Homework 26 MATH 304 Section 3

$$
\begin{aligned}
& \text { (b) }\|\vec{u}-\vec{v}\|=\|\left[\begin{array}{c}
-3 \\
7
\end{array} \|=\sqrt{(-3)^{2}+7^{2}}=\sqrt{58}\right. \\
& \|\vec{u}-\vec{v}\|=\left\|\left[\begin{array}{c}
-8 \\
0
\end{array}\right]\right\|=8
\end{aligned}
$$

Assigned:
Potentially Collected:

Wednesday, December 3.
Wednesday, December 10.

1. Let $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{r}4 \\ -5\end{array}\right], \vec{w}=\left[\begin{array}{c}-4 \\ -5\end{array}\right], \vec{a}=\left[\begin{array}{r}0 \\ -2 \\ 0\end{array}\right], \vec{b}=\left[\begin{array}{c}-1 \\ -3 \\ -4\end{array}\right]$, and $\vec{c}=\left[\begin{array}{r}1 \\ -2 \\ 4\end{array}\right]$.
(a) Find $\|\vec{a}\|,\|\vec{b}\|$, and $\|\vec{c}\|$. (a)
(b) Find $\|\vec{u}-\vec{v}\|$ and $\|\vec{w}-\vec{v}\|$.
(c) Find $\operatorname{proj}_{\vec{a}}(\vec{c})$ and $\operatorname{proj}_{\vec{b}}(\vec{c})$.
(d) Find $\operatorname{proj}_{\vec{v}}(\vec{u})$ and $\operatorname{proj}_{\vec{v}}(\vec{w})$.

$$
\begin{aligned}
& \|\vec{a}\|=\sqrt{0^{2}+(-2)^{2}+0^{2}}=2 \\
& \|\vec{b}\|=\sqrt{(-1)^{2}+(-3)^{2}+(-4)^{2}}=\sqrt{26} \\
& \|\vec{c}\|=\sqrt{1^{2}+(-2)^{2}+4^{2}}=\sqrt{21}
\end{aligned}
$$

(e) Find $\vec{v} \cdot \vec{w}$ and $\vec{a} \cdot \vec{b}$.
2. Which of the following vectors are orthagonal? in the same direction? in opposing directions?

$$
\vec{a}=\left[\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right] \quad \vec{b}=\left[\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right] \quad \vec{c}=\left[\begin{array}{r}
2 \\
4 \\
-1
\end{array}\right] \quad \vec{d}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \vec{u}=\left[\begin{array}{r}
\frac{-1}{2} \\
0 \\
\frac{-1}{4}
\end{array}\right]
$$

3. Let $\vec{w}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\vec{x}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$. Find all the vectors \vec{v} where $\vec{v} \perp \vec{w}$ and $\vec{v} \perp \vec{x}$.

$$
\begin{aligned}
& \operatorname{proj}_{\vec{a}}(\vec{c})=\left(\frac{\vec{a} \cdot \vec{c}}{\|\vec{a}\|^{2}}\right) \vec{a}=\left(\frac{4}{4}\right)\left[\begin{array}{c}
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right] \\
& \operatorname{proj}_{b}(\vec{c})=\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{\prime}\|^{2}}\right) \vec{b}=\left(\frac{-11}{26}\right)\left[\begin{array}{l}
-1 \\
-3 \\
-4
\end{array}\right]=\left[\begin{array}{l}
11 / 26 \\
33 / 26 \\
44 / 26
\end{array}\right]
\end{aligned}
$$

(d)

$$
\vec{v} \cdot \vec{w}=9 \quad \vec{a} \cdot \vec{b}=6
$$

(3) the vectors \vec{v} orthogonal to both \vec{w} and \vec{x} form the orthogonal complement $\operatorname{Span}(\vec{w}, \vec{x})^{1}$.

$$
\begin{aligned}
\operatorname{Span}(\vec{w}, \vec{x})^{\perp}= & \operatorname{nul}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]\right)=\operatorname{span}\left(\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right) \\
& {\left[\begin{array}{cl}
\operatorname{ReEF} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]}
\end{array}\right] }
\end{aligned}
$$

