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COVID-19 Background

Global

Started in early 2020
COVID-19 is a contagious,
respiratory disease in which
people with immunocompromised
or other illnesses may be more
likely to be at serious risk for a
worse infection
Almost 7 million deaths from
COVID-19 around the world

o /72,000,000 cases
13,595,583,125 vaccine doses

Mexico

334,786 deaths from COVID-19

o 7,693,120 cases
Fifth most COVID-19 related deaths
222,921,381 vaccine doses
Seventh highest mortality rate

o ~4.3%



COVID-19 Dataset

e Kaggle
e Released by the Mexican Government in 2022
e The dataset used 1,048,576 observations and has 21 predictors



Predictors

Date_Died

O
USMER
O
Medical_
O
Sex
O

9999-99-99 did not die, otherwise died

Medical levels (1, 2, or 3)

Unit

type of institution of the National Health System that provided the care.

1 female, 2 male

Patient_Type

o 1 for returned home, 2 for hospitalized
Intubed

o If patient needed a ventilator
Pneumonia

o whether the patient already has air sacs inflammation or not.
Age
Pregnant

o whether the patient is pregnant or not.
Diabetes

o whether the patient has diabetes or not.
COPD

o Chronic obstructive pulmonary disease or not.

Classification

O

Values 1-3 mean that the patient was diagnosed with covid in different
degrees. 4 or higher means that the patient is not a carrier of covid or
that the test is inconclusive.

Asthma
o whether the patient has asthma or not.
Inmsupr
o whether the patient is immunosuppressed or not.
Hypertension
o whether the patient has hypertension or not. (when the
pressure in your blood vessels is too high (140/90
mmHg or higher))
Cardiovascular
o whether the patient has heart or blood vessels related
disease.
Renal chronic
o whether the patient has chronic renal disease or not.
Other disease
o whether the patient has other disease or not.
Obesity
o whether the patient is obese or not.
Tobacco
o whether the patient is a tobacco user.
ICU
o Indicates whether the patient had been admitted to an
Intensive Care Unit.



Research Questions

1. Which machine learning model gives the best prediction of death in patients
with COVID-19?
a. How well can the model's predictions be explained and interpreted, especially in
the context of healthcare decision-making?
2. Which predictors are the best at predicting a patient’s death from COVID-
19?
a. How does the inclusion/exclusion of specific predictors affect the algorithm's
performance?



Preliminary Studies



Issues with our Data

e Many missing values
e Imbalance in the dataset
e Many variables have a low correlation with our target variable



Handling Missing Values

Before Handling the Missing Values




Handling Missing Values

After Handling the Missing Values
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Correlation of Variables
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How many people have died?

Death Distribution

946356

Not Dead



Which age group has the most deaths?

Death Count Based on Age




Does having a disease affect percentage of death?

Death Count Based on Diseases

Not Dead

Which diseases were considered:

Pneumonia

Diabetes

Chronic obstructive pulmonary
disease

Asthma

Immunosuppressed
Cardiovascular related disease
Chronic renal disease

Obesity

Other



Statistical Analysis Methods &
Results



Solving Imbalance in a Dataset

Loading More Data

Changing The Performance Metrics
Resampling (Undersampling or Oversampling)
Changing The Algorithm

Penalized Models etc.



Resampling

Undersampling:

Modify the distribution of a variable in
your dataset by artificially decreasing the
number of observations that take on a
particular value or range of values for that
variable

Deleting samples from the majority class
(‘Not Dead’)

Pros
o Does not introduce repeated or redundant
information
Cons

o  Reduces the size of your dataset
o Loses potentially valuable information

Oversampling:

Modify the distribution of a variable in
your dataset by artificially increasing the
number of observations that take on a
particular value or range of values for that
variable

Duplicating samples from the minority
class (‘Dead’)

Pros
o Do not lose any information
Cons
o Increases the chance of overfitting
o Increases the learning time of the training
data



After Resampling

Death Distribution (Undersampled Training Data)

Death Distribution (Oversampled Training Data)
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Logistic Regression

e Aims to find the best fitting model to describe the
relationship between the dependent variable and
independent variable(s)

e One of the most simple machine learning models
O Easy to interpret and very efficient to train

e Works more efficiently when you remove variables that
have no or little relation to the output variable



Removing missing values: Removing irrelevant variables:

