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Topology of surface diagrams of smooth 4-manifolds
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Surface diagrams are a new way to specify any smooth closed
orientable 4-manifold by an orientable surface decorated with
simple closed curves. These curves are cyclically indexed, and each
curve has a unique transverse intersection with the next. The aim
of this paper is to announce a uniqueness theorem for these objects
(within a fixed homotopy class) that turns out to be similar to the
Reidemeister-Singer theorem for Heegaard splittings of 3-mani-
folds.

broken | Lefschetz fibration

he purpose of this paper is to continue the development of

objects called broken Lefschetz fibrations in a topological
direction with a theorem that relates those fibrations within a
constricted (yet suitably large) class, called simplified purely
wrinkled fibrations. The result involves certain moves, called sta-
bilization, handleslide, shift, and multislide, that can be performed
within the class of surface diagrams for a fixed 4-manifold.

Theorem 1. Suppose ay,a;: M — S? are two homotopic simplified
purely wrinkled fibrations. Then their corresponding surface dia-
grams become diffeomorphic after some finite sequence of stabiliza-
tions, handleslides, shifts, and multislides. When M is simply
connected, the sequence can be assumed to be free of multislides.

Background

This section outlines the origins and motivation for broken
Lefschetz fibrations and surface diagrams, and its content should
be accessible to mathematicians with some topological back-
ground. The exposition that explains the vocabulary of Theorem 1
begins in the next section and should be accessible to a wider
audience.

Broken Lefschetz fibrations on smooth 4-manifolds were first
introduced in ref. 1 to generalize the correspondence between
Lefschetz fibrations and symplectic 4-manifolds up to blowup.
A symplectic form on a 4-manifold M is a closed two-form w
whose square is a volume form at every point of M. Given such
a two-form, and possibly after blowing up M at a finite number of
points, the resulting symplectic 4-manifold admits a compatible
Lefschetz fibration, which is a surface bundle over a surface, ex-
cept that it is allowed to have a discrete collection of so-called
Lefschetz critical points, locally modeled in complex coordinates
by (z,w) = zw. In the above correspondence, w restricts to a
volume form on each fiber (see section 10.2 of ref. 2 for further
details on symplectic structures and Lefschetz fibrations).
Roughly, the result of ref. 1 was that if one allows w to vanish
in a controlled way along an embedded one-submanifold of M
[that is, (M ) is a near-symplectic 4-manifold], then a suitable
blowup of (M,w) has a broken Lefschetz fibration such that, away
from its vanishing locus, w restricts to a volume form on the fiber.
Discussed below, broken Lefschetz fibrations are a mild general-
ization of Lefschetz fibrations in which the critical locus is
allowed to contain a one-submanifold of critical points; when
the fibration corresponds to a near-symplectic form, this critical
one-submanifold coincides with its vanishing locus (see, for exam-
ple, refs. 3 and 4). Though mild, this generalization greatly
increases the collection of 4-manifolds that admit such a fibration
structure: It is known that every smooth, orientable 4-manifold

8126-8130 | PNAS | May 17, 2011 | vol. 108 | no. 20

admits a broken Lefschetz fibration (though it may not corre-
spond to any near-symplectic form); see, for example, refs. 4-6.

The study of broken Lefschetz fibrations is partly motivated by
the effort to understand the Seiberg—Witten invariant of a smooth
4-manifold M geometrically. The Seiberg—Witten invariant is a
gauge-theoretic invariant defined as a count of solutions to an
elliptic pair of partial differential equations whose input consists
of a spin® structure (equipped with a connection on its determi-
nant line bundle) on the tangent space of M. In a 1996 paper,
Taubes showed that, for symplectic 4-manifolds, solutions to
the Seiberg—Witten equations correspond to pseudoholomorphic
curves which contribute to a special Gromov invariant he defined,
called Gr. Pseudoholomorphic curves are submanifolds of two
real dimensions that are singled out by the chosen symplectic
structure and other auxiliary data (these are choices which are
later shown to not affect the values of Gr) (7).

