Homework 26 MATH 304 Section 3

Assigned: **Potentially Collected:**

Wednesday, December 3. Wednesday, December 10.

1. Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} -4 \\ -5 \end{bmatrix}$, $\vec{a} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} -1 \\ -3 \\ -4 \end{bmatrix}$, and $\vec{c} = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$.

- $||\vec{a}|| = \sqrt{(-2)^2 + (-2)^2 + (-2)^2} = 7$ (a) Find $||\vec{a}||$, $||\vec{b}||$, and $||\vec{c}||$.
- (b) Find $||\vec{u} \vec{v}||$ and $||\vec{w} \vec{v}||$.
- (c) Find $\operatorname{proj}_{\vec{a}}(\vec{c})$ and $\operatorname{proj}_{\vec{b}}(\vec{c})$.
- (d) Find $\operatorname{proj}_{\vec{v}}(\vec{u})$ and $\operatorname{proj}_{\vec{v}}(\vec{w})$.
- $||f|| = \sqrt{(-1)^2 + (-3)^2 + (-4)^2} = \sqrt{26}$ $\|z\| = \sqrt{|z_{+}(-2)|^{2} + 4^{2}} = \sqrt{21}$
- (e) Find $\vec{v} \cdot \vec{w}$ and $\vec{a} \cdot \vec{b}$.
- 2. Which of the following vectors are orthogonal? in the same direction? in opposing directions?

$$\vec{a} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \quad \vec{c} = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix} \quad \vec{d} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \vec{u} = \begin{bmatrix} \frac{-1}{2} \\ 0 \\ \frac{-1}{4} \end{bmatrix}$$

3. Let $\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. Find all the vectors \vec{v} where $\vec{v} \perp \vec{w}$ and $\vec{v} \perp \vec{x}$.

$$\begin{array}{c}
(\vec{c}) \text{ proj}_{\vec{a}}(\vec{c}) = \left(\frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\|^{2}}\right) \vec{\alpha} = \left(\frac{4}{4}\right) \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} \\
\text{ proj}_{\vec{b}}(\vec{c}) = \left(\frac{\vec{c} \cdot \vec{b}}{\|\vec{b}\|^{2}}\right) \vec{b} = \left(\frac{-11}{26}\right) \begin{bmatrix} -1 \\ -3 \\ -4 \end{bmatrix} = \begin{bmatrix} 11/26 \\ 33/26 \\ 44/26 \end{bmatrix}$$

$$\overrightarrow{\partial} \overrightarrow{v} \cdot \overrightarrow{w} = q \qquad \overrightarrow{a} \cdot \overrightarrow{b} = 6$$

the vectors \vec{v} orthogonal to both \vec{w} and \vec{x} form the orthogonal complement $Span(\vec{w}, \vec{x})$.

$$Span(\overline{w},\overline{x})^{\perp} = nul([[-1,1]]) = Span([-1]])$$
(RREF
$$[[0,1,0]]$$