Homework 27 MATH 304 Section 3

Assigned:
Potentially Collected:

Monday, December 8.
Friday, December 12.

1. Find an orthonormal basis for the subspace of \mathbb{R}^{3} spanned by

$$
\mathscr{R}=\left\{\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-3
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& \operatorname{Span}(*)= \\
& \operatorname{Span}\left(\left[\begin{array}{c}
1 \\
1-2
\end{array}\right],\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]\right)
\end{aligned}
$$

2. Find an orthonormal basis for the null space of each of the following matrices

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
2 & 1 & 3 \\
1 & 2 & -6
\end{array}\right]
$$

Use the
Grani-Schmist
3. Find an orthonormal basis for each of the following subspaces.
(a) $\left\{\left[\begin{array}{r}a \\ a+b \\ b\end{array}\right]: a, b \in \mathbb{R}\right\}$
(b) $\left\{\left[\begin{array}{r}a \\ a+b \\ c \\ b+c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$
(c) $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=0\right\}$
(d) $\left\{\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]: a-b-2 c+d=0\right\}$

$$
\begin{aligned}
\vec{v}_{1} & =\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \\
\vec{v}_{2} & =\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]-\operatorname{proj}_{v_{1}}\left(\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]-\left(\frac{-3+0-2}{5}\right)\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right]
\end{aligned}
$$

$\left(\vec{v}_{1}, \vec{v}_{2}\right)$ is an orthogonal basis for span (\forall).

$$
\left(\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}, \frac{\vec{v}_{2}}{\left\|\vec{v}_{2}\right\|}\right)=\left(\left[\begin{array}{c}
1 / \sqrt{5} \\
0 \\
-2 / \sqrt{5}
\end{array}\right],\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right]\right) \text { is an orthonormal } \begin{aligned}
& \text { basis for span }(\nexists) .
\end{aligned}
$$