Recent efforts to geometrically recover Seiberg—Witten theory
for 3-manifolds and more general 4-manifolds have revolved
around equipping a given manifold with structures that resemble
surface bundles, namely Morse functions in three dimensions
and (broken) Lefschetz fibrations in four dimensions. An initial
development in the latter case appeared in a 2003 paper in which
Donaldson and Smith defined a standard surface count for sym-
plectic 4-manifolds, counting pseudoholomorphic curves which
are sections of a fiber bundle associated to a Lefschetz fibration
(8). For the standard surface count, these so-called multisections
can be realized as pseudoholomorphic curves in M on which the
fibration restricts to a branched cover over the sphere: Generic-
ally, a fiber intersects a multisection positively at k points, where
k > 0 does not depend on the chosen fiber. In this sense, a multi-
section locally resembles k distinct sections of the fibration, but it
is actually a single “section” that wraps around the total space k
times. Soon after the appearance of this work, Usher showed
that the standard surface count is equivalent to Gr, and thus the
Seiberg—Witten invariant (9). Though this equivalence is only
known to hold for a suitably chosen Lefschetz fibration whose
existence is equivalent to the existence of a symplectic form, it
gave a promising inroad to generalization by looking at more
general fibration structures: Broken Lefschetz fibrations offer
a way to continue their approach into nonsymplectic territory,
further guided by an existence result of ref. 10, stating that if
a near-symplectic 4-manifold has nonvanishing Seiberg—Witten
invariant, then there is a pseudoholomorphic subvariety with
boundary given by the vanishing locus of w.

In a 2007 paper, Perutz defined a generalization of the stan-
dard surface count for near-symplectic broken Lefschetz fibra-
tions, called the Lagrangian matching invariant, in which the
multisections are defined over regions in the base of the fibration
(11). These regions are defined by removing an immersed collec-
tion of circles, the image of the vanishing locus of @, from the
base. Over each region, the map is a symplectic Lefschetz fibra-
tion mapping to a surface with boundary, with the parameter k
depending on the genus of the fiber over each region. The multi-
sections over adjacent regions are then glued together using data
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coming from the fibration over the places where the regions meet.
It turns out that k& changes by one when moving between adjacent
regions, leading to the patched-together multisection having
boundary; this boundary must meet certain conditions, again
coming from the fibration structure where the regions meet. The
Lagrangian matching invariant fits in nicely with experts’ expec-
tations and ref. 10 in numerous ways. For example, there are
formal similarities, vanishing theorems and calculations in special
cases that coincide with those for the Seiberg—Witten invariant.
However, it remains to show that the Lagrangian matching invar-
iant is a smooth invariant of the underlying 4-manifold (not just
the isomorphism class of the chosen fibration structure), and it is
generally difficult to compute. A large amount of the motivation
for studying surface diagrams is the possibility that they will prove
useful in addressing this pair of issues.

Aside from these speculative applications, one aspect of
surface diagrams which (depending on one’s perspective) may
be taken as a strength is that there are surface diagrams for each
smooth, closed orientable 4-manifold. Of particular interest is
that a surface diagram is a combinatorial object in the same sense
as Heegaard diagrams for 3-manifolds. Considering how fruitful
Heegaard diagrams have been in the study of 3-manifolds, a
specific goal would be a combinatorially defined and calculated
smooth 4-manifold invariant: Through surface diagrams, the
complicated three-dimensional nature of handlebody theory on
4-manifolds has been transferred to the combinatorics of a
collection of circles on a surface.

Fibration Structures and Critical Points

In this section, we define the fibration structures mentioned
above and describe ways of recording them: A convenient way
to specity a fibration structure when one only cares about smooth
phenomena (as opposed to complex or symplectic) is to restrict
the critical locus of the underlying map, and this is our approach.
Let M be a smooth closed 4-manifold. A generic map M — S?
resembles a surface bundle, except one allows the presence of
a one-dimensional critical locus that is a union of fold and cusp
points. The collection of fold points forms an embedded one-sub-
manifold of M with the following local model at each point:

(01 X2.03.X4) > (X125 425 £x5). (1]

