .+Yn, where Yk are i.i.d. integrable random
variables and EYk = 0.

Suppose T is a stopping time which satisfies E(T ) <∞. Then,
(i) T is regular for Sn assuming E(|Y1|) <∞.
(ii) T is regular for S2

n − nVar(Y1) assuming E(Y 2
1 ) <∞.

Proof. Since E(T ) < ∞, hence P(T < ∞) = 1 and ST∧n
a.s.−→ ST . We will show

that the convergence holds also in L1, which implies that ST∧n is uniformly
integrable.

Note that |ST∧n − ST | = 0 if T ≤ n and

|ST∧n − ST | =
∣∣∣ T∑
j=n+1

Yj

∣∣∣, if T > n.

Hence,

|ST∧n − ST | =
∣∣∣ ∞∑
j=n+1

Yj1{j≤T}

∣∣∣
≤

∞∑
j=n+1

|Yj |1{j≤T} =: ξn+1.

We claim that Eξn+1 → 0 as n → ∞. Note that if this is true, then the
previous inequality immediately gives the desired convergence ST∧n → ST in
L1.

Clearly ξn+1 → 0 almost surely, since the series is zero if n > T . In addition,
ξn+1 ≤ ξ1 for every n ≥ 0. So, it remains to show that ξ1 is integrable, and the
conclusion will follow by the bounded convergence theorem. We have

Eξ1 =

∞∑
j=1

E
(
|Yj |1{j≤T}

)
.
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Note that event {j ≤ T} is measurable at time j − 1, since it is known at time
j − 1 if T < j (that is, if the martingale has been stopped).

Therefore, by independence we find that

Eξ1 =

∞∑
j=1

E|Yj | × E
(
1{j≤T}

)
= E|Y1|

∞∑
j=1

E
(
1{j≤T}

)
= E|Y1| × ET <∞.

In order to prove the second claim, we will first show that ST∧n → ST in
L2.

Indeed, by using independence, we write

E
(
ST∧n − ST

)2
= E

( ∞∑
j=n+1

Yj1{j≤T}

)2

=

∞∑
j=n+1

E
(
Yj1{j≤T}

)2
= E(Y1)2E(T ).

because for i < j,

E
(
Yi1{i≤T}Yj1{j≤T}

)
E
(
YjYi1{i≤T}

)
= 0,

since {i ≤ T} is measurable at time i− 1.
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5.7 Applications of Martingales
Applications:

1. Kakutani Theorem and consistency of likelyhood ratio test.

2. the Choquet-Deny theorem on bounded harmonic functions for random
walks on groups.

3. The double logarithm law for supremum of a random walk.

4. Azuma-Hoeffding inequality

5. Application to math finance

6. Application to optimality in stochastic control

7. Application to filtering

96



Figure 5.2: A fragment of a random spanning tree for Z2
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Chapter 6

Uniform Spanning Trees

6.1 General Results
6.1.1 What is a Uniform Spanning Tree (UST)?

First of all, recall that a (directed)graph G = (V,E) is a set of vertices V
and a set of edges E, which are simply a pair of vertices E ⊂ V × V . We will
assume that there are no loops, that is, there is no edges e = (v, v). A graph
G1 = (V1, E1) is a subgraph of G if V1 ⊂ V and E1 ⊂ E.

An undirected graph is a graph in which edge (v1, v2) is identified with edge
(v2, v1). One can think about this as that these two edges always come together.
This is also called a simple graph since it does not have loops and multiple edges,
that is, there cannot be two distinct edges with the same endpoints. If multiple
edges are allowed we have to distinguish between several different edges (u, v).
Such a graph is called a multigraph. Some of our results should also work
for multigraphs but as a standing hypothesis it is assumed that all graphs are
simple.

A path is a sequence of edges e1 = (v0, v1), …, en = (vn−1, vn). A circuit is
a path such that all vi are distinct except that vn = v0. A graph is connected if
for every pair of vertices u and v, there is a path from u to v.

A tree is a connected graph such that |E| = |V | − 1. It can also be defined
as a connected graph without circuits. And a spanning tree T of a graph G is a
subgraph of G that has the same set of vertices as G and also is a tree.

Definition 6.1.1. A uniform spanning tree (“UST”) T of a graph G is a tree
which is chosen uniformly at random from all spanning trees of G.

6.1.2 Wilson’s algorithm for UST generation

Wilson’s algorithm is a very efficient method to generate a spanning tree.
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Wilson’s method applies to a more general situation when one needs to generate
a weighted spanning tree on a directed graph associated with a finite Markov
chain.

Recall that a directed graph G⃗ is a pair (V, E⃗), where V is a finite set of
vertices and E⃗ is a set of directed edges, that is a subset of V × V where the
elements (v1, v2) and (v2, v1) are considered different. For an edge e = (v1, v2)
the vertex v1 is called tail and denoted e− and vertex v2 is called head and
denoted e+.

For each directed graph G⃗ we can associate an undirected graph G by for-
getting the orientation of the edges of G⃗. In this case, however, two edges of
G⃗ can map to one edge of G. We can talk about paths and cycles of G⃗ as the
sequences of edges that map to paths and cycles of G.

In addition, we have the concept of directed path e1, . . . , ek, in which the
head of the edge ei is the tail of the next edge ei+1. If v0 is the tail of the first
edge e1 and vk is the head of the last edge vk then we say that v0 and v1 are
connected by a directed path.

Next we define a spanning tree T of a directed graph G as a subgraph of G
that includes all vertices in V , that has a marked vertex, called root, and that
satisfies a property that every vertex in V except root is connected to the root
by a unique directed path in T , and this path is directed from the vertex to the
root.

In general, not all directed graphs G have a spanning tree. However, the
graphs associated with irreducible Markov chains do have spanning trees.

For a Markov chain on state-space V , we associate a directed graph G by
assuming that it has a directed edge (v1, v2), if and only if the probability of
one-step transition from v1 to v2 is positive, P (v1, v2) > 0.

A usual spanning tree for a graph G is the directed spanning tree for the
simple random walk on graph G for which we forget the orientation of the edges.
Conversely if T is the spanning tree on G, then G⃗ has |V | directed spanning
trees which are obtained from T by selecting a vertex v as a root and choosing
those edges in the tree that are directed to the root.

In particular, if we have a method to generate a directed spanning tree
uniformly at random, then this gives a method to generate the usual spanning
tree uniformly at random.

Wilson’s method is a way to generate a directed spanning tree with a specific
probability distribution. Namely, let us associate a weight w(T ) to the spanning
tree T , where

w(T ) =
∏
e∈T

p(e),

and where p(e) = p(v1, v2) is the probability of transition from vertex v1 to v2
for every directed edge e = (v1, v2).

Wilson’s method generates trees with probability distribution proportional
to these weights. It works by constructing an increasing sequence of trees Ti,
i = 0, . . . s. Choose a random vertex r. This will be the root of the trees. We
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start with T0 with the vertex set V0 = {r}. Given a tree Ti = (Vi, Ei), which is
not spanning, select x ∈ V \Vi. Start the Markov chain at x and stop it when it
hits Ti. Perform a loop erasure on the resulting directed path of the edges and
add the resulting path to Ti. The result is declared to be Ti+1.

This algorithm requires explaining what do we mean by “loop erasure” of a
directed path. Let P = (x0, x1, . . . , xl) is a directed path. If xl = x0, then we
set the resulting looped erased path is empty. If xl ̸= x0 then we set u0 = x0
and u1 = xi+1 where xi is the last time when the path visited x0. Next we
check if xl = u1. If yes, we stop and the loop erased path is (u0, u1). If not
then we set u2 = xj+1, where xj is the last time when the path visited u1. We
continue this process until xl = ut for some t. The resulting path (u0, . . . , ut) is
directed and has no cycles. We call it the loop erasure of P and denote LE(P ).
Theorem 6.1.2. Wilson’s method produces a directed spanning tree T of the
graph associated with Markov chain with probability proportional to w(T ).

The proof of this theorem is by a study of a model which is slightly more
general than the Markov chain. We call it the random stacks model. It is given
as a collection of numbers Sx

i , i = 1, . . . ,∞. These numbers are all independent
and P(Sx

i = y) = P(x, y), where P(x, y) is the transition probability of the
Markov chain.

Intuitively, every collection {Sx
i } can be thought of as a realization of the

Markov chain where the random variable Sx
i shows which is the next state after

the i-th visit to the state x.
It is convenient to think about these numbers as organized in stacks lying

under the states x. In this case the Markov chain can be imagined by moving
around the state space from x to whatever is written on the top of the stack Sx

and removing this prescription from the stack.
The top elements of stacks describe a directed graph with edges (x, Sx

1 ). This
is a graph in which each vertex has out-degree 1. This graph is called “visible
graph”.

Next we can consider certain operations on the collection of stacks {Sx}
which relate two different collections. Every of these operations is a composition
of several elementary operations, which are called “popping a cycle”.

Popping a cycle is an operation that removes the top elements in stacks {Sx}
that form a cycle. Popping a cycle changes the visible graph and it is convenient
to distinguish the edges in this graph even if they have the same endpoints. For
this reason we say that the edge (x, y) has color i if corresponds to the element
y = Sx

i in the original stack configuration.
Note that a sequence of cycle-popping can terminate if there are no cycles

to pop. In this case, the visible graph is a directed spanning tree. An example
is shown in Figure 6.1.

It is important that if the process of cycle-popping is eventually terminated
then the order of cycle-popping does not matter and the resulting spanning tree
is always the same. This is the claim of the following lemma.
Lemma 6.1.3. Given any stacks under the states, the order in which cycles
are popped is irrelevant in the sense that every order pops an infinite number of
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Figure 6.1: An example of cycle popping. On the left is the stacks under the 6
vertices. The stack under the root r is empty. In the middle is a sequence
of popped cycles (shown in the clock-wise order). The numbers on the
top of edges show the depth of the edges in stacks. On the right is the
resulting spanning tree.

cycles or every order pops the same (finite set of) colored cycles, thus leaving
the same colored spanning tree on top in the latter case.

Proof. Suppose that a colored cycle C can be popped at some stage of a cycle-
popping sequence, that is, that there is a sequence C1, C2, …Ck = C of colored
cycles that can be popped, and suppose that C ′ ̸= C1 is another colored cycle
that can be popped at the first stage. Then we claim that either (1) C ′ = C or
(2) after C ′ is popped, there is another cycle-popping sequence such that C can
be popped.

This is enough to prove the lemma. Indeed, if at least one cycle-popping
sequence is infinite then for every other sequence there is always an infinite
number of cycles that can be popped, so every sequence is infinite. On the
other hand, suppose a colored cycle C is an element of a finite cycle-popping
sequence. Then if we consider a particular stage of another sequence, then the
claim above shows that either C is already popped in this sequence, or it can be
continued so that C is popped. Since all sequences are finite in this case, when
we conclude that C will be eventually popped.

So it remains to prove the claim above. Now if all the vertices in C ′ are
different from vertices in Ci then obviously, C can still be popped. Otherwise,
let Cj be the first cycle that has a vertex in common with C ′. Let x be this
vertex and let it be followed by y in C ′. Since C ′ can be popped at the first
stage and since it has no vertices in common with C1, . . . , Cj−1 hence x is still
followed by y in Cj . By repeating this argument we find that C ′ = Cj and either
C ′ = C or it is possible to pop C in the order C ′, C1, . . . , Ck−1, Ck+1, . . . , C.

Proof of Theorem 6.1.2. We think about Wilson’s algorithm as a particular ex-
ample of cycle popping procedure applied to a realization of random stacks
model. By the previous lemma the order of cycle-poppings does not matter. If
a particular sequence of cycle-poppings terminates, then all of these sequences
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terminate and all them pop exactly the same sequence of cycles. We are inter-
ested to know what is the probability that a particular spanning tree will be
uncovered as a result of any of these sequences. Clearly, the lemma implies that
this probability depends only on the realization of the random-stack model.

Hence, the probability that Wilson’s algorithm ends with a spanning tree T
is ∑

O

w(O)w(T ),

where w(O) =
∏

e∈O p(e), where O is a collection of cycles in a realization of
the random stack model such that popping these cycles will uncover the tree T .
Note that this collection does not depend on T in the sense that any collection
O is compatible with any spanning tree T . Hence, this probability is(∑

O

w(O)
)
w(T ),

so it is proportional to w(T ).

6.1.3 USTs, hitting probabilities, and potentials

Now let us return to the case of undirected graphs. Consider a random
walk on an undirected graph G. This is a Markov chain with the transition
probability p(v1, v2) = 1/d(v1) where (v1, v2) is an edge of the graph G, and the
vertex v1 has degree d(v1). Hence, for a given root r, Wilson’s method generates
spanning trees with probability proportional to weight

w(T ) =
∏
e∈T

1

d(e−)
=

∏
v∈V \{r}

1

d(v)

This probability is the same for all trees with the root at r. Every undirected
spanning tree on graph G corresponds to exactly one directed spanning tree on
graph G⃗ with a specified root r. Hence, if after a directed tree is generated
by Wilson procedure with a specific r, we remove the direction of edges, every
resulting undirected tree will receive equal probability. This shows that Wilson’s
method can be used to generate undirected spanning trees of graph G uniformly
at random.

The uniform spanning trees are connected to other models such as domino
tilings, perfect matchings in graphs and others and it is important to be able to
calculate probabilities that a selected edge or edge belong to the tree. We start
with just one edge.

Theorem 6.1.4 (Uniform spanning tree and hitting probabilities). Let T be
an unrooted weighted uniform spanning tree of a graph G and e = (e−, e+) be
an edge of G. Then

P[e ∈ T ] = Pe− [ 1st hit e+ via traveling along e].
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Proof. The first statement follows from Wilson’s method applied to graph G if
we set root equal e+ and start the procedure with e−. Indeed, if the first hit of
e+ is via traveling along e, then the procedure stops at the moment of hit and
e will not be removed during loop erasure. Therefore, it will be a part of the
generated tree. Conversely, e can be part of the tree only if the first hit of e+
occurred via the edge e.

How do we calculate the probability of the first hit along a specific edge?
For this we introduce Green functions.

Recall that we introduced the hitting time of a subset A is the random
variable

HA = inf{n ≥ 0 : Xn ∈ A}.

Define the Green function GA(a, x) for a Markov chain absorbed at A as
the expected number of visits to x strictly before hitting A by a random walk
started at a. If

NA(x) =

∞∑
n=0

1[Xn = x, n < HA]

denotes the number of visits to x by the Markov chain Xi before hitting A, then

GA(a, x) = E[NA(x)|X0 = a].

Theorem 6.1.5. Let G be a finite connected graph. Start a random walk at a
and absorb it when it first visits a set A. For an edge e = (x, y), let Sxy be the
number of transitions from x to y. Let x /∈ A. Then,

E[Sxy] = GA(a, x)/dx.

Proof. Sxy is the number of visits to x followed by a transition to y. There-
fore, E[Sxy] = GA(a, x)/dx by the definition of GA(a, x) and the fact that the
transition probability from x to y equals dx.

Theorem 6.1.6 (Kirchhoff’s Formula). Let T be an unrooted weighted uniform
spanning tree of a graph G and e = (e−, e+) be an edge of G. Then,

P[e ∈ T ] = Ge+(e
−, e−)/de− ,

Proof. By Theorem 6.1.4,

P[e ∈ T ] = Pe− [ 1st hit e+ via traveling along e]. (6.1)

Consider now the random walk on G, started at e− and stopped at e+. Then
Se−,e+ = 1 if the first hit of e+ occurred via e and zero otherwise. And
Se+,e− = 0 always. Hence, the probability on the right-hand side of (6.1) equals
Ge+(e

−, x)/dx with x = e− by Theorem 6.1.5.
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Note that this formula gives an answer how to calculate the probability that
an edge belongs to a tree provided that we can calculate the Green functions
for a given source and boundary.

Obviously GA(a, x) = 0 if x ∈ A. What can be said about the Green
function outside of a and A? First of all, if the chain is reversible, then the
Green function is in a certain sense symmetric.

Lemma 6.1.7. If the Markov chain Xn is reversible with the stationary distri-
bution π(x), then

π(a)GA(a, x) = π(x)GA(x, a).

Proof. By the definition of reversibility P (x, y) = π(x)Pxy = π(y)P(yx) =
P (y, x). For every path (x0, x1, . . . , xn), this property can be extended to the
property

P (x0, x1, . . . , xn) = P (xn, xn−1, . . . , x0),

where P (x0, x1, . . . , xn) := π(x0)Px0x1
. . . Pxn−1xn

, is the joint probability mass
function for a chain P started in invariant distribution π. Hence, for every n,

π(a)P
[
Xn = x, n < HA|X0 = a

]
=

∑
x1,...,xn−1 /∈A

π(a)P
[
X1 = x1, . . . , Xn = x|X0 = a

]
=

∑
x1,...,xn−1 /∈A

P (a, x1, . . . , xn−1, x)

=
∑

x1,...,xn−1 /∈A

P (x, xn−1, . . . , x1, a)

= π(x)P
[
Xn = a, n < HA|X0 = x

]
.

Since GA(a, x) =
∑∞

n=0 P
[
Xn = x, n < HA|X0 = a

]
, after summing the identity

in the previous display over all n, we obtain the conclusion of the lemma.

Theorem 6.1.8. If the Markov chain Xn is irreducible and reversible with the
stationary distribution π(x) > 0 for all x, then the function v(x) = GA(a, x)/π(x)
is harmonic everywhere outside a ∪A. That is,

v(x) =
∑
y

Pxyv(y),

for x /∈ a ∪A. In addition,

v(a)−
∑
y

P (a, y)v(y) =
1

π(a)
.
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Proof. By using lemma, we only need to show that the function GA(x, a) is
harmonic over x if x /∈ a ∪A. However, this is clear from the formula

GA(x, a) := E[NA(a)|X0 = x] =
∑
y

P (x, y)E[ÑA(a)|X1 = y]

=
∑
y

P (x, y)E[NA(a)|X0 = y]

=
∑
y

P (x, y)GA(y, a),

where ÑA(a) :=
∑∞

n=1 1[Xn = a, n < HA], valid for all x /∈ a ∪A.
For x = a, we have

E[NA(a)|X0 = a] = 1 +
∑
y

P (a, y)E[ÑA(a)|X1 = y],

which means that
1

π(a)
GA(a, a) =

1

π(a)
+
∑
y

P (a, y)
1

π(a)
GA(y, a),

or

v(a)−
∑
y

P (a, y)v(y) =
1

π(a)
.

In our case, we are concerned with random walks on graphs where the tran-
sition probabilities Pij = 1/di, where di is the degree of vertex i. Hence we will
call a function f on vertices of graph G harmonic at vertex x, if

f(x) =
1

dx

∑
y∼x

f(y),

where the sum is over all y adjacent to x.
Theorems 6.1.6 and6.1.8 gives us tools to calculate the probabilities that a

given edge belongs to a uniform spanning tree.
In order to generalize this to many edges, we connect these results with

the theory of electric networks. However, for simplicity we will consider only
the case when all edge conductances are equal 1. This will be enough for our
purposes.

Definition 6.1.9. Let a and A be a vertex and a subset of vertices of a graph
G, then a voltage function is a function on the vertices of the graph that is
harmonic at all x /∈ a ∪A.
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Another name for the voltage function is potential, and one can talk about
potential theory for Markov chains. The voltage should be thought of as a
harmonic function on vertices of the graph that has exceptions at some vertices
where it is not harmonic. We will usually think about a as a point with non-zero
voltage through which the electric current flows in (so it is a “source”) and A
as the set with zero voltage (“ground” or a “sink”). However, this will not play
a role in calculations and purely for convenience.

Definition 6.1.10. Given a voltage function v, we define the associated current
function i on the pairs of adjacent vertices by

i(x, y) := v(x)− v(y).

Notice that current function is antisymmetric i(x, y) = −i(y, x) and when-
ever v is harmonic at a vertex x, we have∑

y∼x

i(x, y) = 0,

where y ∼ x means that vertex y is adjacent to vertex x.
The definition of voltage function implies that a current function is a flow

on V \{a ∪A}, where we use the following important definition.