Logistic Regression Confusion Matrix Logistic Regression Confusion Matrix
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Accuracy = 0.9492350441320693
Precision = 0.7071991859577715
Recall = 0.5044227716035382

Accuracy = 0.9492219679633868
Precision = 0.7076530612244898
Recall = 0.5033340893626673

FPR = 0.29280081404222846

FPR = 0.2923469387755102
FNR = 0.03764956440229378

FNR = 0.0377265522706912
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Undersampling:

Logistic Regression Confusion Matrix

0 1
Predicted Label

Accuracy = 0.9070158686854909

Precision = 0.9014510816344699
Recall= 0.9152205350686913

FPR =0.09854891836553013
FNR = 0.08717472118959108
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Oversampling:

Logistic Regression Confusion Matrix
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Accuracy = 0.9071139492862099
Precision = 0.899750371326979
Recall = 0.916142860668192

FPR = 0.10024962867302106
FNR = 0.08526264852949084
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Decision Tree Classification

e Goalis to create a model that predicts the value of a target variable
by learning simple decision rules inferred from the data features

e Supervised learning algorithm wherein the data points are
continuously split according to certain parameters and/or the
problem that the algorithm is trying to solve

e Uses a data structure called a tree to predict the outcome of a
particular problem

e Non-linear — can capture complex relationships and interactions
between features



From cleaning missing values:
Decision Tree Classifier Confusion Matrix
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Accuracy = 0.9466599847401012
Precision = 0.65
Recall = 0.52

FPR =0.17752326413743735
FNR = 0.04966127418262012

Removing irrelevant variables:

Decision Tree Classifier Confusion Matrix
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FNR = 0.3431889443734758



Undersampling:

Decision Tree Classifier Confusion Matrix

©
Q
©
|
[}
=
[

0 1
Predicted Label

Accuracy = 0.9039012413040513
Precision = 0.64
Recall = 0.53

FPR = 0.1253296496295366
FNR = 0.06135244066278549

Oversampling:

Decision Tree Classifier Confusion Matrix

-250000

245341 - 200000

150000

True Label

100000
268413

0 1
Predicted Label

Accuracy = 0.9047927666454155
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FPR = 0.1263308650012206
FNR = 0.05851359804136015



Random Forest Classification

e Since our DTC’s aren't very precise and have either a high FPR or FNR,
we decided Random Forest would be another model to test because it
can often improve performance and is less prone to overfitting

e Enables any classifiers with weak correlations to create a strong
classifier

e Good at handling large datasets

e Superior method for working with missing data because missing values
are substituted by the variable appearing the most in a particular node



Removing missing values: Removing irrelevant variables:

Random Forest Confusion Matrix Random Forest Confusion Matrix
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Undersampling:
Random Forest Confusion Matrix
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Accuracy = 0.9028781885145274
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Oversampling:

Random Forest Confusion Matrix
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FPR =0.07140974703348979
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Discussion

e Best model

o Random forest after oversampling
m 95.3% accurate
m FPRof~7.1%
m FNRof ~2.0%

o Address overfitting
m Training accuracy = 0.964548969052712
m Testaccuracy = 0.9529599481520357

e How our prediction can help
o Upon improvement, our model can enable early identification of high-risk individuals, allowing
healthcare professionals to intervene promptly and initiate appropriate treatments
o Can guide further research into the specific factors influencing COVID-19 mortality



Future Research

e How can we optimize our results

o Try other ways to balance our data
o Try more machine learning models to get our accuracy closer to 100%

e Applying aspects of our model to help predict the risk of death
for other health crises

o Infectious disease outbreaks: Flu, Ebola, Zika, different COVID-19 variants,
or future pandemics



Thank you!
Questions?



Sources

https://coronavirus.jhu.edu/data/mortality

https://towardsdatascience.com/the-perfect-recipe-for-classification-using-logistic-regression-f8648e267592

https://www.kdnuggets.com/2022/04/logistic-regression-classification.html

https://towardsdatascience.com/an-exhaustive-quide-to-classification-using-decision-trees-8d472e77223f

https://corporatefinanceinstitute.com/resources/data-science/random-forest/

https://crunchingthedata.com/oversampling-vs-undersampling/
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https://towardsdatascience.com/an-exhaustive-guide-to-classification-using-decision-trees-8d472e77223f
https://corporatefinanceinstitute.com/resources/data-science/random-forest/
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