When the sign above is negative, it is known variously as an in-
definite fold, round singularity, or broken singularity depending
on context. Fig. 14 is a base diagram for the indefinite fold: Itis a
picture of the target space for this map and its fibration structure.
In that figure, like the one to its right, what appears is the target
disk of a map D* — D?, with bold arcs representing the image of
the critical locus. A surface is pictured in the region of regular
values that have that surface as their preimage, so that, for exam-
ple, the fibers above points to the left of the vertical arc in Fig. 14
are cylinders and to the right they are pairs of disks. In Fig. 14,
tracing point preimages above a horizontal arc from left to right
gives the foliation of R? by hyperboloids, first one-sheeted, then
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Fig. 1. Critical points of purely wrinkled fibrations: (A) fold, (B) cusp.
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two-sheeted, with a double cone above each point in the vertical
arc. The circle (drawn on the cylinder to the left) that shrinks to
the cone point is called the round vanishing cycle for that arc in
the context of broken Lefschetz fibrations. When dealing with
purely wrinkled fibrations, those whose critical locus consists only
of indefinite folds and indefinite cusps (described below), there
are no Lefschetz vanishing cycles, so the term “vanishing cycle”
will suffice in that case.

Each cusp point is a common endpoint of two open arcs of fold
points, with the local model

(X1 X203.X4) P> (X103 = 3312 +25 £x7). [2]

When the sign above is negative, it is called an indefinite cusp
and it is a common endpoint of two indefinite fold arcs as in
Fig. 1B: Here, two fold arcs meet at a cusp point, for which
the two vanishing cycles must intersect at a unique point in the
fiber. These two local models (with the preferred signs) are a
proper subset of the possible critical loci available to generic
maps from 4- to 2-manifolds, and there is an even greater variety
when one considers one-parameter families of such maps: For
full details on genericity and critical loci, see refs. 12 and 13.
Conspicuously absent from this paper is an actual broken
Lefschetz fibration. Topologically, such an object is a smooth map
from a 4-manifold to a 2-manifold whose critical locus consists of
Lefschetz critical points and indefinite folds. Results from ref. 4
imply that purely wrinkled fibrations and broken Lefschetz fibra-
tions are interchangeable by small homotopies, so that in the
course of study or exposition, one may simply choose which fibra-
tion structure seems more convenient without loss of generality.

Definition 1: A purely wrinkled fibration is a smooth map from a
4-manifold to a 2-manifold whose critical locus consists of inde-
finite folds and indefinite cusps. A simplified purely wrinkled
fibration is a purely wrinkled fibration f: M — S? whose critical
locus is a single circle on which f is injective.

Surface Diagrams

By corollary 1 of ref. 13, every broken Lefschetz fibration from a
smooth, closed oriented 4-manifold M to the two-sphere can be
modified by a (possibly long) sequence of moves (which are cho-
sen from a short list initially appearing in ref. 4) into a simplified
purely wrinkled fibration (in fact, the proof of that corollary im-
plies this modification can be done for any map M — $?). Such a
map has an orientable genus g surface as regular fiber over one of
the disks that comprise 2 \ f(critf), and the generic fiber over
the other disk has genus g — 1; choosing a regular value p in the
higher-genus side and reference arcs from p to the various inde-
finite fold arcs, one obtains a collection of simple closed curves
in %, by recording the round vanishing cycles in a counterclock-
wise direction going around the cusped critical circle. For this
reason, the curves are relatively indexed by Z/kZ, where k is
the number of fold arcs.

Definition 2: Assuming g > 3, a surface diagram (%,,I") of M is the
higher-genus fiber %,, decorated with the relatively Z/kZ-
indexed collection I' = (yy,...,yx) of round vanishing cycles.

Remark 1: The requirement that g > 3 (which can always be satis-
fied by applying the stabilization deformation discussed below) is
necessary for the following reason: After forming the fibration
consisting of the preimage of a neighborhood of the critical im-
age, if g = 1 or g = 2 there are various ways to close off the high-
er- and lower-genus sides with a copies of (fiber) x D?, according
to the elements of z, (diff $?) = Z, and =, (diff 7?) = Z?, where
diff (%) is the diffeomorphism group of X (see refs. 1 and 3 for
explicit examples). Because diff(X,) is simply connected for
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g > 2, a surface diagram as defined specifies a 4-manifold up to
diffeomorphism.