Definition 6.1.11. A function f on ordered pairs of adjacent vertices in graph
G is called a flow between a and A if f(x, y) = −f(y, x) for all neighbors x, y
and

∑
y∼x f(x, y) = 0 for all x not in a ∪A.

A flow between a and A is called a unit flow (out of a) if
∑

y∼a f(a, y) = 1.

Theorem 6.1.12 (Voltage as expected number of visits). Let G be a finite
connected graph, dx denote the degree of vertex x, and GA(a, x) be the Green
function for a walk started at a and stopped at A. Then, the formula v(x) =
GA(a, x)/dx defines a valid voltage function on G, which is harmonic everywhere
outside a ∪A with the voltage equal to 0 on A. It corresponds to a unit current
flow between a and A.

Proof. Since the stationary distribution π(x) of a simple random walk is pro-
portional to dx, π(x) = cdx, the claims that v(x) is harmonic outside of a ∪ A
and that v(x) = 0 for x ∈ A have been already proved in Theorem 6.1.8. In
addition, the same theorem implies that

v(a) =
1

da
+

1

da

∑
y∼a

v(y),

which we can rewrite as

1 =
∑
y∼a

(v(a)− v(y)).

This shows that v corresponds to the unit current flow.
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The Kirchhoff formula in Theorem 6.1.8 can be reformulated as a statement
about current flows. Namely, for an edge e = (e−, e+),

P(e ∈ T ) = ie(e
−, e+),

where ie is the unit current flow from e− to e+.
More generally, we are interested in a probability P[e1, . . . , ek ∈ T ] that a

specific set of edges e1, . . . , ek belong to a uniform spanning tree.
In order to formulate the result, let us choose an arbitrary orientation on

the graph G, so that we can talk about the start point e− and the end point e+
of an edge. Then ie denote the unit current flow from e− to e+. Specifically,
for two adjacent edges x and y, define

ie(x, y) =
1

de−

[
Ge+(e

−, x)−Ge+(e
−, y)

]
,

where G is the corresponding Green function. Then for two arbitrary edges we
define the following function:

Y(e, f) := ie(f) = ie(f
−, f+).

Theorem 6.1.13 (Burton-Pemantle). Let T be a uniform spanning tree of
graph G. For any distinct edges e1, . . . , ek ∈ G,

P[e1, . . . , ek ∈ T ] = detY(ei, ej)�
∣∣∣
i=1,...,k;j=1,...,k

The case k = 1 of this theorem has been just established. Then we plan to
proceed by induction by using the identity:

P[e1, . . . , ek ∈ T ] = P[ek ∈ T |e1, . . . , ek−1 ∈ T ]P[e1, . . . , ek−1 ∈ T ].

The proof of the Burton-Pemantle is based on an interpretation of the con-
ditional probability

P(e ∈ T |e1, . . . , ek ∈ T )

in terms of the UST of the graph G contracted along edges e1, . . . , ek.
A contraction of a graph G along a set of edges is a different graph G′ in

which all endpoints of the edges are replaced with a single vertex and all the
resulting loops are removed. In this form, however, the resulting graph can
become a multigraph (without loops), in which two vertices can be connected
by several different edges.

Lemma 6.1.14. Suppose T is a spanning tree in G and e1, . . . , ek ∈ T . Then
T ′ = T/{e1, . . . , ek} is a spanning tree in multigraph G′ = G/{e1, . . . , ek}.

Proof. A contraction of an edge in T cannot create a cycle in T ′, so T ′ is still a
tree and it is also obvious that it is a spanning tree.
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Lemma 6.1.15. Let e1, . . . , ek is a set of edges in G and T is a uniform random
spanning tree in G. If e1, . . . , ek ∈ T , then T ′ = T/{e1, . . . , ek} is the uniform
spanning tree in multigraph G′ = G/{e1, . . . , ek}.

Proof. This holds because there is a bijection between spanning trees in G that
contain edges e1, . . . , ek and all uniform spanning trees in G. If T is a uniform
(random) spanning tree and t1, t2 are two spanning trees that both contain
e1, . . . , ek, then P(T = t1) = P(T = t2) by definition of uniform distribution.
The bijectivity of the map T → T ′ = T/{e1, . . . , ek} implies that P(T ′ = t′1) =
P(T ′ = t′2).

It follows that if T and T ′ denote the corresponding uniform spanning trees
in G and G′ == G/{e1, . . . , ek}, respectively, then

P(e ∈ T |e1, . . . , ek ∈ T ) = P(e ∈ T ′), (6.2)

We assume here without proof our previous theory can be applied to multi-
graph G′. (In particular, we assume that a suitable generalization of Wilson’
method generate a uniform spanning tree in multigraph.)

In particular, we assume that

P(e ∈ T |e1, . . . , ek ∈ T ) = P(e ∈ T ′) = iG
′

e (e), (6.3)

where iG′

e is the unit current flow from e− to e+ in multigraph G′.
In order to use this idea we need to understand how the contraction of edges

influences the current flows. For this purpose, we will study the space of current
flows more attentively in the next section. The main idea will be to represent
iG

′

e as an orthogonal projection of ie on the space of current flows orthogonal to
currents ie1 , ie2 , . . . , iek .

6.1.4 Voltages, Currents, and Projections

Our first goal will be establishing that the matrix Y(ei, ej) = iei(ej) in the
Burton-Pemantle theorem can be represented as the matrix of a quadratic form
(PXe

∗
i , e

∗
j ) for certain functions e∗i and e∗j and a certain orthogonal projection

operator PX .
First, we need to understand what are distinct features of current flows.
(What is going on in this section is that we are building a discrete version

of certain concepts from differential geometry. Current flows correspond to
differentials of functions and general flows to differential forms. We are going
to build a decomposition of the space of forms as a direct sum of the space of
differentials and its orthogonal complement.)

In the following theorem we use directed edges and define the current func-
tion i on a directed edge e = (x, y) as i(e) = v(x) − v(y), where v is a voltage
function.
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Theorem 6.1.16 (Kirchhoff’s cycle law). Let e1 = (v0, v1), e2 = (v1, v2), …,
en = (vn−1, vn = v0) is a directed cycle in V and i is a current flow. Then

n∑
k=1

i(ek) = 0.

This follows from the definition of the current function as the difference of
the voltage on endpoints. In fact this property holds for any function on directed
edges defined as difference of a fixed function on edge endpoints. Note, however,
that this property does not always hold for arbitrary flows. (For example, it
does not hold for a flow over the cycle graph that gives value 1 to every counter-
clockwise directed edge.) In fact, this property is in a certain sense characterizes
the current flows.

Lemma 6.1.17. Suppose that an antisymmetric function j (meaning that j(x, y) =
−j(y, x)) on the directed edges of a finite connected graph satisfies Kirchhoff’s
cycle law. Then there exists a function F (x) on vertices of the graph such that
j(x, y) = F (x) − F (y). This function is unique up to an additive constant.
Moreover, the function F is harmonic at every point x, where the following star
condition is satisfied: ∑

e:e−=x

j(e) = 0.

Proof. Fix a value F (x0) on some particular vertex. Then we can define the
value F (y) on any vertex by finding a path e1, . . . , en from x0 to y and defining
F (y) = F (x0) −

∑n
k=1 j(e). The fact that this definition does not depend on

the choice of path follows from the cycle law. The uniqueness can be shown by
induction. The final statement follows because

1

dx

∑
y∼x

F (y) = F (x)− 1

dx

∑
e:e−=x

j(e).

In order to discuss current flows it is convenient to introduce a suitable linear
space with a scalar product.

First of all, for a graph G = (V,E), let us define E⃗, the set of directed edges
of G. Namely, if e = (v1, v2) ∈ E, then there are two corresponding elements
(“directed edges”) in E⃗.

It is convenient to identify vertices of G with integers 1, . . . , |V |, the edges
in E with ordered pairs (v1, v2), v1 < v2 and the edges in E⃗ with all possible
pairs (v1, v2), v1 ̸= v2. For an edge e = (v1, v2) ∈ E⃗, we define −e = (v2, v1).
For the edge e, we also define e− = v1 and e+ = v2.

Next we introduce an |E|-dimensional linear space of all antisymmetric func-
tions on E⃗, that is, all functions s : E⃗ → R, such that s(−e) = s(e). These
functions are meant to represent flows over the graph edges, although at this
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stage we do not impose a restriction that a total flow at a non-source vertex is
zero. Intuitively, if the directed edge is e = (v1, v2), then s(e) represents the
amount of flow from v1 to v2.

We introduce a scalar product on this space of flows as

(s, t) =
1

2

∑
e∈E⃗

s(e)t(e) =
∑
e∈E

s(e)t(e).

We denote this space l2(E).
For an element e ∈ E⃗, we will use e∗ to denote the function e∗(·) = 1e(·)−

1−e(·) ∈ l2(E). Here, 1e is a function which maps e to 1 and all other elements
of E⃗ to 0. (The function 1e is not antisymmetric and /∈ l2(E).) In particular,
e∗(e) = 1 and e∗(−e) = −1.

A convenient orthonormal basis in the space l2(E) is given by functions e∗i ,
where ei are all edges in E.

Next, we define the linear subspace X ⊂ l2(E) spanned by “star” functions

fv =
∑

e∈E⃗ : e−=v

e∗ ∈ l2(E).

Note that if a function g ∈ l2(E) is orthogonal to X, then for every vertex
v in the graph, we have ∑

e∈E⃗ : e−=v

g(e) = 0.

One can interpret this by saying that the flow represented by g has the property
that the net amount that passes vertex v is zero.

Let PX be the orthogonal projection in l2(E) on the subspace X and define
the symmetric bilinear form,

Y(f, g) = (PXf, g).

In particular, if ei and ej are two edges in E, then we define Y(ei, ej) = Y(e∗i , e
∗
j ).

At this moment, it is not clear if the form defined in this way coincides with
the form Y we defined above in terms of unit current flows. The fact that these
two definitions are in agreement will be justified in Lemma 6.1.22 below.

Let us also define the subspace Y ⊂ l2(E) spanned by “cycle” functions,

gC =
∑
e∈C

e∗ ∈ l2(E),

where C is a directed cycle in G⃗. Note that every h ∈ Y ⊥ satisfies the Kirchhoff’s
cycle law and by Lemma 6.1.17 can be written as h(e) = F (e−) − F (e+) for a
function F determined up to a constant.

Theorem 6.1.18. For a finite connected graph G, we have the orthogonal
decomposition l2(E) = X + Y .
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Proof. Every cycle function is orthogonal to every star function. This holds by
an observation that the number of times a directed cycle C enters a given point
v equals to the number of time that it exits this points. The first number gives
the number of −1s in the calculation of the the scalar product and the second
number is the number of +1s.

Hence X and Y are orthogonal. Now suppose that function j ∈ l2(E)
is orthogonal to both X and Y . The assumption j ∈ Y ⊥ implies that j(e) =
F (e−)−F (e+) for some function F ∈ l2(V ). Indeed, fix a value of F (x) on some
vertex of the graph and successively define the values of F on other vertices of
the graph by using F (y) = F (x)−j(x, y). This will never lead to a contradiction
by the assumption that j is in Y ⊥. (If a contradiction is obtained, then this
would produce a cycle function which is not orthogonal to j.)

By the assumption that j ∈ X⊥, it follows that for this function F (x) we
have: ∑

y∼x

F (y) = dxF (x)−
∑

e:e−=x

j(e) = dxF (x),

where dx is the degree of x. Hence, F (x) is a function which is harmonic
everywhere on a finite connected graph G. It is known that all such functions
are constants, which implies that j = 0.

Let a vertex x be called a source of a function j ∈ l2(E) if
∑

e : e−=x j(e) ̸= 0,
with the outflow of the source equal to the sum. Also, let a function j ∈ l2(E)
be called sourceless if it has no sources. By Theorem 6.1.18 we see that Y = X⊥

is the subspace of sourceless functions.
Ex. 6.1.19. What are sources of a star function fv? What are sources of a cycle
function fC?

Intuitively, X = Y ⊥ is the space of current flows and Y = X⊥ is the space
of flows with no sources.

Lemma 6.1.20. Let PX denote the orthogonal projection on subspace X and
let j ∈ l2(E). Then PX(j) has the same set of sources as j and the outflow
at each source of j equal to the outflow at the corresponding source of PX(j).
In addition, PX(j) is a current flow for the voltage function which is harmonic
outside of the set of sources of j.

Proof. The statement about sources is clear because the difference j − PX(j)
is in Y and therefore it is sourceless. The second statement follows because of
Lemma 6.1.17.

Lemma 6.1.21. Let e = (e−, e+) be a directed edge in E⃗, and e∗ is the as-
sociated asymmetric indicator function, that is e∗(e) = 1, e∗(−e) = −1, and
e∗(f) = 0, for all other edges f . Then,

PXe
∗ = ie,

where ie is the unit current flow for the voltage function v(x) which is harmonic
on V \{a ∪A} with a = e−, A = {e+}, and v(e+) = 0.
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Proof. The function je := PXe
∗ ∈ X = Y ⊥. Hence, it satisfies the Kirchhoff’s

cycle law and by Lemma 6.1.17 can be written as je(f) = F (f−) − F (f+) for
some function F . By Lemma 6.1.20, it has the same set of sources as e∗, that is,
only e− and e+, with the outflows equal to 1 and −1, respectively. By Lemma
6.1.17, the function F is harmonic everywhere outside of these two vertices.
These conditions determine the unit current flow ie. Hence, PXe

∗ = ie.

Now let us reformulate the Kirchhoff’s formula in Theorem 6.1.6 for the
probability that an edge is in the UST. We will use the operator PX , which is
the orthogonal projection in l2(E) on the subspace X, spanned by star functions,
and the symmetric bilinear form on functions in l2(E),

Y(f, g) = (PXf, g).

The following lemma shows that our two definitions of Y are in agreement.

Lemma 6.1.22. For arbitrary two edges ei, ej in a connected graph G,

Y (e∗i , e
∗
j ) = iei(ej),

where ie denotes the unit current flow from a = e− to A = {e+}.

The claim of the lemma is a direct consequence of the definition of Y (ei, ej)
as (PXe

∗
i , e

∗
j ) and Lemma 6.1.21.

In particular, this lemma and Theorem 6.1.6 imply that the basic case of
Theorem 6.1.13 is valid.
Corollary 6.1.23. Let T be an unrooted weighted uniform spanning tree of a
graph G and e = (e−, e+) be an edge of G. Then, P[e ∈ T ] = Y(e, e).

6.1.5 Proof of the Burton-Pemantle theorem

We need to understand how the current flows in the contracted graph are
related to current flows in the original graph.

Recall that for any directed edge e = (e−, e+), the function ie ∈ l2(E) is de-
fined as the unit flow from e− to e+ with the voltage function which is harmonic
outside of {e−, e+}, and v(e−) = 1, v(+) = 0. These current functions satisfy
the Kirchoff’s cycle law (as differences of potential functions) and therefore are
in X = Y ⊥.
Lemma 6.1.24. Let F = {f1 . . . , fk} be the set of edges in graph G, and L
be the subspace spanned by functions if1 , . . . , ifk in X. Let PL⊥ denote the
orthogonal projection in l2(E) on the ortho-complement of L in X. Suppose
that edge e /∈ F , and define

ie,F := PL⊥(ie).

Then ie,F is a current flow that has no sources outside of the set {e−, e+} ∪ Z,
where Z is the set of endpoints of fj. In addition, it satisfy the property
ie,F (fj) = 0 for every fj ∈ F .
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Proof. The orthogonal projection along L, PL⊥ , subtracts a linear combinations
of functions ifj . Since a linear combination of these current flows has no sources
in V \({e−, e+} ∪Z), hence PL⊥(ie) is a current flow with no sources outside of
{e−, e+} ∪ Z.

Let us check the property ie,F (f) = 0 for every f ∈ F . Since ie,F ∈ X, we
have

ie,F (f) = (ie,F , f
∗)

= (PX ie,F , f
∗) = (ie,F , PXf

∗)

= (ie,F , if ) = (PL⊥(ie), if ) = (ie, PL⊥(if ))

= 0.

The first line is by definition of the scalar product, the second and third lines
use the self-adjointness of the orthogonal projections PX and PL⊥ , and Lemma
6.1.21.

Now consider the restriction of ie,F to the edges the graph G′ = G/F , which
is the graph G contracted along all the edges in F . Let us denote this restriction
as ie,F .

Lemma 6.1.25. Let the assumptions of the previous lemma hold. In addition,
suppose that for the edge e /∈ F , no circuit can be formed by edges in e ∪ F .
Then, the flow ie,F is the unit current flow from e− to e+ in G′ = G/F .

Proof. If there is no circuit formed by edges in e ∪ F , then the edge e is still
present in the graph G′ = G/F . The previous lemma implies that ie,F is a
current flow in G′. (We use the same potential on the vertices of G′). It remains
to show that this is a unit current flow out of e− in the contracted graph.

Indeed, ie,F is a linear combination of ie and ifi . The flows ifi have the
same sources as f∗i . If the edges fi are not incident to the vertex e− then it is
clear that the flow of ie,F out of e− is the same as the flow of ie out of e− and
therefore equals 1.

Otherwise, if e− is incident to an edge in {fi}, then let Z be the endpoints
of the edges {fi} and e, and let C be a connected component of the subgraph
induced by Z that includes vertex e−. After contraction this will be represented
by a single vertex (e−)′ in the graph G′ and therefore we need to show that the
total outflow of ie,F out of C equals 1.

Indeed, the total outflow of ifi out of C is equal to the total outflow of f∗i
out of C and hence equals 0. This implies that total outflow of ie,F out of C
equals the total outflow of ie out of C. This equals total outflow of e∗ out of
C, and this equals 1 because C cannot include both e− and e+. (This is by
assumption that the edges in e ∪ {fi} cannot form a cycle.)

It follows from formula (6.3) and Lemma 6.1.25, that

P(e ∈ T |e1, . . . , ek ∈ T ) = ie,F (e) = PL⊥ [ie](e),
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where L is the subspace spanned by functions ie1 , . . . , iek . This is the basis for
the proof of Theorem 6.1.13.

Proof of Theorem 6.1.13. First of all, note that it is enough to consider the case
then there is no cycle in the subgraph formed by edges e1, . . . , ek. Indeed if we
can find such a cycle then the probability is zero. On the other hand, then we
have

∑
i e

∗
i = 0 for the edges in the cycle, which implies that

∑
i(PXe

∗
s, e

∗
i ) = 0

for all s = 1, . . . , k, which means that sum of several columns in the matrix
Y (ei, ej) is zero. This means that the determinant is zero.

Now, we will prove the theorem by induction. The base case k = 1 has been
already established. So suppose the theorem was proved for k and let us prove
it for k + 1.

Let Yk denotes the matrix
(
Y (ei, ej)

)
for i, j = 1, . . . , k. Then we need to

show that

detYk+1

detYk
= P(ek+1 ∈ T |e1 ∈ T, . . . , ek ∈ T ) = PL⊥ [iek+1

](ek+1),

where L is the subspace spanned by functions ie1 , . . . , iek .
The projection operator PL⊥ is the projection along the subspace L and it

acts on functions in X by the rule: f → f −
∑k

j=1 aj(f)iej , where the aj(f)
are certain real coefficient that may depend on function f . (It is not difficult
to write a formula for these coefficients. However, it is not really needed here.)
Let αj = aj(ek+1).

The k + 1 column of matrix Yk+1 has elements (ie1 , iek+1
), …, (iek , iek+1

),
(iek+1

, iek+1
). We can subtract from this column a linear combination of the

first k columns with coefficients αj . Then the determinant will not change and
the elements of the last column will become (ie1 , PL⊥iek+1

), …, (iek , PL⊥iek+1
),

(iek+1
, PL⊥iek+1

).
Since PL⊥ is the orthogonal projection on the space orthogonal to the linear

span of iej , the entries (iej , PL⊥iek+1
) are all zero for j = 1, . . . , k. And the

entry

(iek+1
, PL⊥iek+1

) = (ek+1, PXPL⊥iek+1
)

= (ek+1, PL⊥iek+1
) = PL⊥ [iek+1

](ek+1).