Remark 2: The local model for the cusp requires the two round
vanishing cycles to transversely intersect at a unique point in
the fiber; thus consecutive elements of I' exhibit the same beha-
vior. We call this requirement the intersection condition for sur-
face diagrams, or simply the intersection condition when context
makes it clear.

Moves on Surface Diagrams

This section describes discrete moves that may be used to modify
a surface diagram while preserving the underlying smooth
4-manifold. Like the moves from handlebody theory, they are ob-
tained as the endpoints of certain homotopies of the underlying
fibration map. To keep the distinction clear, the terms handle-
slide, multislide, and stabilization will always refer to the move
on surface diagrams, whereas the terms handleslide deformation,
etc. will refer to the corresponding modifications of fibration
maps, which may sometimes be performed on individual circles
when the critical locus is not connected.

Stabilization. This move is a lightly disguised generalization of a
homotopy that first appeared in figure 5 of ref. 3 and figure 11 of
ref. 4. An example of how it affects a surface diagram is shown in
Fig. 2. On the left of Fig. 2 is a small neighborhood vp of a point p
of a circle ¢ in a surface diagram (Z,,I"). Stabilization results in a
diagram (| = Z,#,,,T2.I"), with I" obtained as follows. First
note that, without loss of generality, I'\ ¢ is disjoint from what
appears in Fig. 2, and so it is unambiguous to say it is preserved
under stabilization. Then ¢ \ p patches in smoothly with one of
the lower curves in the right of Fig. 2. The next curve in the
sequence is either one of the parallel circles, followed by the cir-
cle at the very top of the torus. The sequence continues with the
other one of the parallel circles, and finally a parallel copy of ¢
patches in with the other curve at the bottom of the torus. The list
of vanishing cycles then resumes as it did for I'. Thus a stabiliza-
tion at p € ¢ could be said to insert four curves into I" along with a
torus connect summand into X. Fig. 3 depicts a base diagram
for part of the stabilization deformation. Importantly, it is not
straightforward to pin down the identification between the fibers
above disjoint regions like in Fig. 3: In that figure, the vanishing
cycles are drawn as they might appear once the intersection
points are canceled.

In Fig. 3, two flipping moves from ref. 4 have been applied to
the same fold arc. For a single flip, there is a local parameteriza-
tion of the fiber such that the vanishing cycles appear in a stan-
dard way as in figure 5 of ref. 4 (the twice-punctured torus fiber in
that figure is obtained from Fig. 2 by attaching a two-dimensional
one-handle containing the rest of the two parallel vanishing cycles
not fully depicted). However, there is no reason to expect that
two flipping moves appear in this fashion, or that either should
be required to appear in that standard way: Following the con-
straints given by the intersection condition and the local model
for the flipping move, the variety in how Fig. 3 can appear is lim-
ited to allowing the vanishing cycles for the fold arcs at the tops of
the two triangles to vary by positive or negative Dehn twists along

\

Fig. 2. An example of stabilizing a surface diagram.
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Fig. 3. The stabilization deformation involves two flipping moves that occur
on the same fold arc. The disk in the left side of Fig. 2 is highlighted in the
middle fiber.

the vanishing cycles for the central fold arc that runs between the
two triangles; examples are shown in the figure. The stabilization
deformation then continues as in refs. 3 and 4, canceling the two
intersection points by a Reidemeister type-two move between the
central fold arc and the critical arc connecting the two ends in
Fig. 3, resulting in a simplified purely wrinkled fibration whose
vanishing cycles can be deduced with little difficulty. The Reide-
meister type-two move requires the two-sphere to be the base of
the fibration to allow repeated stabilization.

One special case of stabilization is available to surface dia-
grams that come from surface bundles over the sphere—that is,
blank surface diagrams. Performing a birth move in this case in-
creases the genus of the surface diagram by one and introduces
two simple closed curves whose only requirement is that they
intersect at a unique point.

Handleslide. The handleslide is a modification whose appearance
is formally like the one for Heegaard diagrams of 3-manifolds: In
fact, the handleslide deformation is a one-parameter family of
such moves, performed along a chosen fold arc. For a good
description of the three-dimensional handleslide, see ref. 2. Two
ways in which handleslides are different for surface diagrams is
that we have not chosen a partition of I' into sets of pairwise dis-
joint circles (so there is not immediately a distinguished collec-
tion of circles over which one may slide a given circle), and there
is no linear independence requirement for the elements of I" (so
one might consider sliding a circle over another that happens to
lie in the same isotopy class, resulting in a violation of the inter-
section condition). These considerations lead to additional as-
sumptions as follows. Within the fibration underlying a surface
diagram, denote four distinct components of the fold locus by
A, B, C, D (with 4, B, C consecutive), and label their vanishing
cycles a, b, c, d. Then the requirement is that d is disjoint from
each of a, b, and ¢ [note this requirement implies [a] and [d] are
linearly independent in H, (X) because of the intersection condi-
tion for a, b, c]. The handleslide then consists of replacing b with
any simple closed curve b’ that satisfies the intersection condition
with its neighbors a and ¢, and such that the set of circles {b,b’'.d}
bounds an embedded thrice-punctured sphere S C .

The modification comes from the following deformation. First,
in base diagrams, B (and a small amount of A and C) moves
across the higher-genus region of the fibration into the lower-
genus side of D in a Reidemeister type-two move as depicted in
Fig. 4, which is possible by the disjointness assumption. Along the
higher-genus side of 4, X has experienced a surgery along d so
that a becomes able to move by isotopy over either of the two
points (depicted in the figure) that become identified as one
traces a reference arc to the lower-genus side of D; in other
words, the boundary component d of S has been capped off in
this region. The last step is to cancel the two intersection points
by the reverse Reidemeister type-two move in which B moves
back the way it came across D. The vanishing cycles have now
changed by replacing b with a band sum of b and d, giving the
embedding of S.

Multislide. Independently found by Denis Auroux and Rob Kirby,
this move comes from a deformation in which the critical locus
becomes momentarily disconnected. To perform the multislide,
one first finds a nonconsecutive pair of vanishing cycles that in-
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Fig. 4. Base diagrams for part of the handleslide deformation. The initial
surface diagram is obtained as the preimage of a point in the center of
the circle on the left, decorated with vanishing cycles obtained by following
radial reference arcs.

C

tersect transversely at a unique point in X, say y; and y,,. One also
chooses one of the subsets {y,...,7,_1} Or {V,11,--.,vx} on which
to perform the move: choose the first subset for expediency. A
sufficiently small tubular neighborhood of the chosen pair in
is a punctured torus, and one may replace that torus momentarily
with a disk that has marked points on its boundary according to
the places where y,,...,y, may have entered and exited the torus,
resulting in a surface X’ whose genus is one less than that of X,
decorated with the resulting collection of curves y/,...,y;, (there
will be one pair of marked points for each intersection between
71,---,7k and the chosen pair). One may then perform a one-para-
meter family of diffeomorphisms of (¥',y},...,y,_,) in which the
disk travels along an arbitrary circle, returning to where it started
and dragging the chosen subset y5,...,y;,_, along with it (but leav-
ing all the other vanishing cycles y,,,...,y; unchanged). A choice of
framing allows those elements of {y},...,y;,_, } with marked points
to be affected by a power of a positive or negative Dehn twist
along the boundary of the disk. After performing this modifica-
tion of the chosen subset, one reattaches the punctured torus
according to the marked points. To explain the terminology, it is
as if a handleslide has been performed in which a collection of
vanishing cycles slides over the chosen pair, which is not to say
the multislide is a sequence of handleslides: The multislide can
change the free homotopy class of the underlying fibration’s cri-
tical circle, something the previous two moves cannot achieve.
The multislide deformation is depicted in Fig. 5. To begin,
choose a pair of fold arcs whose vanishing cycles happen to inter-
sect transversely at a unique point in the fiber. On the left side of
Fig. 5, a vertical arc joins the chosen pair, signifying a move that
results in the middle figure (this move is called a merge in ref. 4
and a cancellation in ref. 14). The inside of each of the two circles
now has X as its generic fiber, with vanishing cycles obtained from
I' by deleting those whose fold arcs were “pinched off” into the
other circle by the merging move (this is where the partition