By expanding the determinant of k+1-by-k+1 modified matrix by the entries
in the last column we find that

detYk+1 = PL⊥ [iek+1
](ek+1)detYk,

and this is exactly what we wanted to prove.
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6.2 Square Lattice

The results for the previous graph can be applied to infinite graphs as well,
provided a measure on spanning trees in infinite graphs is well-defined. For a
square lattice graphs in Zd this can be done by considering a sequence of larger
and larger boxes.

Can we say something about local statistics in these infinite graphs? For
example, what is the distribution of vertex degrees in a random spanning tree?
What is the probability that a specific edge belongs to the spanning tree?

In this section we will consider as an example the case of the graph Z2.

The voltage function on Z2

Let T denote the torus R/Z2 For every k ∈ Z2 and α ∈ T, define the character
function

χk(α) = e−2πik·α.

For every α = (α1, α2) ∈ T , define also

φ(α) = 4− 2(cos 2πα1 + cos 2πα2).

Theorem 6.2.1 (Voltage on Z2). The voltage at u when a unit current flows
from x to y in Z2 and when v(y) = 0 is

v(u) = f(u)− f(y),

where

f(u) =

∫
T2

χx(α)− χy(α)

φ(α)
χ−u(α)dα,

where the integration is with respect to the Lebesgue measure on T.

Proof. The discrete Laplacian on Z2 is defined by the formula

∆f(x) = 4f(x)−
(
f(x+ e1) + f(x+ e2) + f(x− e1) + f(x− e2)

)
.

We are looking for functions which are harmonic with respect to this Laplacian
except for a set of sources. For example, if we have two sources: +1 at x and
−1 at y, then we need to solve the equation:

∆v = δx − δy

The main tool here is the Fourier transform F . For every function f on Z2

we can define a function f̂ = F(f) on T as

f̂(α) =
∑
k∈Z2

f(k)χk(α).
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Then the significance of function φ(α) is that the Laplacian operator corre-
sponds to multiplication by the function φ:

∆̂f(α) = φ(α)f̂(α).

Hence, we can find the Fourier transform of v(x) as

v̂(α) =
δ̂x(α)− δ̂y(α)

φ(α)
=
χx(α)− χy(α)

φ(α)

and the result of the theorem follows by taking the inverse Fourier transform.

Can we calculate the integral explicitly?
For a u ∈ Z2, define

H(u) = 4

∫
T2

1− χ−u(α)

φ(α)
dα.

It is clear that in order to calculate v(u), it is sufficient to be able to calculate
function H(u) for all u ∈ Z2.

For us, the most interesting is the function Y (e, f). If we set x = e− and y =
e+, calculate voltage v, and evaluate ie(f) = v(f+)− v(f−), then a calculation
shows that

Y (e, f) =
1

4

[
H(f− − e+)−H(f− − e−)−H(f+ − e+) +H(f+ − e−)

]
Lemma 6.2.2.

H(n, n) := 4

∫
T2

1− e2πn(α1+α2)

φ(α)
dα =

4

π

n∑
k=1

1

2k − 1
.

The values off the diagonal can be calculated by checking that H(x, y) =
H(y, x), H(x,−y) = H(x, y), H(−x, y) = H(x, y) and that the identity ∆H =
−4δ0 holds. Then one can calculate H recursively at gradually increasing dis-
tances from the diagonal.

Some results about UST on Z2

Using the voltage function and the Burton-Pemantle one can calculate the dis-
tribution of vertex degrees in the UST on Z2. The results are in Figure 6.2.
This is given as Exercise 4.10 in Lyons-Peres book.

Exercises

Ex. 6.2.3. Calculate H(3, 2).
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Figure 6.2: Probability distribution of the vertex degrees in the UST on Z2.

Ex. 6.2.4. If G is a graph and K is a subset of vertices, then the edge boundary of
K is the set of edges ∂K that connect K to its complement. An infinite graph G
is called edge-amenable if there is a sequence of finite subgraphs Gn = (Vn, En)
such that G is the union of these subgraphs and

lim
n→∞

|∂Vn|
|Vn|

= 0.

If T is a spanning tree in an edge-amenable graph G, then

lim
n→∞

|Vn|−1
∑
x∈Vn

dt(x) = 2.
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6.3 Bijection with Domino Tilings

Suppose now that the graph G is planar, that is that it can be embedded in
R2 (or more generally, in some other 2-dimensional surface), such that vertices
are represented by points and the edges – by non-intersecting intervals that
connect these points.

Then the graph G splits the plane in connected components, which are called
faces, one of which is infinite. If the graph is finite, then the number of faces can
be calculated by using the Euler formula: |V |− |E|+ |F | = 2, or more generally,
= 2− g, where g is the genus of the imbedding surface.

Figure 6.3: A part of infinite triangular lattice graph and its dual.

We can define the dual graph G∗ as the graph that has faces of the embedded
diagram as its vertices. Two vertices in the dual graph are connected if the
corresponding faces share the same edge in the diagram of the original graph.
Note that because of this definition we can essentially identify the edges in the
original and the dual.

See an example in Figure 6.3. The edge that connects two vertices of the
dual graph is identified with the edge of the original graph that it crosses.

We also define a bipartite graph Ĝ. One class of vertices in this graph is
the union of the vertices of the original and the dual graph, V ∪ V ∗, and the
other class of vertices corresponds to the edges of the original graph E, – or
equivalently to edges of the dual graph. These new vertices can be graphically
imagined as the midpoints of the edges. Then a “vertex” e ∈ E is connected
to a vertex v ∈ V if edge e is incident to the vertex v in the original graph G.
Similarly, vertex e ∈ E is connected to vertex v∗ ∈ V ∗, if edge e is incident to
the face v∗ in the imbedding of the graph G.

The bipartite graphs that can be represented as Ĝ for some planar graph
are called Temperleyan; Temperley found that square lattice graph Z2 has this
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representation and connected domino tilings of Z2 to spanning trees of the
corresponding graph G.

Next, there is a correspondence between subgraphs of G and G∗. If H is
a subgraph of G with the same set of vertices V , then a subgraph H∗ of G∗

contains an edge e if and only if the corresponding edge is absent in H.
For example, the subgraph G ⊂ G corresponds to the subgraph with no

edges in G∗.
This correspondence is clearly involutive: (H∗)∗ = H.

Lemma 6.3.1. Let G be a finite planar graph. Then T ∗ is a spanning tree of
G∗ if and only if T is a spanning tree of G.

Remarkably, the spanning trees in the graph G correspond to perfect match-
ings in the graph G. Recall that a matching is a collection of edges such that no
two edges have a common vertex. A perfect matching is a matching such that
every vertex belongs to an edge in the matching.

Figure 6.4: Bijection between spanning trees and matchings

The bijection is easier to explain by an example shown in Figure 6.4. The
graph G is a part of the lattice Z2 and its vertices are shown by dots. The
additional vertices in the graph Ĝ, – that is, the vertices of the dual graph and
half-points of the edges, – represented by crosses.

Assume that we are given a spanning tree on graph G and select a vertex
of this tree as a root. This is vertex A in the example. Then we can define a
perfect matching on the graph Ĝ − A. The recipe is to follow the tree from A
to leaves and include the half-edges that go from the mid-point of the edge to
the vertex of G (from a cross to a dot).

The remaining crosses belong to the spanning tree of the dual graph G∗ and
we can do the similar procedure on this tree. (By convention, we can choose the
root of this tree equal to the vertex of G∗ that corresponds to the outer face.)

By using this correspondence, the results about the spanning trees can be
translated to results about the perfect matchings (or domino tilings) and vice
versa.
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6.4 Connection with Eulerian circuits
An Euler circuit (also called an Eulerian circuit) is a circuit that uses every
edge of a graph exactly once.

Theorem 6.4.1 (Euler). A finite, strongly connected, directed graph which is
balanced (each vertex has in-degree = out-degree) has an Euler circuit.

There is a quick algorithm to find an Euler circuit called the Fleury al-
gorithm. For us what is interesting is the following connection with uniform
spanning trees.

In a balanced, strongly connected, directed graph, take any spanning tree
T , with directed edges toward an arbitrary root. From the root do an arbitrary
walk, at each stage choosing an unused edge at random but saving the spanning-
tree-edge until last. One can check that this method always produces an Euler
circuit.

Theorem 6.4.2. If T is a uniform random spanning tree and the random walk
steps are chosen uniformly at random we get a random Euler circuit which is
distributed uniformly at the set of all Euler circuits.

Proof. ???

As an example consider the discrete torus Zd
N . Replace each edge by 2

directed edges. So, in-degree = out-degree = 2d. Any Eulerian circuit consists
of 2d “loop” from the origin.

Simulations suggest the following conjecture, which is on David Aldous’ list
of favorite open problems.

Conjecture 6.4.3 (Aldous). For d ≥ 3, out of 2d loops at the origin, some
have length O(1), all others have length of order Nd as N → ∞.

The point is that there is no loops with an “in-between” size.
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Figure 6.5: Trees by Tomioka Soichiro
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Chapter 7

Galton-Watson Trees

7.1 Galton – Watson process

The Galton-Watson process is a particular simple example of a branching
process, a class of stochastic processes that finds many applications, from the
study of epidemics to the study of neutron proliferation in a nuclear reaction.
The original application in the paper by Galton and Watson was to a problem
in genetics, namely, to the problem of family name extinction. How fertile
should family members be to insure that the family name will not die out in
future generations? The branching processes has also been used in the study of
queues. In this case the offspring of a customer are those, who arrive while the
customer is being served.

Recently, branching processes have been applied to the study of random
graphs and other random geometric objects.

The Galton-Watson process is a Markov Chain Xn on the non-negative in-
tegers, where Xn represents the size of n-th generation. The random variables
Xn+1 and Xn are related by certain transition probabilities, and the evolution
of the generation size at time n can be described by the equation:

Xn+1 =

Xn∑
i=1

L
(n)
i ,

where L(n)
i are independent copies of a random variable L that has the offspring

distribution P(L = k) = pk.
Assumption: In all considerations and results below we assume that the

offspring distribution is not trivial in the sense that pk > 0 for some k > 1.
It is often useful to enrich the Galton-Watson process by keeping information

not only about the number of the individuals at time n but also about the details
of the family tree T . In this description, the random variable Xn is the number
of vertices of T at the depth n.
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The randomness in the tree T is described by the following rule: “Each
vertex can have k children with probability pk. The numbers of children for
different vertices are independent.”

More formally, the probability on the set of rooted locally-finite trees T is
defined by probabilities of the cylinder sets {Tn = tn}, n = 0, 1, . . ., where Tn is
the restriction of the random tree T to its first n generations. In particular, the
tree T0 always consists of a single vertex, the root. The tree T is determined by
an increasing sequence of its finite subtrees T0 ⊂ T1 ⊂ . . . Tn ⊂ . . ..

The conditional probability of Tn+1 given Tn is given by the formula

∏
vi : l(vi)=n

pd(vi),

where the product is over all vertices vi that have level n in Tn and d(vi) denotes
the number of children that vertex vi ∈ Tn has in Tn+1.

Figure 7.1: A Galton-Watson tree with X0 = 1, X1 = 4, X2 = 4, X3 = 2, X4 = 3,
X5 = 1 and Xk = 0 for k > 5.

The resulting tree T = limn→∞ Tn is called the Galton - Watson tree, and
the sequence Xn is the Galton-Watson process.

For the study of the Galton-Watson process Xn it is useful to define the
probability generating function of the random variable L,

f(s) =

∞∑
k=0

pks
k = p0 + p1s+ p2s

2 + . . .

It is often called the generating function of the Galton-Watson process.

123



The mean of the Galton-Watson process is the expectation of the offspring
number,

µ := EL = f ′(1).

The GW process is called subcritical, critical, or supercritical, depending on
whether µ < 1, µ = 1, or µ > 1, respectively.

Lemma 7.1.1. Let Xn be the Galton-Watson process. Then Xn

µn is a martingale
with respect to Fn = σ(X0, . . . , Xn).

Proof. Since Xn is a Markov process, it is enough to condition on Xn instead
of σ(X0, . . . , Xn). We have

E
[Xn+1

µn+1

∣∣∣Xn

]
=

1

µn+1

Xn∑
i=1

E[Li|Xn] =
Xn

µn
,

since E[Li|Xn] = E[Li] = µ.

The martingale Xn/µ
n is non-negative, and therefore by Doob’s theorem it

has an almost sure limit W ≥ 0.
Now, what is the probability of extinction of the GW branching process?

This is the original question posed by Galton and Watson. We denote this
probability by q,

q := P(Xn = 0 for some n > 0).

It turns out that q = 1 for all subcritical and critical processes.

Theorem 7.1.2. If µ ≤ 1, then q = 1, that is, Xn = 0 for all sufficiently large
n. In particular, Xn

µn

a.s.−→W = 0.

(By the way, this is an example of an L1-bounded martingale which is con-
vergent almost surely but not in L1.)

For the proof we need the following lemma.

Lemma 7.1.3. The generating function for the Galton Watson process at time
n, Xn, is

EsXn = f (n)(s) := f ◦ . . . ◦ f
n times

(s)

Proof. We have EsX0 = s, and then we proceed by induction:

EsXn = E
[
E
(
s
∑Xn−1

i=1 Li

∣∣∣Xn−1

)]
= E

[Xn−1∏
i=1

E(sLi |Xn−1)
]
= Ef(s)Xn−1

= f (n−1)(f(s)) = f (n)(s).
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Figure 7.2: Generating function f(s) for µ > 1 and µ ≤ 1, (on the left and right
graphs, respectively)

Proof of Theorem 7.1.2. By the lemma above, we have P(Xn = 0) = f (n)(0).
Therefore, the probability of extinction is q = limn→∞ f (n)(0). It is easy to
check that f(s) is differentiable, increasing, concave and f(1) = 1. In addition,
µ is the slope of f(s) at s = 1. Then it is clear from the picture in Figure 7.2
that if µ ≤ 1, then f (n)(0) converges to 1. This proves the theorem.

Theorem 7.1.2 settles the question about the extinction probability and
about the limit of the Galton-Walton martingale in the subcritical and criti-
cal case. The argument in its proof also shows how to calculate the extinction
probability for the super-critical process.

Theorem 7.1.4. The extinction probability q := P(Xn = 0 for some n) equals
the smallest root of the equation s = f(s).

Thus, if µ > 1 then q < 1 and Xn > 0 for all n with positive probability.
However, even though Xn stays positive with positive probability, there is still a
possibility of the zero limit for the Galton-Watson martingale, that is, it is still
possible that Xn

µn

a.s.−→ 0. This means that Xn grows slower than µn. The Kesten-
Stigum theorem shows that it does not happen under very mild conditions on
the distribution of the offspring.

Theorem 7.1.5 (Kesten-Stigum). Suppose that Xn is a super-critical Galton-
Watson process with offspring random variable L and let µ = EL > 1. Let
W = limn→∞Xn/µ

n. The limit of Xn

µn is not identically 0 (a.s.) if and only if
E(L log+ L) =

∑∞
k=1(k log k)pk <∞.

This condition is only slightly stronger than the condition on the existence
of µ = EL. For example, this condition holds if L has finite variance.

For the classical proof see Athreya-Ney (1972), Part I.C. We will also give
another proof in Section 7.4 below.

Even if this condition does not hold, Xn grows only slightly slower than µn,
as the following theorem show.
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Theorem 7.1.6 (Seneta-Heyde). If 1 < µ <∞, then there exists constants cn
such that

1. limXn/cn exists a.s. in [0,∞);

2. P[limXn/cn = 0] = q;

3. cn+1/cn → µ.
We will prove this theorem by using methods of martingale theory and a

zero - one law for Galton-Watson trees.
Call a property of trees inherited if two conditions are satisfied:
1. every finite tree has this property, and

2. if a tree has this property, then all the descendant trees of the children of
the root also have this property.

Example 7.1.7. For a rooted tree T , let Xn be the number of its vertices in
the level n. Suppose that cn is a sequence of positive constants such that
limn→∞ cn+1/cn = a > 1. Define a property P by requiring that it holds for
tree T if limn→∞Xn/cn = 0. This property is inherited. Indeed, it is obviously
satisfied for every finite tree. Then, if the property holds for a tree T and T (i) is
a descendant tree with the corresponding sequence X(i)

n , then we observe that
X

(i)
n ≤ Xn+1 and therefore,

X
(i)
n

cn
≤ Xn+1

cn+1

cn+1

cn
→ 0× a = 0.

Ex. 7.1.8. Suppose that cn is a sequence of positive constants such that limn→∞ cn+1/cn =
a > 1. The tree property limXn/cn <∞ is inherited.
Lemma 7.1.9. For a supercritical Galton-Watson tree, each inherited property
has probability either q or 1, where q is the probability of extinction.
Proof. Let A be the set of trees with the given property. We are going to show
that P(A) is either q or 1.

For a tree T with k children of the root, let T (1), . . . , T (k) denote the descen-
dant trees of these children. Then

P(A) = E
[
P(T ∈ A|X1)

]
≤ E

[
P(T (1) ∈ A, . . . , T (X1) ∈ A|X1)

]
by the definition of the inherited property and the monotonicity of probability.
Since T (i) are independent and have same distribution as T , we find that

E
[
P(T (1) ∈ A, . . . , T (X1) ∈ A|X1)

]
= E[P (A)X1 ] = f(P(A)).

Hence P(A) ≤ f(P(A)). In addition, P(A) ≥ q, since the property holds for
every finite tree. Hence, by Theorem 7.1.4 and properties of the function f ,
which are seen in Figure 7.2, P(A) is either q or 1.
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Proof of Theorem 7.1.6. Let s0 ∈ (q, 1) and set sn+1 = f (−1)(sn) for n ≥ 0.
Then sn → 1. In the proof of Lemma 7.1.3 we established that E[sXn+1 |X1, . . . , Xn] =
f(s)Xn . This implies that sXn

n is a martingale,

E[(sn+1)
Xn+1 |X1, . . . , Xn] = f(sn+1)

Xn = sXn
n .

Since this martingale is positive and bounded it converges both almost surely
and in L1 to a limit Y ∈ [0, 1], such that E(Y ) = E(sX0

0 ) = s0.
Let

cn := −1/ log sn.

It is easy to check that log f(s)/ log s→ µ as s→ 1, hence cn+1/cn → µ, which
is claim (3).

Then sXn
n = e−Xn/cn , and therefore Xn/cn converges a.s. to a limit W̃ =

− logY supported in [0,∞].
By Example 7.1.7, the property Xn/cn → 0 is inherited. Probability of this

property cannot be 1 since this would imply that the random variable Y is 1
but we know that E(Y ) = s0 < 1. Therefore this probability is q and claim (2)
is established.

Similarly, the property limXn/cn < ∞ is inherited. It cannot have proba-
bility q < 1 because this would imply that with probability 1 − q the random
variable Y is 0. Since Y ∈ [0, 1], this would imply that EY ≤ q, while we know
that EY = s0 ∈ (q, 1). Hence, limXn/cn < ∞ with probability 1. This is
implies claim (1).

From the theory of Markov chains, we can extract that if φ(t) denote the
moment generating function of the limit random variable W , that is, φ(t) =
E(e−tW ), then the following equation holds,

φ(µt) = f(φ(t)).

This equation, which is sometimes called Abel’s equation, can be used to study
the properties of W . In particular, it can be shown that W is absolutely con-
tinuous.

7.2 GW process with immigration
In the Galton – Watson process with immigration there is a new element, - at
time n additional Yi particles arrive. So, the equation for the generation sizes
is now

Xn+1 =

Xn∑
i=1

L
(n)
i + Yn+1,

where L(n)
i are independent copies of a random variable that have the offspring

distribution P(L = k) = pk, and Yn+1 are non-negative random variables, the
immigration process. Assume also that X0 = 0.
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We know that without immigration, Xn/µ
n has a.s. a finite limit W . What

can we say about the processes with immigration?
Consider the super-critical case.

Theorem 7.2.1 (Seneta). Let Xn be the generation sizes of GW process with
immigration, and let Yn be i.i.d random variables. Suppose that µ = E(L) > 1.
If E log+ Y < ∞, then limXn/µ

n exists and the limit is finite a.s., whereas if
E log+ Y = ∞, then lim supXn/c

n = ∞ a.s. for every constant c > 0.
In the proof we will need several auxiliary results.