N {y1.7k} = {r2se ¥t Ut oe vk}

comes from). The deformation concludes with a move in which
the two circles reunite along the two newly formed cusps. To ex-
plain the modification of surface diagrams, consider the deforma-
tion as a map [0,1] x M — [0,1] x $? that restricts to the identity
map in the first factors. The critical image is a properly embedded
twice-punctured torus in [0,1] X S2. If one chooses two reference
points on the left side of the figure such that one splits into each
circle, initially their base diagrams are isotopic. However, the
identification between them is modified by the time the two cir-
cles rejoin: Note that the cusps that form and then disappear
trace out a circle in [0,1] X M. Projecting out the homotopy para-
meter yields a circle @ ¢ M, and without loss of generality one of

Fig. 5. The multislide deformation. The initial fibrations for this and Fig. 4
have six cusps for no particular reason.
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the pair of cusps, say the right, remains stationary throughout its
life, whereas the other traces out a as the homotopy progresses
(the resulting surface diagram will then be the one obtained using
a reference point that stays in the right circle through the defor-
mation). To say it a different way, the horizontal arc in the middle
of Fig. 5 can be taken as the image of that part of a over which the
left cusp will travel. This so-called joining curve is framed, and
everywhere transverse to the fiber. The fibers containing points
on its interior serve as ¥, with the disk mentioned above coming
from a fiberwise neighborhood of the joining curve. The circle a
projects to the circle in X’ along which this disk travels, inducing
the above-mentioned isotopy of {y},...,y,_,}. In this way, the
choice of a induces an element of the mapping class group of
> that only applies to those vanishing cycles coming from the left
circle.

shift. This move embodies the possible variations on the ordering
of the vanishing cycles in a surface diagram. In base diagrams,
the deformation is similar to that of the multislide in Fig. 5, but
instead of reuniting the two circles at the two newly formed cusps,
one of those cusps instead meets with a cusp that is adjacent to
the other.

To understand how this deformation affects a surface diagram,
it is useful to consider what we will call a “surgered surface dia-
gram.” This viewpoint is useful for understanding all the moves,
but in the interest of brevity, we illustrate it only for shifting. In
the initial simplified purely wrinkled fibration, consider a refer-
ence fiber Z,_; over a point just to the lower-genus side of a fold
arc v, along with a short reference path across y into its higher-
genus side. As one traces fibers above this path, two points p, p’
become identified in a surgery that increases the genus of the fi-
ber by one, as in Fig. 14. Then the endpoint of this path gives a
reference fiber X, to which one can add the vanishing cycles for
folds bounding that higher-genus region. Pulling this picture back
across v, all the vanishing cycles descend to circles in Z,_; except
those that intersect the vanishing cycle of y; these instead appear
as vanishing arcs whose endpoints are p and p’. The ends of these
arcs come equipped with a bijection p between those at p and
those at p’ by the way they pair up on either side of the vanishing
cycle of y in X,; for this reason, the union of vanishing arcs
obtained by picking a point on one vanishing arc, following it to
one end e, continuing at f#(e), and on until returning to the chosen
point will be called a vanishing cycle just like the other simple
closed curves. In this way, the base diagram can be recovered
from a reference fiber in the lower-genus region, along with a
chosen path into the higher-genus region.

Taking a family of such reference fibers and paths along the
critical circle of the fibration yields a one-parameter family of
such diagrams, and this paragraph describes how such a family
evolves when a reference path passes a cusp (it is helpful to ima-
gine a family of horizontal arcs in Fig. 1B). As the family of paths
approaches a cusp, there is a vanishing arc v, coming from the
vanishing cycle just past the cusp, whose ends correspond under
B (thus v is itself a vanishing cycle). The points p and p’ travel
along v as it shrinks to a point where p and p’ momentarily meet,
so that the diagram whose path intersects the cusp itself has
only one distinguished point. Passing the cusp, p and p’ separate
again; now they form the pair of points whose surgery has belt
circle v. Those vanishing cycles intersecting v in %, form the
new collection of vanishing arcs, whereas those ends that came
from vanishing cycles disjoint from v, brought together with p
and p’, disengage from p and p’ without reseparating. With this
understood, it becomes clear that the surgered surface diagrams
coming from reference paths on either side of a cusp are identical
up to isotopy.

For the shift deformation, we choose a reference point in the
lower-genus region and a fold arc y that takes part in the initial
merge or cancellation. Also, choose two reference paths from
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