Lemma 7.2.2. Suppose X,X1, X2, . . . are non-negative i.i.d. random variables.
Then

lim sup
n→∞

Xn/n =

{
0, if EX <∞,

∞, if EX = ∞.

Proof. Exercise on the Borel-Cantelli lemma.

Lemma 7.2.3. Suppose X,X1, X2, . . . are non-negative i.i.d. random variables
and EX <∞. Then,

∞∑
n=1

eXn/µn <∞

for all µ > 1.
Proof. By the previous lemma, for every λ > 0, Xn < λn a.s. for all sufficiently
large n. By choosing a value of λ < logµ we can infer that a.s. eXn/µn

is exponentially declining for all sufficiently large n and therefore the series∑∞
n=1 e

Xn/µn is convergent.

Proof of Theorem 7.2.1. First, if E log+ Y = ∞, then by Lemma 7.2.2, lim sup(log+ Yn)/n =
+∞, which implies that lim sup(log+(Yn/cn))/n = ∞ for any positive c. This
implies that lim supYn/cn = ∞. Since Xn ≥ Yn, this implies the second claim
of the theorem.

Now, assume that E[log+ Y ] < ∞. It is not difficult to see that µ−nXn is a
sub-martingale. (Let F denote the σ-field generated by Yi, i = 1, 2, . . .. By the
same calculation as in the proof of Lemma 7.1.1 ,

E[µ−(n+1)Xn+1|Xn,F ] = µ−nXn + µ−(n+1)Yn+1 ≥ µ−nXn,

and taking the expectation over F we recover the sub-martingale property.)
Now let us calculate the conditional expectation of µ−nXn with respect to

the σ-algebra F . Let Xn,k be all descendants at time n of the immigrants that
arrived at time k. Then, we have

E(µ−nXn|F) = E
(
µ−n

n∑
k=1

Xn,k|F
)

=

n∑
k=1

µ−kE(µ−(n−k)Xn,k|F).
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It is clear that Xn,k is the usual Galton-Watson process (without immigration)
that started with Yk, instead of 1 particle. By Lemma 7.1.1, the sequence
µ−(n−k)Xn,k is a martingale and E(µ−(n−k)Xn,k|F) = Yk. Therefore,

E(µ−nXn|F) =

n∑
k=1

µ−kYk.

By applying Lemma 7.2.3 to Xk = log+ Yk, we find that this series is convergent
a.s.

It follows that almost surely, for a fixed sequence Yi, µ−nXn is a non-negative
sub-martingale bounded in L1. By Doob’s convergence theorem, this implies
that µ−nXn almost surely converges to a random variable W with finite expec-
tation. This implies the statement of the theorem.

7.3 Size-biased GW trees
In the next section we are going to prove the Kesten-Stigum theorem following
the method by Lyons, Pemantle, and Peres. Recall that this theorem says that
in a supercritical process the ratio Xn/µ

n converges to a non-zero limit if and
only if EL log+ L <∞.

The proof is going to be based on a new (that is, different from the Galton-
Watson measure GW ) measure ĜW on trees, which we define in this section.

Figure 7.3: A scheme for the GW size-biased tree

Suppose a random variable X takes value in non-negative integers, and has
the probability distribution pk = P(X = k), k = 0, 1, . . . , with a finite expec-
tation µ. Then, a size-biased version of X, a random variable X̂, takes values
in the set of positive integers and has the probability distribution p̂k = kpk/µ.
(This is obviously a probability distribution by the definition of µ.)
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Let the probability distribution pk be interpreted as the offspring distribu-
tion for a Galton-Watson tree. We define another random tree, the size-biased
Galton-Watson tree by using the size-biased distribution.

In contrast with usual GW trees, this new random tree is always infinite
and it has a distinguished path from the root to infinity. In particular, we
define a stemmed tree as a pair [t, v], where t is an infinite rooted tree with root
v0, and v = (v0, v1, v2, . . .) is its stem, that is, a path on this tree, such that
d(vk, v0) = k. We assume that the infinite tree is locally-finite, that is, every
vertex has only finite number of children. The size-biased Galton-Watson tree
is a random stemmed tree with a specific distribution that we describe below.

Schematically, this tree is represented in Figure 7.3 with the distinguished
path given by the sequence of vertices v0, v1, ….

The tree is random and can be generated in the following way. The vertices
will be of two types, usual and special. There will always be exactly one special
vertex in each generation. Start with the original vertex v0, which is special,
and give it a random number of children distributed according to the size-biased
law {p̂k}. In particular, note that this number is always positive. From these
children, pick one at random. This will be v1, the special vertex in generation
1, and the second vertex in the distinguished path. On all other children, the
descendant trees are the ordinary GW trees with the offspring distribution {pk}.
(In particular, these trees can be finite.) However, we treat v1 in the same way
as the initial vertex, v0. In particular, the number of its children is distributed
according to size-biased law {p̂k} and one of these children (grand-children of
v0) is selected as a new special vertex, and a new vertex in the distinguished
path, v2. We continue in this way indefinitely.

This procedure defines a probability measure on all stemmed trees. We
denote this measure by ĜW . How can we calculate the probabilities of cylinder
sets using this measure?

Suppose that [t, v]n be the set of all stemmed trees, which agrees with the
stemmed tree [t, v] up to the n-th generation. Also, let [t]n denote the set of all
rooted trees that agree with tree t up to the n-th generation.

Lemma 7.3.1. For all sets [t, v]n and all n,

ĜW ([t, v]n) = µ−nGW ([t]n),

where GW is the Galton-Watson measure on the space of rooted trees.

Proof. We prove it by induction. For n = 0, there is only one tree, that consists
of the root v0 and the statement is true. Now consider the restriction of a
stemmed tree [t, v] up to the generations n+ 1. If the root of t has k children,
then we denote the corresponding descendant trees as t(1), . . . , t(k). Then, by
the definition of the size-biased trees we have

ĜW ([t, v]n+1) =
kpk
µ

1

k
ĜW ([t(i), v]n)

∏
j ̸=i

GW ([t(j)]n),
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where t(i) is the descendant tree in which the distinguished vertex v1 lies. The
first factor here is the probability that the root of the tree has k children and
the second is that v1 is in the sub-tree t(i).

By using the induction hypothesis, we can write this as

ĜW ([t, v]n+1) =
pk
µ

1

µn
GW ([t(i)]n)

∏
j ̸=i

GW ([t(j)]n),

At the same time for the corresponding Galton-Watson measure on trees,
we have:

GW ([t]n+1) = pk

k∏
j=1

GW ([t(j)]n)

By comparing these expressions we find that

ĜW ([t, v]n+1) =
1

µn+1
GW ([t]n+1),

which completes the induction.

Given the measure ĜW over all stemmed trees, we can define a new measure
over all rooted trees as the marginal of ĜW . For cylinder sets we have,

ĜW ([t]n) =
∑
v

ĜW ([t, v]n),

where the the summation is over all stems v of the tree t. Since a portion of
the stem from the root to generation n is completely determined by its vertex
vn in generation n, and since the probabilities ĜW ([t, v]n) are all equal to each
other and equal to µ−nGW ([t]n) by Lemma 7.3.1, we have

ĜW ([t]n) = Xn(t)ĜW ([t, v]n) =
Xn(t)

µn
GW ([t]n), (7.1)

where Xn(t) is the number of vertices in generation n of the tree t. (Informally,
measure ĜW pays more attention to trees with larger offspring than measure
GW . This is why it is called size-biased measure on trees.)

7.4 Supercritical case and a proof of the Kesten-
Stigum Theorem (Thm. 7.1.5)

One interpretation of the equation (7.1) is that the random variable Xn/µ
n is

the ratio of two measures of a cylindrical set of trees that agree on the first n
generations. Therefore, questions about the limit of this random variable are
related to questions of absolute continuity of two measures ĜW and GW with
respect to each other.
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Recall that a measure µ is called absolutely continuous with respect to a
measure ν, denoted µ ≪ ν, if for each A ∈ F , ν(A) = 0 implies that µ(A) = 0.
In this case the Radon-Nikodym derivative f = dµ/dν exists and allows us to
compute the measure µ using formula:

µ(A) =

∫
A

fdν,

We call f density. There can be several such densities but the set where two
densities are different from each other, this set have ν measure 0.
Example 7.4.1. Consider the Lebesque measure µ on [0, 1), and ν = µ + δ0.
Then, µ ≪ ν and the density f(x) = 1 at all points x ̸= 0. At zero, f(0) = 0.
The density f can be changed at any Lebesgue set of measure zero that does
not include x = 0.

What we want to prove is that the limit of Xn/µ
n have positive expectation.

Typically, this is done by showing the uniform integrability of Xn/µ
n, which

implies that the expectation of the limiting random variable W equals to the
limit of the expectations of Xn/µ

n, which is not zero. Here, we will use an
alternative method.

The idea is to consider the martingale sequence Xn/µ
n as a change of mea-

sure factor. If the expectation of the limit of this sequence is different from 1,
then it means that part of the probability disappeared into a set of measure
zero. The idea is to rule this possibility out and show that the limiting measure
ĜW is absolutely continuous with respect to the old measure GW .

Namely, we will show that if the condition EL log+ L <∞ holds, then under
the new measure ĜW the random variables Xn/µ

n almost surely converge to
a finite limit W . Since random variables Xn/µ

n have the meaning of Radon-
Nycodim derivatives on cylindrical sets, it turns out that their convergence
to the finite limit under ĜW implies that the new measure ĜW is absolutely
continuous with respect to the old measure GW , with the Radon-Nikodym
derivative W = dĜW/dGW . It follows by the property of the Radon-Nikodym
derivatives that

∫
W dGW =

∫
dĜW = 1, and therefore W is not identically

zero.
In contrast, if EL log+ L = ∞ then the limit random variable W is almost

surely infinite under the new measure ĜW and almost surely zero under the
measure GW . The intuitive meaning of this fact is that if EL log+ L = ∞ the
Galton-Watson tree is almost surely dies out, but if it is conditioned not to die
out (and follows the law of ĜW ) then it grows faster than µn.

Formally, we will use the following result, which is essentially a variant of
the fundamental theorem about the Radon-Nikodym derivative plus some of its
properties.

Lemma 7.4.2. Let ν̂ be a finite measure and ν be a probability measure on a
σ-field F . Suppose that Fn are increasing sub-σ-fields whose union generates
F . Suppose also that (ν̂|Fn) is absolutely continuous with respect to (ν|Fn) with
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Radon-Nycodým derivative Wn. Set W := lim supn→∞Wn. Then(
ν̂ ≪ ν

)
⇔
(
W <∞ ν̂-a.e

)
⇔
(∫

dν̂ =

∫
W dν

)
and (

ν̂ ⊥ ν
)
⇔
(
W = ∞ ν̂-a.e

)
⇔
(∫

W dν = 0
)

(with the integrals taken over the whole space).

Example 7.4.3. In order to understand this result better consider the Lebesgue
measure ν and the atomic measure ν̂ = ν + δ0 on [0, 1), with the σ-fields Fn

generated by intervals [(k − 1)/n, k/n), k = 1, . . . , n. Then Wn converge to the
random variable W which equals 1 everywhere except at ω = 0, and at ω = 0,
W (0) = ∞.

In this case ν̂ is not absolutely continuous with respect to ν, and we see that
while W < ∞, ν-almost everywhere, however W = ∞ on a set of positive ν̂
measure. The implication is that one has to check that W is finite ν̂-everywhere
in order to show the absolute continuity of ν̂ with respect to ν and ensure that
W is the Radon-Nikodym derivative dν̂/dν.

This example is useful to keep in mind when reading the proof of Lemma
7.4.2.

The proof of Lemma 7.4.2 can be found in the Lyons-Peres book. (Lemma
12.2 on p. 414). Here is a wordy paraphrase of this proof.

Proof of Lemma 7.4.2. First, one can check that Wn is a non-negative martin-
gale with respect to ν and the filtration generated by Fn, and therefore by
Doob’s theorem the sequence Wn converges ν-almost surely to the random vari-
able W , which is finite ν-almost surely. However, as we have seen in Example
7.4.3, this fact does not guarantee that ν̂ is absolutely continuous with respect
to ν. So we proceed in two steps.

Part 1: Decomposition of measure ν̂ in the absolutely continuous and sin-
gular parts with respect to ν.

Let ρ = ν̂+ ν. The measure ρ is finite and
∫
ρ = C :=

∫
(ν̂+ ν). Both ν̂ and

ν are ≪ ρ. Define the Radon-Nikodym derivatives of these measures restricted
to the σ-fields Fn.

fn =
dν̂

dρ

∣∣∣
Fn

,

gn =
dν

dρ

∣∣∣
Fn

,

and let f = lim sup fn ≥ 0, g = lim sup gn ≥ 0. Note that fn + gn ≤ 1 and
therefore f + g ≤ 1.

One can check that fn+gn is a martingale with respect to filtration generated
by Fk, k ≤ n, and measure ρ, and therefore it converges ρ-almost surely to
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f + g. Moreover, it is an L1(dρ)-bounded martingale, hence the convergence of
expectations also holds and E(f + g) :=

∫
(f + g) dρ =

∫
d(ν̂ + ν) = C. Since

we know that
∫
dρ = C and that f + g ≤ 1, it follows that ρ[f = g = 0] = 0

and therefore ρ-almost surely

f

g
=

lim fn
lim gn

= lim fn
gn

= lim dν̂

dν

∣∣∣
Fn

= limWn =W, (7.2)

Then, ρ-almost surely we have

ν̂ = 1{W ̸=∞}ν̂ + 1{W=∞}ν̂

= 1{W ̸=∞}(fρ) + 1{W=∞}ν̂

= 1{W ̸=∞}(Wgρ) + 1{W=∞}ν̂

= 1{W ̸=∞}(Wν) + 1{W=∞}ν̂

where in the second line we use that ν̂ ≪ ρ with the Radon-Nikodym derivative
f , the third line uses (7.2), and the fourth line uses that g is the Radon-Nikodym
of ν with respect to ρ.

We have seen that W is finite ν-almost surely, hence we can re-write the last
expression as the following identity (valid up to the sets that have measure 0
both with respect to ν and ν̂),

ν̂ =Wν + 1{W=∞}ν̂. (7.3)

Part 2: If ν̂ ≪ ν then W < ∞, ν̂-surely. (We already know that W < ∞,
ν-surely). If W < ∞, ν̂-almost surely, then by (7.3), ν̂ = Wν and therefore∫
Wν =

∫
ν̂. Finally, if

∫
Wν =

∫
ν̂, then (7.3) implies that W < ∞, ν̂-almost

surely and ν̂ ≪ ν with Radon-Nikodym derivative W .
If ν̂ and ν are mutually singular, then (7.3) implies that W = ∞, ν̂ - almost

surely. Then if W = ∞, ν̂ - almost surely, then, integrating (7.3), we find that∫
Wν = 0. Finally, if

∫
Wν = 0 then (7.3) implies that µ = 1{W=∞}ν̂, hence

W = ∞, ν̂-almost surely. Since W < ∞, ν-almost surely, this implies that ν̂
and ν are mutually singular.

In our application we will set ν̂ = ĜW and ν = GW . The σ-algebras Fn are
the algebras of cylindrical sets of trees that depends only on the generations at
or below n. The random variables Wn = Xn/µ, as can be seen from equation
(7.1).

Proof of Theorem 7.1.5. Consider those vertices in the n-th generation of the
size-biased GW tree which are off the distinguished path. Their number follows
the Galton-Watson process with immigration. The immigration process is given
by Yn = L̂n−1 since all except one vertices born from the distinguished particle
are immigrant particles. Hence we can apply Seneta Theorem 7.2.1.

This theorem says, in particular, that if E log+(L̂−1) <∞ then Wn →W <

∞ almost surely, and E log+(L̂− 1) = ∞, then Wn →W = ∞ a.s.
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Note that

E log+(L̂− 1) =
1

µ

∞∑
k=2

log(k − 1)kpk.

Hence, E log+(L̂− 1) <∞ if and only if E(L log+ L) <∞.
This establishes, that the Radon-Nicodym derivative of ĜW with respect to

GW is bounded ĜW -almost surely if and only if E(L log+ L) <∞.
By Lemma 7.4.2, we find that under the measureGW , EW = 1 if E(L log+ L) <

∞ and EW = 0 if E(L log+ L) = ∞. This completes the proof of the theo-
rem.

7.5 Critical Case
The results in the following theorem were obtained by Kolmogorov (1938) and
Yaglom (1947) under the assumption E(L3) < ∞. In the more general case,
given here, it was established by Kesten, Ney, and Spitzer (1966).

Theorem 7.5.1. Suppose that µ = 1 and σ2 := Var(L) = E(L2)− 1. Then we
have

1. Kolmogorov’s Estimate: limn→∞ nP[Xn > 0] = 2/σ2;

2. Yaglom’s limit law: If σ < ∞, then the conditional distribution of
Xn/n given Xn > 0 converges as n→ ∞ to an exponential law with mean
σ2/2.

Interestingly, according to Lyons and Peres book, the case σ = ∞ in the
second statement appears to be open.

We will prove only the first part of this theorem. The proof of the second
part is more difficult and the details given in the Lyons-Peres book are involved
and not clear enough to me. So this proof is skipped.

In order to establish this theorem we want to show that conditional on the
non-extinction, critical and subcritical Galton-Watson trees have the distribu-
tion of a corresponding size-biased Galton-Watson tree.

This is based on the following lemma, in which L is the offspring distribution
and H(n)

i is the event that the descendants of child i, 1 ≤ i ≤ L, are not extinct
at generation n.

Lemma 7.5.2. Let L be a random variable taking non-negative integer values
with distribution P(L = k) = pk, and 0 < EL < ∞. Suppose that given L,
events H(n)

1 , . . . H
(n)
L are independent and have probability hn → 0 as n → ∞.

Let

Yn(ω) =

L∑
i=1

1
H

(n)
i

(ω),
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the (random) number of events H(n)
i that occur. Then conditional on Yn > 0,

and asymptotically almost surely,

1. only one event H(n)
i occurs:

lim
n→∞

P[Yn = 1|Yn > 0] = 1;

2. the law of L is that of the size-biased r.v. L̂:

lim
n→∞

P[L = k|Yn > 0] = kpk/EL;

3. every of the events H(n)
i has the same probability to occur:

lim
n→∞

P[H(n)
i |Yn > 0, L = k] = 1/k.

for 1 ≤ i ≤ k.

Proof. We have

P[Yn = 1|Yn > 0, L = k] =
khn(1− hn)

k−1∑k
s=1

(
k
s

)
hsn(1− hn)k−s

.

Using the notation tn = 1− hn, we re-write this as

k(1− tn)t
k−1
n

1− tkn
=

ktk−1
n

1 + tn + . . .+ tk−1
n

≥ tk−1
n .

Hence,

P[Yn = 1|Yn > 0] ≥
∞∑
k=1

pkt
k−1
n → 1,

as n→ ∞ and therefore tn → 1. This proves (1).
By using this, we have

lim
n→∞

P[L = k|Yn > 0] = lim
n→∞

P[L = k|Yn = 1],

and by the Bayes rule,

P[L = k|Yn = 1] =
P[Yn = 1|L = k]× P[L = k]

P[Yn = 1]

=
kpkhn(1− hn)

k−1∑∞
j=1 jpjhn(1− hn)j−1

.

By using the monotone convergence, we can take the limit (1− hn) → 1 under
the summation sign and get

P[L = k|Yn = 1] =
kpk∑∞
j=1 jpj

,

136



which proves (2).
Then, again by using (1), we have

lim
n→∞

P[H(n)
i |Yn > 0, L = k] = lim

n→∞
P[H(n)

i |Yn = 1, L = k] = 1/k,

where the last equality is obvious by the symmetry of the events H(n)
i .

Proof of Kolmogorov’s estimate in Theorem 7.5.1. Since E(Xn) = E(Xn|Xn >
0)P(Xn > 0), we have

E(Xn|Xn > 0) =
E(Xn)

P(Xn > 0)
=

1

P(Xn > 0)
.

The idea is to show that E(Xn|Xn > 0) ∼ σ2

2 n by decomposing this variable
into a sum of descendants from different special vertices.

Figure 7.4: A Galton-Watson tree

Let unn be the left-most individual in generation n when Xn > 0, and let
its ancestors be unn−1, . . . , u

n
0 . (See Figure 7.4 for an example.) Let Yi be the

number of children of uni that are to the right of ui+1. In the example we
have Y0 = Y1 = 0, Y2 = Y3 = Y4 = Y5 = 1. Then, let Y ′

i be the number of
descendants of uni in generation n, which are not descendants of uni+1. In the
example, Y ′

0 = Y ′
1 = Y ′

2 = 0, Y ′
3 = 3, Y ′

4 = 0, Y ′
5 = 1.

Clearly, Xn = 1+
∑n−1

i=0 Y
′
i . In addition, E(Y ′

i |Xn > 0) = E(Yi|Xn > 0) since
the children of uni generate an independent Galton-Watson tree. The condition
Xn > 0 has no effect on the distribution of Y ′

i or Yi because it is satisfied by
the existence of the vertex unn.
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Hence,

E(Xn|Xn > 0) = 1 +

n−1∑
i=0

E(Yi|Xn > 0).

For the right-hand side we note that as n grows, by Lemma 7.5.2 the dis-
tribution of Yi given Xn > 0 (recall, Yi is the number of children of uni that
are to the right of ui+1) tends to the distribution which is uniform on the set
[0, . . . , L̂− 1], conditional on L̂. Hence, we can calculate limn→∞ E(Yi|Xn > 0)

as E
[
(L̂− 1)/2

]
= σ2/2, where we used

EL̂ =

∞∑
k=1

k
kpk
EL

= σ2 + 1,

since EL = 1. (The passage to the limit of expectations from the limit of
distributions needs a justification, which can be found in Lyons-Peres book.)

It follows that

1

P(Xn > 0)
= 1 +

n−1∑
i=0

E(Yi|Xn > 0).

= 1 + n(σ2/2 + o(1)),

which implies Kolmogorov’s estimate limn→∞ nP (Xn > 0) = 2/σ2.

It also worthwhile to note that in the subcritical case µ < 1, the random
variable Xn|Xn>0 converges almost surely to a random variable (without addi-
tional normalization by n−1). This is Yaglom’s theorem, and it can be proved
by an analogous method (see Geiger 1999 Journal of Applied Probability. ”El-
ementary proofs of classical theorems about the Galton Watson trees”.) The
conditions that ensure that this random variable has finite mean were given by
Heathcoth.

Here is another interesting (and surprising) result about critical Galton -
Watson trees. Let Gn be the generation of the most recent common ancestor of
all particles in generation n.

Theorem 7.5.3 (Zubkov). Suppose EL = 1 (the process is critical) and EL2 <
∞, then

lim
n→∞

P
(
n−1Gn ≤ u|Xn > 0

)
= u,

for u ≤ 0 ≤ 1.

In other words, the generation of the common ancestor is distributed ap-
proximately uniformly between 0 and n.

The proof can be found in Geiger’s paper.
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7.6 Simply generated trees
7.6.1 Definition and main properties
Random trees are studied extensively in combinatorics. Here we compare the
models from combinatorics with Galton-Watson trees. The material in this
section are based on Flajolet - Sedgewick book and lecture notes by S. Janson.

Two typical models are binary rooted planar trees and general rooted planar
trees.

A planar rooted tree is a tree imbedded in a plane with one marked vertex
(root). They are equivalent if we can find an oriented homeomorphism of the
plane that move one tree to another, with the root moved to the root. A vertex
of the binary tree has zero or two children and a vertex of a general tree can
have an arbitrary number of children.

Typically, one fixes the number of vertices and considers a tree taken uni-
formly at random in a given class.

Moon and Meir suggested a class of more general models for trees, which
they called simply generated families of trees.

Recall that the out-degree of a node in a rooted tree is its number of children,
that is, the number of edges that lead away from the root. Let c0 = 1, c1, c2, . . .
be a sequence of non-negative numbers (“weights”), let the weight w(v) of a
vertex v be equal to cd(v), where d(v) is its out-degree, and let the weight of a
tree T be defined as

w(T ) =
∏
v∈T

w(v) =

∞∏
d=0

c
Nd(T )
d ,

where the last product is over all possible out-degrees d, and Nd(T ) denote the
number of vertices of degree d in the tree T .

Definition 7.6.1. A simply-generated random tree is the tree in Tn drawn at
random with probability w(T )/yn, where

yn =
∑
T∈Tn

w(T ),

and the sum is over all planar rooted trees with n vertices.

For example, if c0 = c2 = 1 and all other ci = 0, then yn is the number of
binary planar trees with n vertices, and if ci = 1 for all i then this is the number
of all planar rooted trees with n vertices. The first model is called the random
binary planar tree and the second, – the random general planar tree.

Moon and Meir studied the profile of the simply generated random trees
µn(k), which is the number of vertices in generation k, when the total number
of vertices n is large.

They found that the average height of a vertex in a simply generated tree
is A

√
n, for some positive constant A and that if k = O(

√
n) then the profile
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behaves according to the Rayleigh distribution,

Eµn(k) ∼ Ak exp
(
− k2

2n/A

)
.

with the mean proportional to k. In particular for initial generations of a random
binary tree, the growth of population is linear (proportional to k).

Moon and Meir use the method of generating functions in their study.
Now what is the relation of these trees with Galton-Watson trees?
If
∑∞

i=0 ci = C < ∞, then the sequences of weights ci can be scaled so
that it becomes a probability distribution pi = ci/C. This will not change the
relative weight of the trees in Tn, since every weight will be simply multiplied by
Cn, where n is the number of vertices in the tree. In this case w(T ) becomes a
probability of a Galton-Watson tree with the offspring distribution pi. However,
note that we condition this Galton-Watson measure on trees by requiring that
the tree has the total progeny equal to n. Hence in this case the simply generated
random tree can be identified with a conditioned Galton-Watson tree.

For example, the random planar binary trees can be described in this way,
by setting p0 = p2 = 1/2.

What if
∑∞

i=0 ci = ∞, as, for example, the situation for the general planar
trees?

Theorem 7.6.2. Let the probability on the set of trees Tn is given by the weights
ck, k = 0, 1, . . .. Suppose that the series θ(t) =

∑∞
k=0 ckt

k has a positive radius
of convergence so that

∑∞
k=0 ckρ

k < ∞ for some ρ > 0. Then this probability
distribution coincides with the probability distribution of a Galton-Watson tree
conditioned to have n vertices.

Proof. We use a modification of the weight sequence which will not change the
relative weight of the trees, and so it will not change the probability distribution
of the trees. Namely, let ci := atici, where a and t are parameters. This means
that a vertex of out-degree d how has weight atdcd. After multiplying over all
vertices we get an additional factor ant#edges in T = antn−1. In other words, for
these weights, we have

w(T ) =

∞∏
d=0

(cd)
Nd(T ) = antn−1

∞∏
d=0

c
Nd(T )
d ,

yn = antn−1yn,

and therefore, the probabilities of trees are the same as before weight modifica-
tion, w(T )/yn = w(T )/yn.

Since the new weights are ci = acit
i, therefore by our assumption on the

series
∑∞

k=0 ckt
k, we can find a modification of weights such that

∑
ci = 1.

Then the corresponding family of random trees is the same as that of the Galton-
Watson trees with probabilities of offspring pi = ci and conditioned to have n
vertices.
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In fact, since we have two parameters, a and t, at our disposal, we can also
target a specific mean for the offspring distribution in the Galton-Watson tree.
In particular we can target EL = 1. If it is possible, the simply generated
random tree is equivalent to a critical random Galton-Watson tree conditioned
on the total number of progeny being equal to n.

So, for example, a random general planar tree corresponds to the sequence
ci = 1 for all i. By the original definition, this is simply a tree chosen uni-
formly at random from all general planar trees of size n. If we use the weight
transformation with a = t = 1/2, we find that this random tree corresponds
to a random Galton-Watson tree with the geometric offspring distribution with
parameter p = 1/2, conditioned on having n vertices.

For the critical Galton-Watson trees, we already know that conditional on
non-extinction in generation h → ∞, the initial portion of the tree converges
to the size-biased random tree. It turns out that the same claim holds if we
condition on the total progeny of a critical tree n and let n go to ∞. The initial
portion of the tree converges to the size-biased random tree.
Example 7.6.3. Consider a random planar tree with large n. The convergence
to the size-biased tree allows us identify (with large probability) in k-th gen-
eration a distinguished vertex, the ancestor of the vertices in the most distant
generation. This vertex is likely to have offspring distributed as the size-biased
distribution pi = i(1/2)i while all other vertices in this generation generation
will have the out-degree with geometric distribution pi = (1/2)i.

Now, supposing that we can re-weight the original weights ci to a sequence of
probability weights, is it always possible to ensure that the resulting probability
distribution has mean 1?

The answer is “no”.
Note that we can use the transformation ci → acit

i and obtain a probability
distribution only if t < ρ where ρ is the radius of convergence for the series
θ(t) =

∑∞
i=0 cit

i, of if t = ρ and θ(ρ) <∞.
If we do the transformation and the result is the probability sequence, then

we must have a = 1/θ(t). So, let the probabilities after the transformation be
pk = ckt

k/θ(t). Then the off-spring distribution of the corresponding Galton-
Watson tree has the mean

EL =

∞∑
k=0

kpk =
1

θ(t)

∞∑
k=0

kckt
k = t

θ′(t)

θ(t)
.

Lemma 7.6.4. The function ψ(t) = tθ′(t)/θ(t) is increasing on [0, ρ).

Ex. 7.6.5. Prove this lemma.
Define

ν = lim
t↑ρ

t
θ′(t)

θ(t)
.

Then it is clear that we can choose a re-weighting transformation with the
critical offspring distribution, only if ν ≥ 1.
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The point is that for certain choices of weights ν < 1. The trees in which this
situation is realized are called non-generic random trees. It can only happens if
the radius of convergence ρ <∞.
Example 7.6.6 (Non-generic random tree).

Let ck = 1/kβ for k > 0 and β > 2. Let c0 = 1+ δ, where we choose δ later.
Then ρ = 1 and θ(1) = ζ(β) + δ < ∞. (Here ζ(z) denote the Riemann zeta
function.) In addition

ν = ψ(1) =
ζ(β − 1)

ζ(β) + δ
.

By a suitable choice of δ this can be made smaller than 1. In this situation, the
tree cannot be represented as a critical Galton-Watson tree.

From the arguments in the previous section we know that if we condition
a critical or a subcritical tree on the existence of surviving vertices in the n-th
generation, and let n→ ∞, then the limit is the size-biased Galton-Watson tree.
Note, however, that when we study random trees from Tn, we are conditioning
not on the existence of the vertices in the n-th generation but rather on the
total size of the tree. It turns out that for generic trees, this does not make
much difference in the limit, and the limit tree is the same, – the size-biased
critical GW tree.

A surprise comes with non-generic trees. It turns out that for them the limit
is different.

Suppose that we investigate non-generic trees Tn with the offspring distri-
bution {pk}, such that µ < 1. Then the limit tree can be described as follows.
The vertices are again divided into two classes, normal and special, and in one
generation there can be no more than one special vertex. However, now in some
generations there are no special vertices.

The root vertex is special. The offspring of every special vertex is distributed
according to the following distribution:

L =

{
k, with probability kpk
∞, with probability 1− µ,

where µ := EL =
∑∞

k=0 kpk.
If the offspring of a special vertex is finite, then one of the offspring is

randomly chosen as the special vertex in the next generation. However, if the
offspring is infinite, then none of the children is chosen as special. All vertices
in the offspring are normal. The offspring of every normal vertex is distributed
according to the usual Galton-Watson law and consists of normal vertices.

With probability 1, this limit random tree has only a finite path of special
vertices, and at the end of this tree there is an explosion.
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7.6.2 The main convergence theorem about simply gener-
ated trees

Definition of convergence of rooted ordered trees

It is convenient to consider all trees as subsets of one very large non-locally finite
tree which is called the Harris-Ulam tree THU . Namely, consider the alphabet
of natural numbers N = {1, 2, . . ., and the space V∞ of all finite strings on this
alphabet, including the empty string ∅. For example, a typical element is a
sequence (100, 1, 10, 2). These are the vertices of the tree THU .

The root of this tree is the empty string ∅. The edges connect vertices
i1, . . . , ik and i1, . . . , ik, ik+1. This gives THU the structure of a connected graph
which is in fact a tree. Since the tree has a root, we can talk about parent-child
relation between vertices. For example the vertex (100, 1, 10) is the parent of
the vertex (100, 1, 10, 2).

The embedding φ of a planar tree T in THU is defined recursively. The root
of T is mapped to ∅. If v is mapped to (i1, . . . , ik) and has s children v1, . . . , vs
(which are ordered by the definition of a planar tree), then vj is mapped to
(i1, . . . , ik, j). For example, if a vertex of T that corresponds to (100, 1, 10)
has three children, then they are mapped to (100, 1, 10, 1), (100, 1, 10, 2), and
(100, 1, 10, 3), respectively.

Let Tf ⊂ Tlf ⊂ T be the sets of all finite (locally finite, arbitrary) rooted
planar trees, respectively.

For a tree T in T one can define the out-degree function on vertices of
THU . Namely, dT (x) = 0 if x is not in the image of the embedding φ(T ), and
dT (φ(v)) = out-degree of vertex V in T . Note that this function can take value
∞ if the vertex v has infinite number of children.

Definition 7.6.7. We say that a sequence of planar trees Tn ∈ T converges
to T ∈ T , if the functions dTn

converge to dT pointwise, that is if for every
v ∈ THU ,

dTn
(v) → dT (v).

Let T (m) denote the subtree of T consisting of the vertices in generations
0, . . . ,m, that is, the truncation of tree T at height m. Then for locally finite
limit trees T , the situation is simple.

Lemma 7.6.8. If T ∈ TT is locally finite, then, for any sequence of trees
Tn ∈ TT

Tn → T ⇐⇒ T (m)
n → T (m) for each m

⇐⇒ T (m)
n = T (m) for each m and n > n0(m)

where n0(m) is a certain function of m.

If T is not locally finite then the second equivalence in this statement does
not hold.
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Example 7.6.9. Let Sn, 1 ≤ n ≤ ∞, be a star where the root have out-degree
n and its children have out-degree 0, then Sn → S∞ but S(m)

n ̸= S
(m)
∞ for all n

and m ≥ 1.
Let V [m] be the subset of V∞ that consists of strings of length at most m

and with string elements at most m. The T [m] is the subtree of T with the
vertices in V [m]. That is, T [m] is obtained from T by truncating at height m
and pruning the tree so that all out-degrees are at most m. Then, the following
result holds.

Lemma 7.6.10. For any T ∈ TT and for any sequence of trees Tn ∈ TT

Tn → T ⇐⇒ T [m]
n → T [m] for each m

⇐⇒ T [m]
n = T [m] for each m and n > n0(m)

where n0(m) is a certain function of m.

Janson notes that if the trees are random then the analogues of these two
lemmas holds for the convergence in probability or in distribution. For example

Tn
d−→ T ⇐⇒ T [m]

n
d−→ T [m] for each m

For the proof, Janson refers to the methods in Aldous and Pitman 1998 ”Tree-
valued Markov chains” (in the case of locally finite limit tree) , or more generally
to Billingsley ”Convergence of probability measures”.

The main convergence theorem

Let us here give a formal statement about the limit of simply generated trees.
Recall that we defined θ(t) =

∑∞
i=0 cit

i, where ci are the weights of a given
family of trees, and ρ as the radius of convergence of θ(t). We have also defined
the function ψ(t) = tθ′(t)/θ(t) and ν = limt↑ρ ψ(t). This parameter represents
the largest mean of the offspring random variable L that can be obtained through
re-scaling of the weight sequence.

Theorem 7.6.11. Let (ck) be any weight sequence with c0 > 0 and ck > 0 for
some k ≥ 2.

1. If ν ≥ 1, let τ be the unique number in [0, ρ] such that ψ(τ) = 1.

2. If ν < 1, let τ = ρ.

Let πk = ckτ
k/θ(τ) for all k ≥ 0. Then (πk) is a probability distribution with

expectation µ = ψ(τ) = min{ν, 1}, and (possibly infinite) variance σ2 = τψ′(τ).
In the case (i) µ = 1 and the simply generated random tree Tn converges to the
size-biased Galton-Watson tree that corresponds to distribution π. In the case
(ii) µ = ν < 1, Tn converges to the modified size-biased Galton-Watson tree that
has a finite spine ending with an explosion.

[Proof ???]

144



The convergence for the degree of a random vertex

Recall that we use dT (v) to denote the out-degree of vertex v in a rooted tree
T .

Theorem 7.6.12. Let Tn be a simply generated tree and let the probability
distribution π be as defined in Theorem 7.6.11.

1. Let v be a uniformly random node in a random tree Tn. Then, for every
k ≥ 0, as n→ ∞,

P[dTn
= k] → πk.

2. Let Nk(Tn) be the number of vertices of out-degree k in a random tree Tn.
Then for every k ≥ 0,

Nk(Tn)

n

P−→ πk.

Note that the second statement is stronger and more useful than the first.
It means that the empirical distribution of vertices in a given random tree
converges to the distribution π. It corresponds to the quenched results in ter-
minology of statistical physics, while (i) corresponds to an annealed result.

For generic case ν > 1 a form of this result was proven by Meir and Moon
(see Flajolet - Segdewick Proposition VII.2 on p. 460). In the presented form
it is due to Jansson (Theorem 7.11). Janson also gives a reference to an early
work by Otter (1948).

7.6.3 Further Examples
1) Non-planar trees, or unordered trees.

2) Binary tree II
3) Motzkin tree
4) wk = k!

7.6.4 How to generate simply generated random trees?
We will describe here Devroy’s algorithm for sampling generic simply-generated
trees, and we describe it below. Devroy assumes in his algorithm that the weight
sequence is rescaled to a probability distribution {pk} with mean 1. This is
always possible to do for a finite n by setting the weights ck equal to 0 for
k > n. In particular, this algorithm works both for the generic and non-generic
case.

Devroy assumes also that 0 < σ2 := Var(L) < ∞ and shows that the
algorithm is linear in n under this assumption. He explains what happens if the
assumption on the variance is relaxed. He warns, however, that for E(L) = ∞,
the explicit results about the complexity of the algorithm are more difficult to
obtain.
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Bijection with Lukasiewicz paths

First, we note that rooted planar trees are in bijection with a special kind of
random walk paths, the Lukasiewicz paths.

The pictures and discussion below are taken from Flajolet-Segdewick book
“Analytical Combinatorics”

Figure 7.5: The depth - first exploration of a tree

Every plane tree can be traversed by starting at the root, proceeding depth-
first and left-to-right and backtracking to the root once a sub-tree has been
completely explored. For example, in the tree in Figure 7.5 the first visits to
vertices take place in the following order: (a, b, d, h, e, f, c, g, i, j).

If we replace the vertex in this order with the out-degree of this vertex, than
we obtain the Lukasiewicz code of the tree. For the example in Figure 7.5, the
code is

σ = (2, 3, 1, 0, 0, 0, 1, 2, 0, 0).

Figure 7.6: Reconstruction of a tree from its Lukasiewicz code

One can check that the code determines the tree unambiguously. Given a
code, one reconstruct the tree step by step adding vertices one after the other
in the left-most available place. For our example, the first steps in this process
are illustrated in Figure 7.6.

Lukasiewicz introduced these codes to describe the order of evaluation of
logical expressions. These codes are also a basic instrument in development of
parsers and compilers in computer science.

The Lukasiewicz codes can be represented as paths on the discrete lattice
Z×Z where the j-th element of the code σj corresponds to the path displacement
(1, σj − 1). For our example, we have the path shown in Figure 7.7.
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Figure 7.7: A Lukasiewicz path

In this way, we obtain a bijection between the planar rooted trees with n
vertices and lattice paths from (0, 0) to (n,−1) where the steps have sizes in the
set {−1, 0, 1, 2, . . .}, and such that the path does not go below the horizontal
axis except at the last step. Such lattices paths are called Lukasiewicz paths

So, in order to generate a random planar tree Tn according to the distribution
w(T ), we need to generate a Lukasiewicz path Pn with n steps, according to
the distribution w(P ) that assigns weights ci to increments with value i− 1.

Cycle lemma

For the purposes of path generation, it is somewhat inconvenient that the path
is restricted to be always above the horizontal axis except at the last step.
So consider the class of relaxed Lukasiewicz paths that start at (0, 0), finish at
(n,−1) and have step sizes in the set {−1, 0, 1, 2, . . .}. However, they are allowed
to take negative values in between times 0 and n .

Figure 7.8: A example of the Vervaat Transform

Every relaxed Lukasiewicz path can be transformed to a regular Lukasiewicz
path by a certain transformation. We call it the Vervaat transform since it is
analogous to a similar transform in the theory of Brownian motion introduced
by Wim Vervaat. It works as follows. Let x1, x2, . . . , xn be the steps of a
relaxed Lukasiewicz path, and sj =

∑j
i=1 xi is the vertical coordinate of the

path at time j. Let ĵ is the first time when the path reaches its minimum value.
Then the Vervaat transform of the original path is given by the step sequence
(xĵ+1, . . . , xn, x1, . . . , xĵ). An example is shown in Figure 7.8.

Lemma 7.6.13 (Dvoretzky-Milman Cycle Lemma). The Vervaat transform
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is an n-to-1 map of the set of relaxed Lukasiewicz path to the set of regular
Lukasiewicz paths.

It is also clear that the Vervaat transform preserves the number of steps that
have a given size. It remains to generate relaxed Lukasiewicz paths according
to distribution that gives a path P the weight w(P ), where

w(P ) = cn0
0 cn1

1 . . . cnk

k . . . ,

if the path contains nj steps of size j − 1, and we also have the conditions

n0 + n1 + . . . = n,

n0 × (−1) + n1 × (0) + n2 × 1 + . . .+ nk × (k − 1) + . . . = −1.

Adding the first condition to the second, we obtain:

n1 + 2n2 + 3n3 + . . . = n− 1.

By assumption, ci = pi form a probability distribution, so we have a problem of
getting a sample (n0, n1, n2, . . .) from the multinomial distribution with param-
eters n and (p0, p1, p2, . . .) and an additional linear condition

∑∞
k=1 knk = n−1.

7.6.5 Sampling from the multinomial distribution
It is easy to sample from the multinomial distribution since its marginal and con-
ditional distributions are binomial and multinomial distributions respectively.
First, we sample n0 as a binomial random variable with parameters (n, p0), then
we sample n1 as a binomial r.v. with parameters

[
n− n0, p1/(1− p0)

]
, then we

sample n2 as a binomial r.v. with parameters
[
n− (n0+n1), p2/(1− (p0+p1))

]
,

and so on, until we obtain nK such that n1 + . . .+ nK = n.
According to Devroye, a binomial random variable can be generated in con-

stant time independent of n and p. Therefore, the generation of the sequence
(n0, . . . , nK) will on average take time proportional to the expectation of K
above. If the distribution of L has finite support then this expectation is con-
stant. Otherwise, we need to evaluate the expectation of the maximum of n
independent copies of L and according to Devroye, this quantity is bounded by
o(n1/ρ) if E(Lρ) <∞. (See the argument in Devroye’s paper.)

It follows that the time to generate the sequence (n0, . . . , nK) is O(n1/2) for
L with finite variance.

Note, however, that the generated sequence of nk might fail to satisfy an
additional condition

∑
k knk = n−1. In order to satisfy this condition, Devroye

suggests repeating the procedure until the condition is satisfied.
Note that

E
∑
k

knk =
∑
k

kpkn = µn.

For µ = 1 this is close to the target condition for
∑

k knk.
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Also note that this sum can also be written as
∑n

i=1 Li where Li are i.i.d
random variables distributed as L. Hence one can use theorems about sums of
independent random variables. If µ = 1 and Var(L) <∞, then local limit laws
hold and the probability of the sum to hit n− 1 is at least cn−1/2 unless some
condition on the parity of the sum interferes (Devroye refers here to Petrov’s
book.)

Hence, on average one needs O(n1/2) randomly generated sequences to ob-
tain one sequence (n0, . . . , nK) that satisfies the condition

∑
k knk = n − 1.

Generation of one sequence takes time O(n1/2). Overall, this gives O(n) time
to generated a good sequence (n0, . . . , nK).

Overall description of the sampling algorithm

So, first we generate the sequence (n0, . . . , nK) that satisfies the condition∑
k knk = n− 1. Then we form a sequence

(−1,−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1, 2, . . . , 2, . . . ,K − 1, . . . ,K − 1).

where −1 is repeated n0 times, 0 repeated n1, and more generally, the value
k − 1 is repeated nk.

After that we permute randomly this sequence and apply the Vervaat trans-
form. This can be done in O(n) time. Finally, we map the resulting Lukasiewicz
path to the corresponding tree. This again takes no more than O(n) time.

Hence, if µ = 1 the overall running time is linear O(n).

Extensions

What do we do if EL < 1 and the sequence of weights cannot be re-weighted
to the critical case EL = 1? In other words, how do we generate non-generic
trees?

In fact for any fixed n, the probabilities pk with k ≥ n are irrelevant after
we condition on the progeny size equal to n. Hence, for every fixed n, we can
use a truncated probability distribution for L, where pk = 0, if k ≥ n. This
probability distribution can be conjugated (that is, re-weighted) to a critical
cases and therefore, we can sample from this family of trees.

The re-weighting scheme is changing from time to time and this is what
causes the limit to be different from the case of generic trees.

149



Chapter 8

Random planar maps

8.1 Planar maps and Quadrangulations
[This section is based on the Chassaing-Schaeffer paper.]

Planar maps are planar graphs with a fixed imbedding in a plane (or sphere).
One can also consider graphs embedded in surfaces of higher genus. A priori,
loops and multiple edges are allowed in a planar map. We assume here that a
planar map is rooted. That is, it has a root, which is a distinguished edge with
a specified orientation. The starting vertex of the root is called the root vertex.
The face which stays on the right when we move along the root edge is called
the root face or outer face. Two maps are identical if there is a homeomorphism
of the plane that sends one map onto another (roots included).

Figure 8.1: A planar quadrangulation, in planar and spherical representation; pic-
ture from Chassaing and Schaeffer

One particular case of planar maps consists of triangulations, another one,
which we consider here consists of quadrangulations. These are planar maps
with 4-regular faces. See Figure 8.1.

The 4-faces are allowed to be degenerate, in the sense that they can have as
its boundary two edges from u to v and another edge in the region bounded by
these two edges. See an example of these faces in Figure 8.2.

One can check that the quadrangulations are necessary bipartite, that is, its
vertices can be colored in two colors, so that no two vertices of two colors are
connected by an edge. In particular, this implies that there can be no loops in
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Figure 8.2: A planar quadrangulation, with vertices labelled by minimal distance
from the root vertex.

any quadrangulation. However, there still can be multiple edges. See Figure
8.2.

One can check that if a quadrangulation has f = n faces, then it must have
e = 2n edges. The Euler formula says that there is a relation between the
number of faces, edges and vertices in any planar map. Namely, f + v = e+ 2.
It follows that the number of vertices in a planar quadrangulation with n faces
is v = e+ 2− f = 2n+ 2− n = n+ 2.

The picture in Figure 8.2 also shows the minimal distances of vertices of
quandragulation from the root vertex.

The distribution of the minimal distance across vertices is called the profile of
the quadrangulation, that is, the profile is defined as the vector (Hk), k = 1, . . .,
where Hk is the number of vertices at the distance k from the root vertex.

Let d(v) denote the distance from the root. In the following we need some
properties of this function.

Figure 8.3: The map from quadrangulations to well-labelled trees. On the left: rule
for simple (top) and confluent (bottom) faces.

1) If u and v are joined by an edge then |d(u)− d(v)| = 1.
This is clear by triangle inequality for the distances. The case d(u) = d(v)

is ruled out because u and v has different colors and the function d has the
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different parity for vertices of different color.
The second property is immediate consequence of the first one.
2) Around a face, four vertices appear: two blacks, x1 and x2 and

two whites, y1 and y2. These vertices satisfy at least one of the two
inequalities d(x1) = d(x2) and d(y1) = d(y2).

(Note that it might happen that x1 = x2 or y1 = y2.)
In the following, a face will be called simple when only one of these equalities

is satisfied and confluent if both are satisfied.

8.1.1 Quadrangulations and well-labelled trees
Here we describe Schaeffer’s bijection between rooted planar quadrangulations
and well-labelled planar trees. The benefit of this bijection is that we can study
random triangulations in the framework of random trees.

A well-labelled planar tree is a rooted planar tree, in which every vertex is
labelled by a positive integer. The root vertex is labelled by 1 and the labels on
adjacent vertices are different by no more than 1.

The label distribution of the well-labelled tree is the vector (λk), k = 1, . . .,
where λk is the number of vertices with label k.

Theorem 8.1.1 (Schaeffer). There is a bijection T between planar quadran-
gulations with n faces (counting the outer face) and well-labelled trees with n
edges. Under this bijection, the label distribution of the tree T (Q) equals the
profile of the quadrangulation Q.

Proof. Here is the map of quadrangulations to well labelled trees.
For every confluent face, take an edge (absent in the original map) that

connects two vertices with maximal label d(v). For every simple face f take an
edge that have a vertex v with maximal label as one end-point and leaves v with
face f on its left. See picture in Figure 8.3

Finally, let the distinguished edge will be the edge that was chosen for outer
face of the map.

The first claim is that the result of this operation is a well-labelled tree with
the distinguished edge as its root, and the labels equal to the distances d(v). The
second claim is that it is a bijection, and hence the original planar map can be
recovered from the well-labelled tree.

Let us prove the first claim.

Lemma 8.1.2. The mapping T sends a quadrangulation Q with n faces on a
well labeled tree T (Q) with n edges.

Proof. First, why all vertices of Q belong to T (Q)? Consider a vertex x which
is not the root vertex of Q, then one of its neighbors, say y, is located on the
path to the root and therefore has a smaller label. For this edge (x, y) we have
the following possibilities:

1. it is incident to a confluent face;
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2. it is incident to a simple face in which x takes the maximal label, and

3. it is incident to two simple faces in which x takes the intermediate level.

In all of these cases, our rules ensure that x belongs to at least one edge selected
for T (Q). It follows that all vertices except root belong to T (Q). The root is
minimal vertex in all its faces and therefore it is not incident to any edge in
T (Q).

Since the total number of vertices is n+ 2, it follows that n+ 1 vertices are
incident to an edge in T (Q). For each face, we have one edge chosen. For two
different faces, these edges are different. For confluent faces this is obvious, and
for a couple of adjacent simple faces, the edges must be different because of our
rule of how to chose an edge from two possible for simple cases. It follows that
there are n edges in T (Q).

It is clear that T (Q) is planar by planarity of Q.
In order to show that T (Q) is a tree it remains to prove either that T (Q) is

connected, or that it does not have cycles.
Here is how cycles can be ruled out.

Figure 8.4: Impossibility of cycles

Suppose there exists a cycle in T (Q) and let e ≥ 0 be the value of the
smallest label of a vertex of this cycle. Either all these labels are equal, or there
is in the cycle an edge (e, e + 1) and an edge (e + 1, e). In both cases, as we
can see from Figure 8.4, the rules of edge selection imply that there is a vertex
with label e − 1 in both components of the plane defined by the cycle. Now
consider the shortest paths from the root to these vertices. Since the vertices
are in different components, one of these paths must intersect the cycle, and the
vertices on the path have the labels smaller than e− 1. This contradicts to the
assumption that e was the smallest label on the path.

It follows that there are no cycles and therefore T (Q) is a tree on with n
edges.

The second claim is that there is an inverse mapping from well-labeled trees
to planar quadrangulations.
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Figure 8.5: First step of reconstruction algorithm

Here is how the transformation works. The first step is illustrated in Figure
8.5. We view a planar tree as a planar map with a unique face F0. We define
a corner as a sector between two consecutive edges around a vertex. A vertex
of degree k defines k corners and the total number of corners of a tree with n
edges is 2n. (Adding an edge adds 2 corners to a tree.) The label of a corner is
by definition the label of corresponding vertex.

So, first we place a vertex v0 with label 0 in the face F0 and add an edge
between this vertex and each of the corners with label 1. The new root is the
edge from v0 at the corner before the root of T . The “before” here is in the
sense of counter-clockwise orientation.

If we had l corners with label 1 then after this procedure we obtain l faces
in the resulting planar map (including the outer face F0).

Then we process every face separately. Let k ≥ 3 be the degree of the face k.
Number the corners of F from 1 to k starting right after v0 and going clockwise.
Let ei be the label of corner i. (So, in particular e1 = ek−1 = 1 and ek = 0.)
An example is shown in Figure 8.5 for one of the faces.

Then for each corner i ≥ 2 one adds an edge (i, s(i)) inside the face, unless
s(i) = i+ 1. Here s(i) is the successor function:

s(i) := inf{j | j > i, ej = ei − 1}

In words, for every corner i ≥ 2, we go along the boundary clock-wise starting
with i+1 and look for a corner that has a label which is smaller by 1 than label
of corner i. If we find such a corner j, then we connect i to j, unless j = i+ 1
and it is already connected by an edge.

We will prove later that it is possible to add the edges in such a way that
they do not intersect.

After these procedure is finished for each face, we obtain a planar map Q′(T ).
In this planar map we remove the edges with labels of the form (e, e). The result
is a planar map called Q(T ).

The first claim is that Q(T ) is a quadrangulation with n faces, and the
second claim is that this mapping is inverse for the mapping T above.

Lemma 8.1.3. The edges (i, s(i) do not intersect.
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Proof. If we have intersecting edges, than we can choose i and j such that
i < j < s(i) < s(j). Then esi = ei − 1 and the label of j cannot be ≤ ei − 1,
since otherwise we would encounter the label ei − 1 earlier before coming to
s(i), – the labels cannot change by more than 1. Hence ej > es(i). However by
a similar argument we have es(i) > es(j). It follows that es(j) ≤ ej − 2, which
contradicts the definition of s(j).

Figure 8.6: Possible types of faces in Q′(T )

Lemma 8.1.4. The faces of Q′(T ) can have only the two types shown in Figure
8.6. They are either triangular with labels e, e+ 1, e+ 1, or quadrangular with
labels e, e+ 1, e+ 2, e+ 1. The faces of Q(T ) are all quadrangular.

Proof. The picture in Figure 8.6 is self-explanatory. However a couple of obser-
vation. Let f be a face in Q′(T ) and j be the corner with largest number in the
corresponding face F in T0. Let i1 < i2 < j be its two neighbors in f . (Here we
use the numbering inherited from F . Then, by the definition for the successor
function, we must have ei1 = ei2 = ej + 1.

Then two situations are possible. Either i2 = i1 +1, and the f is a triangle.
Or i2 > i1. In this case i1 + 1 is not connected with j and the rules for the
successor function imply that ei1+1 = ej + 2. and that i1 + 1 is connected with
i1. This shows that f is quadrangular with the properties stated in the lemma.

Finally, when the edges of the type (e, e) are removed, this joins two trian-
gular faces in a quadrangular face. In particular, it removes all triangular faces
and shows that Q(T ) is a quadrangulation.

Now we want to prove our second claim.

Proposition 8.1.5. The mapping Q is the inverse of the mapping T .

Proof. If quadrangulation is an image of the map Q(T ) then its faces look as
quadrangular faces in Figure 8.6 or as pairs of triangular faces in Figure 8.6
joined by the edge (e, e). Then we can see that the mapping T recovers back
the relevant part of the tree by selecting the right edges.

One unclear point is that the set of Q(T ) gives all possible quadrangulations.
This can be resolved either by comparing the cardinalities of the set (which are
known from other methods), or directly by showing that Q(T Q) is identity for
every quadrangulation Q. The last argument is rather complicated.
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Since T is an map of quadrangulations to well-labeled trees, and Q is an
map of trees to triangulations, and since they are inverses of each other, that
means that there is a bijection between quadrangulations and well-labeled trees
and this concludes the proof of Theorem 8.1.1

8.1.2 Embedded trees

Figure 8.7: An example of an embedded tree. The vector λ is the profile of the tree.
[m,M ] is the support of the distribution of labels.

How can we generate the well-labelled trees? One of the problems is that
well-labelling assumes that the labels is positive and this is a stringent con-
straint. So we proceed in two steps. The first step is to relax this constraint
and consider a more general class of trees, which is called embedded trees. The
second step that every well-labelled tree belongs to a specific class of embedded
trees. Every such class has the same cardinality and the same number of repre-
sentatives from well-labelled trees. So we will be able to generate a well-labelled
tree provided that we are able to generate embedded trees and convert each em-
bedded tree to a corresponding well-labelled tree in its class. The second step
will require introduction of yet another class of the trees, the blossom trees.

So, for the first step of this program, consider the class of labelled rooted
planar trees, where labels on the neighboring vertices can be different by no
more than 1 unit but there is no condition of positivity. (The root is labelled 1,
as before.) An example is shown in Figure 8.7.

Another way to describe this tree is to imagine that not vertices, but edges
are labelled by labels from the set {−1, 0, 1}, which describe how the labels on
vertices change when we move away from the root.

We call these trees embedded trees for the following reason. These trees
are a special type of trees that were considered by David Aldous to describe a
random distribution of mass in space. He accomplished this by embedding the
trees marked by a random vector ve on the edge e in the space. Every vertex
v in the tree corresponds to the point in space given by the sum

∑
e∈[r,v] ve,

where the summation is over edges in the path from the vertex v to the root r.
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Figure 8.8: An example of an embedded tree and the corresponding mass distribu-
tion.

In our special case the “space” is Z, the labels on edges are {−1, 0, 1} and
the distribution of mass is simply the profile of the tree. See Figure 8.8.

It is easy to generate the embedded tree. Simply generate a planar tree and
put the labels {−1, 0, 1} on the edges randomly.

The relation of embedded trees and well-labelled trees is described in the
following theorem. Let En and Wn denote the sets of embedded and well-
labelled trees with n edges, respectively. We know that and Wn ⊂ En since the
well-labelled trees are simply embedded trees for which an additional constraint
on labels is satisfied. (The labels must be non-negative.)

Recall also that λk(T ) denotes the number of vertices with label k. We also
define the cumulated label distribution as

Λk(T ) =

k∑
l=1

λm+l−1(T ),

where m is the minimal label. Clearly ΛM−m+1 = n+1, where n is the number
of edges in T . For the example in Figure 8.8, we have Λ1 = 1, Λ2 = 4, Λ3 = 7,
Λ4 = 9.

Theorem 8.1.6 (Chassaing-Schaeffer). There exists a partition of embedded
trees En into disjoint classes Ci, such that for every class Ci,

1. |Ci| ≤ n+ 2;

2. well-labelled trees are fairly represented,

|Ci ∩Wn| =
2

n+ 2
|Ci|,

and

3. there is a relation between label profiles. For every tree W ∈ Ci ∩Wn and
every tree T ∈ Ci, and all k ≥ 1,

Λk−2(T ) ≤ Λk(W ) ≤ Λk+2(T ).
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A consequence of this theorem is the enumeration of quadrangulations with
n faces (originally proved by another method in Cori - Vauquelin, 1981).

Corollary 8.1.7. The number of quadrangulations with n faces is

2

n+ 2

3n

n+ 1

(
2n

n

)
.

Proof. By Schaeffer’s theorem (Theorem 8.1.1), we know that the number of
quadrangulations with n faces equal to the number of well-labelled maps with
n edges, |Wn|. Theorem 8.1.6 implies that

|Wn| =
2

n+ 2
|En|,

where |En| is the number of embedded trees. The total number of rooted planar
trees is the Catalan number Cn = 1

n+1

(
2n
n

)
, and the total number of labellings

is 3n. Hence |En| = 3n

n+1

(
2n
n

)
. Altogether, this implies the statement of the

corollary.

Theorem 8.1.6 can be restated in the following form. Let Wn, Tn be random
trees uniformly distributed on Wn and En, respectively. Also let µ(Wn) denote
the maximal label of tree Wn, and M(Tn), m(Tn) denote the maximum and
minimum labels of tree Tn, respectively.

Theorem 8.1.8. There is a coupling (Wn, Tn) such that the induced random
variables (λ(Wn), λ(Tn)) for all k satisfy inequalities

Λk−2(Tn) ≤ Λk(Wn) ≤ Λk+2(Tn),

and in particular, for this coupling,

|µ(Wn)− (M(Tn)−m(Tn))| ≤ 3.

Proof. The joint distribution of the coupling is given by the following formula

P[(Wn, Tn) = (W,T )] =


1

2|En| , if W and T are both in C with |C ∩Wn| = 2,
1

|En| , if W and T are both in C with |C ∩Wn| = 1,

0, otherwise .

The first inequality follows from the inequality in Theorem 8.1.6. One particular
case of this inequality is

Λµ−2(Tn) ≤ Λµ(Wn) = n+ 1 ≤ Λµ+2(Tn),

which implies that

µ− 2 ≤M −m+ 1 ≤ µ+ 2,

and this implies the second inequality of the Theorem.
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Figure 8.9: Blossom Tree and its labelling

8.1.3 Blossom trees
The proof of Theorem 8.1.6 uses blossom trees. These are rooted planar trees
with the following properties.

1. The leaves of a blossom tree are of two types: arrows and flags.

2. The root is a special leaf, and it is a special flag.

3. The inner nodes of the tree (i.e., those which are not leaves) have degree
4, and adjacent to exactly one arrow.

The set of blossom trees with n inner nodes is denoted Bn. Since the degree
of inner nodes is 4, it is easy to check that the number of leaves is 2n+ 2 and,
in particular, there are n arrows and n+ 2 leaves (including root).

For the following construction we need to introduce some labels on the flag
leaves of the blossom tree. This labelling is completely determined by the tree
and given by the following labelling process:

• Start with current label 2 just after the root.

• Go around the border of the tree in counter-clockwise direction. If an
arrow is reached, increase the current label by 1, otherwise, when a non-
special flag is reached, decrease the current label by one and write it on
the flag.

• Stop when the special (root) flag is reached again.
See an example in Figure 8.9/

Theorem 8.1.9. There is a bijection between embedded trees with n edges and
blossom trees with n inner nodes that preserves the label distribution.

The bijection is build by a recursion and we also need “decorated” blossom
trees. These are blossom trees in which flags contains not only labels but also
an embedded tree, which can be empty. If the embedded tree in the flag is not
empty, then its root has the label equal to the label of the flag.

In addition, for every embedded tree we define the root edge as the left-most
edge incident to the root vertex.
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Proof. The rules for the bijection are illustrated in Figure 8.10.

Figure 8.10: Rules for the bijection from embedded to blossom trees

The first step of the encoding of an embedded tree is special and consists in
writing it on the normal flag of the unique blossom tree with two flags and no
inner node.

The next step is to apply one of the rules in Figure 8.10. The first rule says
that if the tree in the flag consist of only one vertex with label e, then this flag
is replaced by the undecorated flag with the label e.

Three remaining rule pertain to the situation when the embedded tree inside
the flag has at least one edge. They prescribe splitting the embedded tree by
cutting it over its root edge. The two resulting trees are put then into two flags
which connected to a new inner node that replaces the flag that we process. An
arrow is also added to the new inner node in a specific direction.

For example in Figure 8.11, we apply first the rule II.
Then the procedure is repeated recursively until no flags with embedded

trees remains.
The rules are local so the result do not depend on the order in which the

rules are applied.
Note that every time a new inner node is added, an edge is removed from

the union of the embedded trees. It follows that if the embedded tree had n
edges, the resulting blossom tree will have n inner nodes.

It is also obvious that the inner nodes have out-degree 4.
Next, the choice of the position in which the arrow is placed ensures that

the labels on the new blossom tree will be consistent with the labels on the
embedded trees.

Finally, it is obvious that the procedure is reversible and therefore define a
valid bijection.
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Figure 8.11: An example for the bijection from embedded to blossom trees

As a result of this bijection, applied to embedded trees we obtain an unla-
belled trees, in which, however, the leaves can be of two types, arrows and flags.
(The labels on the blossom trees are determined by the graph itself.)

On blossom trees, there is a natural operation of choosing a different root.
More precisely a cyclic shift of a blossom tree A is obtained by replacing the
special flag by the normal flag and choosing a new special flag.

Given a blossom tree B with n arrows and n+ 2 flags, the evolution of the
current label, in the labelling process is a walk with n increments +1 and n+2
increments of −1, whose last step is a negative increment.

A cyclic shift of a blossom tree corresponds to a cyclic shift of the corre-
sponding walk.

The walks with n values of +1 and n+ k values of −1 have some interesting
properties. They were uncovered in the study of the ballot-problem in the study
of election voting and are concerned with “low records” in such walks. We use
xi, i = 1, . . . , 2n+ k to denote increments, and Sj , j = 0, . . . , 2n+ k to denote
the walk values, S0 = 0, Sj =

∑j
i=1 xi, for j > 0. A (low) record r is a (non-

zero) step j ≥ 1, at which a minimum is reached for a first time: for all j < r,
Sj > Sr.

Since the walks with n increments of +1 and n + k increments of −1 start
from 0 and end at −k, there must be at least k low records. (Potentially, there
can be n + k low records if the walk goes down for the first n + k steps.) Let
r1 < r2 < . . . < rk denote the k lowest records. Note that rk is the location of
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the first occurrence of the absolute minimum of the walk.
An interesting property of the lowest k records is that under the cyclic shift

they are also shifted cyclically.

Lemma 8.1.10 (Cycle Lemma II). Suppose that x = (x1, x2, . . . , x2n+k), xi ∈
{−1,+1} is a sequence of increments such that

∑2n+k
i=1 xi = −k, and let x′ =

(x1+s, x2+s, . . . x2n+k+s) is its cyclic shift by s. (Indices are calculated modulo
2n+k.) If {r1, . . . , rk} is the set of the low records of x, then {r1−s, . . . , rk−s}
is the set of the low records of x′ (with calculations done modulo 2n+ k).

Remark: In fact, the proof shows that the order of the low records in x′ is
the same as in x except for the cyclic permutation. So if ri ≤ s < ri+1, then
the new low record sequence is

r′1 = ri+1 − s < r′2 = ri+2 − s ≤ . . . ≤ r′k−i = rk − s

< r′k−i+1 = r1 − s+ 2n+ k ≤ . . . ≤ r′k = ri − s+ 2n+ k.

Proof. It is enough to check the validity of the lemma for s = 1. We consider
two cases.

If r1 ≥ 2 then S′
i−1 = Si−x1 for i = 2, . . . , 2n+k so all the sum were changed

by the same amount and therefore the sums Srj−1 will be the k smallest low
records among these numbers. In addition, S′

2n+k = −k and we know that the
minimal of Srj was at least −k. Hence S′

2n+k cannot be a low record. This
proves the statement of the lemma in this case.

The second case is when r1 = 1. Then we know that Sr1 = −1, which implies
that Sri = −i for all i = 1, . . . , k. After the shift we find that S′

i−1 = Si − x1 =
Si+1 for i = 2, . . . , 2n+k. This shows that Srj−1 with j = 2, . . . , k are still the
low records for these numbers. In addition, the new low record will be 2n + k
with the sum equal to −k. This completes the proof of the lemma.

Let Bn,k denote the set of walks with n increments +1 and n + k incre-
ments −1 that ends with a negative increment. The elements of Bn,k are called
conjugate if they can be transformed one to another by a cyclic shift.

Note that the number of elements in a conjugacy class cannot exceed n+ k.
This is because the walk must end with −1, so there are only n+ k choices for
a possible value of the shift.

Let also Dn,k be a subset of Bn,k such that the value of the walk Si is greater
than −k for all but the last step. We call these walks excursions. Obviously, a
walk from Bn,k belongs to Dn,k if and only if the lowest record rk = 2n+ k and
xri = −i.

Lemma 8.1.11. If C is a conjugacy class of Bn,k, then the number of excursions
(i.e., elements of Dn,k in this class is

|C ∩Dn,k| =
k

n+ k
|C|.
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Example 8.1.12. If k = 1 then it means that there is exactly one excursion in
each conjugacy class. If k = 2 then it either two or one excursions depending
on whether C has n+ k or (n+ k)/2 elements.

Proof of Lemma. Note that all walks in Dn,k have a low record at 2n+k. Mark
also a downstep in these walks. The total number of such marked walks in a
class C is (n + k)|C ∩ Dn,k|. Send this walk by a cyclic shift in such a way
that the marked down-step is in the last position. By Lemma the low record
at 2n + k will go to a low record. So the result is a walk in C in which a low
record is marked. The number of such objects is k|C|.

The statement of the lemma follows from the claim that the map that we
described is a bijection.

Indeed, the inverse transformation is the cyclic transformation of a walk in
C that sends the marked low record to the position 2n+ k.

Proof of Theorem 8.1.6. We will say that two embedded trees are equivalent
if their blossom trees representatives are related by a cyclic shift. This is a
equivalence relation and it partition the set of embedded trees in classes Ci.
Since the number of flags is n+2, the number of elements in each class is ≤ Ci.
(Can be smaller because a cyclic shift can lead to an isomorphic embedded tree.)

Next, the embedded tree is well-labelled if and only if all its labels are
positive. If the corresponding walk started at zero, it should be always non-
negative except for two last steps.
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Appendix A

Various Useful Facts

A.1 Proof of Caratheodory theorem
Since this theorem belongs mainly to the measure theory we will not give the
full proof. For the full proof see Durrett’s or Shiryaev’s books. However we
indicate some ideas. In particular we will prove uniqueness.

Before we start proving this result, we are going to develop some useful
machinery.

Definition A.1.1. A system of sets A is called a π-system if for any I1, I2 ∈ A,
we have A1 ∩A2 ∈ A.

Definition A.1.2. A collection of subsets D of set Ω is called a λ-system (or
d-system, or Dynkin system) if

1. Ω ∈ D

2. If A ∈ D and B ∈ D, A ⊂ B ⇒ B −A ∈ D

3. If An ∈ D and An ↑ A⇒ A ∈ D

Here An ↑ A means that A1 ⊂ A2 ⊂ . . . and
∪

nAn = A.
Note that every λ-system also satisfy this property:

If An ∈ D and An ↓ A⇒ A ∈ D. This is a consequence of the de Morgan law.
Now trivially, any σ-algebra is a λ-system. The converse is not true.

Ex. A.1.3. Let Ω = {1, 2, 3, 4}. Give an example of a λ-system of subsets of Ω
which is not an algebra.

The importance of λ-systems comes from the following observation.

Lemma A.1.4. If an algebra A is a λ-system, then it is a σ-algebra.

Proof. Consider An ∈ A, n = 1, 2, . . .. Define Bn :=
∪n

i=1Ai ∈ A. It is
clear that Bn ⊂ Bn+1. Consequently, by the property (3) of a λ-system, Bn ↑∪∞

i=1Ai ∈ A. Similarly, one can show that
∩∞

i=1Ai ∈ A. Therefore, A is a
σ-algebra.
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Theorem A.1.5 (Dynkin’s π-λ Theorem). Suppose A is a π-system. If D is a
λ-system and A ⊂ D, then σ(A) ⊂ D.

Proof. (of the Dynkin Theorem A.1.5) The key here is to show that D is not
only a λ-system but also an algebra. Then, the statement of the theorem will
hold by Lemma A.1.4.

Without loss of generality we can assume that D is the smallest λ-system
that contains A. Every σ-algebra is a λ-system, and by minimality of D, we
have that D ⊂ σ(A). We aim to prove that D is a σ-algebra and therefore
D = σ(A) by minimality of σ(A).

First, let us show that D is closed under intersections. Here we will use the
fact that D contains π - system A.

Let
A1 = {B ∈ D : A ∩B ∈ D for all A ∈ A}.

Since A is closed under intersections, A ∈ A1. We can check that A1 is a
λ-system. By minimality of D, A1 = D.

Now let
A2 = {B ∈ D : A ∩B ∈ D for all A ∈ D}.

Again, one can check that A2 is a λ-system. In addition, if B ∈ A then B∩A ∈ D
for all A ∈ A1 = D. Hence A ⊂ A2. By minimality of D, A2 = D. This shows
that D is closed under intersections.

From the definition of λ-system it follows that D is also closed under unions,
and so it is an algebra. As we have seen in the beginning of the proof, this
implies the statement of the Dynkin theorem.

Lemma A.1.6 (Identification Lemma for Probabilities). Let P and Q be two
probability measures on σ(A) where A is a π-system. If P (A) = Q(A) for
A ∈ A, then P (A) = Q(A) for all A ∈ σ(A).

Ex. A.1.7. Give an example of two probability measures µ ̸= ν on F = all
subsets of {1, 2, 3, 4} that agree on a collection of sets C with σ(C) = F , i.e., the
smallest σ-algebra containing C is F .

Proof of Lemma A.1.6. Consider class C of sets A ∈ σ(A), for which it is true
that P (A) = Q(A). Note that A ⊂ C ⊂ σ(A). We need to prove that C = σ(A).

By Theorem A.1.5, in order to prove Lemma A.1.6, it is enough to show
that C is a λ-system.

Indeed

1. Ω ∈ C because P (Ω) = Q(Ω) = 1.

2. Let A,B ∈ C. Then A ⊂ B implies B − A ∈ C. This is because P (B) =
Q(B) ⇒ P (B−A)+P (A) = Q(B−A)+Q(A) ⇒ P (B−A) = Q(B−A).

3. An ∈ D and An ↑ A implies A ∈ D. This is because P (An) = Q(An) ⇒
P (A) = Q(A) and we can use the result that the countable additivity of
a probability measure implies that it is continuous from below.
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Now we are able to prove the uniqueness part of the Carathéodory theorem.

Proof of the uniqueness part of the Carathéodory theorem. Lemma A.1.6 directly
implies the uniqueness part of the Carathéodory theorem. Indeed, every algebra
is trivially a π-system. Hence if a measure can be extended from an algebra F
to σ-algebra σ(F), then this extension is unique.

Proof of the existence part of the Carathéodory theorem. We will give only a sketch
of the existence proof:

Step 1. Define a set function on all subsets of Ω, which is called the outer
measure:

µ∗(A) = inf
A⊂

∪
Aj

∑
j

µ(Aj), (A.1)

where the infinum is taken over all countable collections Aj of sets from A that
cover A. Without loss of generality we can assume that Aj are disjoint. (Replace
Aj by (

∪i=j−1
i=1 Ac

i ) ∪Aj).
Step 2. Show that µ∗ has the following properties:

1. The set function µ∗ is countably subadditive, that is,

µ∗

∪
j

Aj

 ≤
∑
j

µ∗(Aj).

2. For A ∈ A, µ∗(A) ≤ µ(A). (Trivial)

3. For A ∈ A, µ∗(A) ≥ µ(A). (Here we need to use the countable additivity
of µ on (A).)

Step 3. Define a set E to be measurable if

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

holds for all sets A, and establish the following properties for the class M of
measurable sets: The class of measurable sets M is a σ - algebra and µ∗ is
countably additive measure on it.

Step 4. Finally, show that A ⊂ M. This implies that σ(A) ⊂ M and µ∗ is
an extension of µ from A to σ(A).

A.2 Function spaces

Probability theory is closely related to functional analysis. In particular, we
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can often use the fact that random variables with a given number of moments
can be thought of as belonging to some functional spaces. The most important
for us will be Banach and Hilbert spaces.
Definition A.2.1. (i) Let X be a normed linear space with norm || · ||X . If X
is complete with respect to the induced metric d(x, y) := ||x− y||X , it is called
a Banach space.

(ii) If in addition norm || · ||X arises from an inner product (·, ·)X , then X is
called a Hilbert space.

An example of Banach spaces are Lp(Ω, µ) spaces. Let (Ω,F , µ) be a measure
space.

Then Lp(Ω, µ) is a space of measurable functions f , which have a finite
p-moment,

∫
|f |p < ∞, factored by the following equivalence relation f ∼

g in p ⇐⇒ f = g µ-everywhere.
Let ||X||p := (

∫
||X||p)1/p be the p norm of X. Define convergence in Lp as

follows:
Xn

Lp

→ X ⇐⇒ ||Xn −X||p → 0 (A.2)
It can be shown that Lp is complete for p ≥ 1, i.e. if

lim
n,m→∞

||Xn −Xm||p = 0 ⇒ ∃ a r.v. X s.t. Xn
Lp

→ X. (A.3)

Therefore Lp spaces are Banach spaces for p ≥ 1. (For p < 1, || · ||p is not a
norm.)

For p = 2, the space L2 is a Hilbert space with the inner product (f, g) =∫
fg dµ.

For p = 1, the space L1 is the space of all integrable functions.
For p = ∞, L∞ is the space of essentially bounded functions with the norm,

||X||∞ = inf{M : P(|X| > M) = 0}.

In general, the Lp spaces with larger p are more restrictive and are easier to
handle.

A.3 Convergence of Functions and Integration

Theorem A.3.1 ( Monotone Convergence Theorem). If 0 ≤ Xn ↑ X then
E(Xn) ↑ E(X).
Theorem A.3.2 (Fatou’s Lemma). If Xn ≥ 0 then

lim inf
n→∞

EXn ≥ E(lim inf
n→∞

Xn).

Proof. Define gk = infn≥k fn and note that fn ≥ gk for all n ≥ k. Hence,

E(fn) ≥ E(gk) for all n ≥ k.
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Often we know that the sequence of functions Xn converges almost surely.
In this case the inequality is used in the following form:

lim inf
n→∞

EXn ≥ E( lim
n→∞

Xn).

That is, the expectation of the limit of non-negative functions can only be
less than the limit (or limit infimum) of the expectations of these functions.
Example A.3.3. Define Xn on [0, 1] as Xn = n1(0,1/n).

lim
n→∞

E(Xn) = lim
n→∞

1 = 1 ≥ 0 = E(0) = E
(

lim
n→∞

Xn

)
(A.4)

Remark: Remember this example to get the right sign in the inequality.
Here is a variant of the Fatou Lemma.

Theorem A.3.4 (Reverse Fatou’s Lemma). If Xn ≤ X, where X ≥ 0 and
EX <∞, then

lim sup
n→∞

EXn ≤ E(lim sup
n→∞

Xn).

Theorem A.3.5 (Dominated Convergence Theorem). If Xn → X a.s., |Xn| ≤
Y for all n, and E(Y ) <∞, then E(Xn) → E(X).

The simplest bound Y in the dominated convergence theorem is a constant.
(This works because we are in a finite measure space!)

A.4 Convergence in L1 and uniform integrability
A class C of random variables is called uniformly integrable (UI) if given ε > 0,
there exists K ∈ [0,∞) such that

E(|X|I|X|≥K) ≤ ε

for all X ∈ C.
Uniform integrability is a sufficient condition to ensure that Xn → X implies

EXn → EX.

Theorem A.4.1. Let {Xn} be a sequence in L1, and let X ∈ L1. Then
Xn → X in L1, equivalently E(|Xn −X|) → 0, if and only if the following two
conditions are satisfied:

1. Xn → X in probability,

2. the sequence {Xn} is uniformly integrable, (UI).
Proof of “if” part. Suppose the conditions (1) and (2) are satisfied. For K ≥ 0,
define a function φK as follows:

φK(x) =


K, if x > K,

x, if |x| < K,

−K, if x < −K.
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Let ϵ > 0 be given. Then

E|φK(Xn)−Xn| = E(|Xn| −K)+ ≤ E(|Xn|1(Xn>K)) < ϵ

for sufficiently large K uniformly in n.
In addition, uniform integrability implies that supE|Xn| < ∞, that is, the

sequence is L1-bounded. By Fatou’s lemma we can conclude that E|X| <∞ and
therefore we can ensure that E|φK(X)−X| < ϵ for sufficiently large K. Finally,
E|φK(Xn) − φK(X)| < ϵ for sufficiently large n because Xn

P−→ X, therefore
φK(Xn)

P−→ φK(X) (by uniform continuity of φK(x)), and the following fact
holds:
Ex. A.4.2. If Yn

P−→ Y and |Yn| < K <∞, then EYn → EY .
By triangle inequality,

E|Xn −X| ≤ E|φK(Xn)− φK(X)|+ E|φK(Xn)−Xn|+ E|φK(X)−X| < 3ϵ

for all n > n0, and the proof is complete.

Ex. A.4.3. Let f ≥ 0 be a Borel function such that f(r)/r → ∞ as r → ∞.
Suppose Ef(|Xα|) ≤ C for some finite non-random constant C and all α ∈ I.
Show that then {Xα : α ∈ I} is a uniformly integrable collection of random
variables.

Solution: Let ϵ > 0 and a = C/ϵ. Take K so large that f(r)/r ≥ a for
r ≥ K. Then

E[Xn1|Xn|≥K ] ≤ 1

a
E[f(|Xn|)1|Xn|≥K ] ≤ 1

a
E[f(|Xn|)] ≤

C

a
= ϵ.

A.5 Inequalities

Let X,Y etc. be real r.v.’s defined on (Ω,F ,P).

Theorem A.5.1 (Jensen’s Inequality). Let φ be convex, E(|X|) <∞, E(|φ(X)|) <
∞. Then

φ(E(X)) ≤ E(φ(X)) (A.5)

Sketch of proof. As φ is convex, φ is the supremum of a countable collection of
lines.

φ(x) = sup
n
Ln(x), Ln(x) = anx+ bn

Ln(EX)
(1)
= E(Ln(X))

(2)

≤ E(φ(X))

Take sup on n.
(1) used linearity, (2) used monotonicity.
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Keep the following example in mind to remember the direction of the in-
equality.
Example A.5.2.

EX2 ≥ (EX)2. (A.6)

In other words, Var(X) ≥ 0.
Other noteworthy facts can be derived as corollaries of Jensen’s Inequality.

Example A.5.3.

||X||p ↑ as p ↑ (A.7)
|E(X)| ≤ E(|X|) (A.8)

Theorem A.5.4 (Markov’s Inequality). If X ≥ 0, a > 0, then

P(X ≥ a) ≤ E(X)/a (A.9)

Proof. Integrate 1X≥a ≤ X/a. The stated result follows by monotonicity and
linearity.

Theorem A.5.5 (Generalized Chebyshev’s Inequality). Let ψ : R → R+ be
increasing. Then

P(Y > b) ≤ E(ψ(Y ))/ψ(b) (A.10)

Proof.

P(Y > b)
(1)
= P(ψ(Y ) > ψ(b))

(2)

≤ E(ψ(Y ))/ψ(b)

(1) used that ψ is increasing, and (2) used Markov’s inequality.

Example A.5.6. Note important examples ψ(x) = xp, exp(x), etc.

ψ(x) = x2 =⇒ P(|Y | > b) ≤ E(Y 2)/b2

X = Y − E(Y ) =⇒ P(|Y − E(Y )| > b) ≤ E
(
(Y − E(Y ))2

)
/b2

Here is an application.

Theorem A.5.7. Suppose Xi are independent random variables with

P(Xi = 1) = P (Xi = −1) =
1

2
,

and set Sn = X1 + . . . Xn. Then, for each a > 0,

P(Sn > a) < e−
a2

2n .
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Proof. By (A.10),

P(Sn > a) ≤ EeλSne−λa

=

n∏
i=1

EeλXie−λa

= cosh(λ)ne−λa

< eλ
2n/2−λa.

To optimize the inequality, we set λ = a/n and get P(Sn > a) < e−a2/(2n) as
claimed.

For example, if take a = tn, then we find that P(|Sn| > tn) < 2e−
t2n
2 .

Theorem A.5.8 (Hölder’s Inequality). If p, q ∈ [1,∞] with 1/p+1/q = 1 then

E(|XY |) ≤ ||X||p||Y ||q (A.11)

Here ||X||r = (E(|X|r))1/r for x ∈ [1,∞); and ||X||∞ = inf{M : P(|X| > M) =
0}.

Proof. See the proof of (5.2) in the Appendix of Durrett.

Example A.5.9. If |Y | ≤ b then

E(|XY |) ≤ bE(|X|)

Theorem A.5.10 (Cauchy-Schwarz Inequality). The special case p = q = 2 is
the Cauchy-Schwarz inequality.

E(|XY |) ≤ (E(X2)E(Y 2))1/2 (A.12)

Proof. Apply Hölder’s inequality for p = q = 2.

Theorem A.5.11 (Minkowski’s Inequality (Triangle inequality for Lp)).

||X + Y ||p ≤ ||X||p + ||Y ||p

A.6 Change of Variable

Let (Ω,F ,P) be a probability space and X : Ω → S a (F\S)-measurable
random variable. X induces a new probability measure PX on (S,S).

Definition A.6.1. PX(A) = P(X ∈ A) = P(X−1(A)) is called the P law of X
or the P distribution of X.
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(Ω,F ,P) (T, T ,PY ◦X)

(S,S,PX)

X Y

Y ◦X

Figure A.1: An illustration of the transitivity of the image laws.

Let (T, T ) be another measurable space and Y : S → T a measurable map.
Then we have transitivity of the image laws.

Theorem A.6.2 (Transitivity of the image laws). The P distribution of Y ◦X
is equal to the PX distribution of Y .

Theorem A.6.3 (Change of variable formula). Let Y be a real-valued r.v. on
(S,S). Y is PX-integrable iff Y ◦X is P-integrable, and then∫

S

Y dPX =

∫
Ω

(Y ◦X)dP

Proof. Fix X and vary Y . For indicators Y the identity is the transitivity of
image laws, and this passes to simple r.v.’s Y , then all r.v.’s Y. See Durrett [1.3,
pp. 17]

A.7 Types of Convergence of Random Variables

We learned about the almost sure convergence and convergence in probabil-
ity. The weak and strong laws of large numbers state that 1

n

∑n
k=1Xk converges

in probability (respectively, almost surely) to the expectation of Xk provided
that Xk are i.i.d and E|Xk| <∞.

Here we discuss some other types of convergence of random variables.
Convergence in Lp (p ≥ 1): We say Xn

p

−→ X if ∥Xn −X∥p → 0, i.e.
limn→∞ E|Xn −X|p = 0.

Convergence in Distribution: We say Xn
d−→ X if P(Xn ≤ x) →

P(X ≤ x) for all x at which the RHS is continuous.
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The convergence in distribution is also called the weak convergence for the
following reason.

Theorem A.7.1 (Portmanteau Theorem). Xn
d−→ X ⇐⇒ Ef(Xn) −→

Ef(X) for all bounded and continuous function f .

For the proof see Theorem 3.9.1 in Durrett. As for the name, portmanteau is
a large leather suitcase that opens up in two hinged compartments. This name
for the theorem was apparently introduced by Billingsley.

Properties in Common for P−→,
a.s.−→,

p

−→:
a) Xn → X, Yn → Y =⇒ Xn + Yn → X + Y , XnYn → XY .
b) Xn → X ⇐⇒ (Xn −X) → 0 (useful and common reduction).
c) For all of P−→,

a.s.−→, and
p

−→ the limit X is unique up to a.s. equivalence.
d) Cauchy sequences are convergent (completeness). (Need a metric to

metrize P−→, but that is easily provided. See text.)

Theorem A.7.2. The following property holds among the types of convergence.

Xn
a.s.−→ X Xn

p

−→ X

Xn
P−→ X

Xn
d−→ X

(∗ ∗ ∗) (∗)

(∗∗)

Proof. (∗) can be proved by Chebyshev’s inequality:

P(|Xn −X| > ϵ) ≤ E(|Xn −X|p)
ϵp

(∗∗): Observe that Xn
P−→ X implies that f(Xn)

P−→ f(X) for every bounded
and continuous f . By dominated convergence, Ef(Xn) → Ef(X), and this
implies that f(Xn)

d−→ f(X) by the portmanteau theorem.
(∗ ∗ ∗)
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Lemma A.7.3. The necessary and sufficient condition for Xn
a.s.−→ X is that

P
{

sup
k≥n

|Xk −X| ≥ ε} → 0,

as n→ ∞ for every ε > 0.

Proof of Lemma. Indeed, let Aε
n = {ω : |Xn −X| ≥ ε}, and let

Aε = ∩∞
n=1 ∪k≥n A

ε
k,

the set of ω where the sequence Xn deviates from X by more than ε infinitely
often. Then,

{ω : Xn ↛ X} = ∪ε>0Aε.

In fact in this union it is enough to take a countable union over εk = 1/k. It
follows that

P{ω : Xn ↛ X} = 0 ⇔ P(Aε) = 0,

for every ε > 0. By continuity of probability function this is equivalent to the
requirement that

P
(
∪k≥n A

ε
k

)
→ 0,

as n→ 0, which means that

P
(
{ω : sup

k≥n
|Xk(ω)−X(ω)| > ε}

)
→ 0,

as n→ ∞, for every ε > 0.

Since supk≥n |Xk − X| > ε implies that |Xn − X| > ε, the almost sure
convergence implies that

P
(
|Xn −X| > ε}

)
→ 0,

for every ε > 0, which is exactly the definition of the convergence in probability.

Here is an example that shows how the convergence of a sequence in L2 can
be used to prove the convergence of this sequence in probability.
Example A.7.4. Suppose that X1, X2, . . . are r.v.’s that have mean 0, have finite
variances, and are uncorrelated. Let Sn = X1 + · · ·+Xn. If

∑∞
k=1 E(X2

k) <∞,
then one can show that Sn converges in L2 to a limit S∞. This implies that
hence Sn

P−→ S∞, i.e. limn→∞ P(|Sn − S∞| > ϵ) = 0 for all ϵ > 0.
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Proof. Look at the Cauchy criterion. Take m > n:

E(Sm − Sn)
2 = E

(
m∑

k=n+1

Xk

)2

=

m∑
k=n+1

E(X2
k) → 0

as m,n→ ∞. Here we used the condition that
∞∑
k=1

E(X2
k) <∞.

Therefore, the sequence of Sm converges in L2.

Fact: If the Xn are independent (or more generally, martingale distribu-
tions), then one can prove a stronger statement that Sn

a.s.−→ S∞. This is the
Kolmogorov-Khinchin theorem about convergence of series, and its extension
to the case of martingales. However, there are examples of uncorrelated (but
dependent) sequences with

∑
nX

2
n < ∞ where almost sure convergence fails.

(See Stout’s book “Almost Sure Convergence”.)

A.8 SLLN with with finite 2-nd moment

It is an insight due to Kolmogorov, that the method of subsequences is still
useful for the proof of the almost sure convergence. The idea is to choose
a convergent subsequence and to prove that fluctuations of partial sums Sn

between the elements of this subsequence converge to zero almost surely.

Theorem A.8.1. If X,X1, X2, ... are i.i.d. random variables with E(X2) =
σ2 <∞, and Sn := X1 +X2 + ...+Xn, then

Sn

n

a.s.−→ E(X). (A.13)

Proof. Without loss of generality we can assume that E(X) = 0. Then, as we
have seen, Sk2/k2

a.s.−→ 0. Indeed,

P
(∣∣∣∣Sk2

k2

∣∣∣∣ > ϵ

)
<

σ2

k2ϵ2
,

and the convergence holds by the Borel-Cantelli lemma, as in our previous
theorem.

Now, let us define

Mk = max
k2≤n<(k+1)2

∣∣∣∣Sn

n
− Sk2

k2

∣∣∣∣ .
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Since for k2 ≤ n < (k + 1)2,∣∣∣∣Sn

n

∣∣∣∣ ≤ ∣∣∣∣Sk2

k2

∣∣∣∣+ ∣∣∣∣Sn

n
− Sk2

k2

∣∣∣∣ ≤ ∣∣∣∣Sk2

k2

∣∣∣∣+ |Mk|,

and we know that Sk2

k2

a.s.−→ 0, therefore it is enough to prove that Mk
a.s.−→ 0.

(Since if Xn
a.s.−→ 0 and Yn

a.s.−→, then Xn + Yn
a.s.−→ 0.)

For convenience we define

Dk := max
k2≤n<(k+1)2

|Sn − Sk2 |.

Then, we have

Mk = max
k2≤n<(k+1)2

∣∣∣∣Sn − Sk2

n
+
Sk2

n
− Sk2

k2

∣∣∣∣
≤
∣∣∣∣Dk

k2

∣∣∣∣+ 2

∣∣∣∣Sk2

k2

∣∣∣∣ .
It follows that it is enough to prove that Dk/k

2 a.s.−→ 0.
We have

D2
k = max

1≤m≤2n
(Sk2+m − Sk2)2

≤
2n∑

m=1

(Sk2+m − Sk2)2.

Taking expectations on both sides, we get that

E(D2
k) ≤

2k∑
m=1

mσ2 = k(2k + 1)σ2

≤ 4k2σ2,

Hence we get that

P
(∣∣∣∣Dk

k2

∣∣∣∣ > ϵ

)
≤
E
((

Dk

k2

)2)
ϵ2

≤ 4σ2

k2ϵ2
.

Hence,
∞∑
k=1

P
(∣∣∣∣Dk

k2

∣∣∣∣ > ϵ

)
<∞

By applying the Borel-Cantelli lemma (BC I), we get that Dk/k
2 a.s.−→ 0, which

completes the proof.
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A.9 Devroye’s method for generation random
variables

In this section we present how to generate random variables from a log-concave
distribution.

We assume that we have a random generator that can produce random
numbers uniformly distributed on the unit interval [0, 1]. The basis of Devroye’s
approach is the rejection method.

Suppose that the target density is f and we can bound it by a multiple of
another function g, and that we can generate easily random variables from g.

f(x) ≤ h(x) = cg(x).

For any nonnegative integrable function h on Rd, define the body of h as
Bh = {(x, y) : x ∈ Rd, 0 ≤ y ≤ h(x)}. Note that if (X,Y ) is uniformly
distributed on Bh, then X has density proportional to h. Vice versa, if X
has density proportional to h, then (X,Uh(X)), where U is uniform [0, 1] and
independent of X, is uniformly distributed on Bh. These facts can be used to
show the validity of the rejection method in the following algorithm is as follows.

Result: X is distributed according to density f(x)
repeat

Generate U uniformly on [0, 1] ;
Generate X with density g;

until U ≤ f(X)
cg(X) ;

Algorithm 1: Rejection algorithm for generation from density f(x)

Example A.9.1 (Normal random variable). See Devroye’s paper.
This can be used for random variables with log-concave density with univer-

sal function g(x).
In this case, it is useful to define a modified random variable

Y = f(m)(X −m),

where m is the mode of the original density f(x). Then the new variable has a
log-concave density, g(x), with a mode at x = 0 and g(0) = 1.

It is enough to generate Y since the original random variable can be recovered
as X = m+ Y /f(m).

Devroye showed that the normalized log-concave density g(y) satisfies the
following inequality:

g(y) ≤ min
(
1, e1−|y|

)
.

Hence the function h(y) = min
(
1, e1−|y|) can be used in the rejection algorithm

above. A random variable with density proportional to h(y) can be generated
by first flipping a perfect coin. If it is “heads”, then generate (1 + E)S, where
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E is exponential, and S is another perfect coin. Otherwise generate US, where
U is uniform [0, 1] and independent of S. Formally, the algorithm is as follows.

Result: Y is distributed according to density g(y)
repeat

Generate U (a uniform on [0, 1]), E (exponential), and S (a fair
random bit);

Generate a random sign S′;
if S == 0 then

Y = 1 + E;
else

Y = V , where V is uniform on [0, 1] ;
end
Set Y = Y S′;

until U min
(
1, e1−|y|) ≤ g(Y );

Algorithm 2: Algorithm for generation of a random variable with normal-
ized log-concave density g(y)

Devroye generalized this algorithm to cover the case of discrete random
variables with log-concave pmf, that is, with such pn = P{X = n}, that

p2n ≥ pn−1pn+1.

If the mode of the log-concave pmf is at m, then one has

pm+k ≤ pm min
(
1, e1−pm|k|

)
,

for all k. Hence, one can develop an appropriate rejection algorithm.
For discrete distributions, the general rejection algorithm is as follows. Sup-

pose that pm+k ≤ g(x) for all k− 1/2 ≤ x ≤ k+ 1/2 and all x ∈ R. Then the a
random variable with pmf {pk} can be generated as follows:

Result: m+X is distributed according to pmf pn
repeat

Generate U uniformly on [0, 1]);
Generate Y with density proportional to g;
X = round(Y );

until Ug(Y ) ≤ pm+X ;
Algorithm 3: Algorithm for generation of a discrete random variable with
pmf pn.

Devroy applies it with g(x) = min
(
pm, pme

1−pm(|x|−1/2)
)
, and observes that

g(x) is a mixture of a rectangular function on [−w/pm, w/pm] (of integral 2w
where w = 1 + pm/2) and two exponential tails outside of this interval (of
integral 2).
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So the rejection algorithm can be reformulated as follows.
Result: m+X is distributed according to pmf pn
Compute w = 1 + pm/2;
repeat

Generate U, V,W uniformly on [0, 1]);
Generate a random sign S;
if U ≤ w

1+w then
Y = V w/pm;

else
Y = (w + E)/pm (where E is exponential) ;

end
Set X = S × round(Y );

until W min
(
1, ew−pm|Y |) ≤ pm+X/pm;

Algorithm 4: Algorithm for generation of a discrete random variable with
log-concave pmf pn and mode at m

(Note that the exponential E can be generated simply as − logV .)

A.10 Statistics of Random Structures
In this section, when we call an object random, we mean that it is selected from
the uniform distribution on the complete set of these objects.

A.10.1 Random permutations
The uniform distribution on permutations favors the permutations that have
long cycles if we compare it with the random set partitions and its blocks,
which we discuss in the next section.

Large cycles are prevalent in a random permutation and the total number
of cycles is smaller. In particular, for the number of cycles ξn in random per-
mutation of n, we have formulas

Eξn =

n∑
j=1

1

j
∼ logn,

Eξn =

n∑
j=1

1

j
−

n∑
j=1

1

j2
∼ logn.

Goncharov ... proved that after the appropriate normalization, the random
variable ξn becomes asymptotically normal (Theorem 5.1.1 in [?]).

As an intuitive consequence we can expect that the small cycles are rela-
tively rare in a random permutation. This is quantified by another theorem
by Goncharov (Theorem 5.1.2 in [?]). Namely, if κn(l) denotes the number of
cycles of length l in a random permutation of n, then for a fixed l and n→ ∞,
the distribution of the random variable κn(l) converges to the distribution of a
Poisson r.v. with the mean λl = 1/l.
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For a fixed s-tuple l1, . . . , ls, the random variables κn(li) become asymptot-
ically independent, as n→ ∞.

The length of the largest cycle, lmax
n is asymptotically proportional to n. The

limiting distribution of lmax
n is complicated. Its moments were determined by

Shepp and Lloyd in [?] as certain integrals. Lloyd and Shepp have also studied
the length of the smallest cycle.

Another interesting statistics on random permutations, the largest increasing
sequence, has been a subject of recent research, which led to the discovery of
connections with random matrices and Airy distributions.

A.10.2 Random set partitions
We rely here on the book [?] by V. N. Sachkov.

Let ξn is the number of blocks in a random partition of [n]. Then, for large
n,

Eξn =
n

logn (1 + o(1)),

Var(ξn) =
n

(logn)2 (1 + o(1)),

and the distribution of the normalized random variable

ηn =
ξn − E(ξn)√

Var(ξn)

converges to the standard normal distribution as n→ ∞ (Theorem 4.1.1 in [?]).
Now, let the random variables κn(l), l = 1, . . . , n, denote the number of

blocks that have size l in a random partition. Then, the distribution of κn(l)
has the expectation and the variance both equal to λn = (rn)

l

l! , where rn is the
solution of the equation rer = n.

If l is fixed and n is growing then the variances of random variables κn(l),
λn are also growing. We can define the normalized random variables

κ̂n(l) =
κn(l)− Eκn(l)√

Var(κn(l))
.

For a fixed s-tuple l1 < . . . < ls, the joint distribution of normalized ran-
dom variables κ̂n(li) converges to the standard multivariate normal distribution
(Theorem 4.2.1 in [?]).

V. N. Sachkov discusses the distribution of the size of the maximum block,
and shows that it is concentrated within a neighborhood of the point

ern − log
√
2πern − log(e− 1),

and that in this domain it is close to the double exponential distribution (with-
out any additional normalization). (For a more precise statement, see Theorem
4.5.2 in [?].) Note that rn is asymptotically close to logn, hence in the first
approximation, the size of the largest block is e log(n).
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