Homework 25 MATH 304 Section 3 Solution
$\begin{array}{lc}\text { Assigned: } & \text { Wednesday, November } 26 . \\ \text { Potentially Collected: } & \text { Wednesday, December } 3 .\end{array}$
Potentially Collected:

$$
\begin{aligned}
P_{B}(\lambda) & =\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
-2 & 1-\lambda
\end{array}\right]\right) \\
& =(1-\lambda)^{2}
\end{aligned}
$$

1. Which of the following matrices are diagonalizable?

Since $\operatorname{dim}\left(E_{1}\right)=1$,
the sum of the dimensions of the eigenspaces for B is $7 \neq 2$.
B is NOT diagonalizable.
2. Let $A=\left[\begin{array}{ll}3 & -5 \\ 1 & -3\end{array}\right]$. Compute A^{9} by finding a matrix P such that $P^{-1} A P$ is a diagonal matrix D and show that $A^{9}=P D^{9} P^{-1}$.

$$
\begin{aligned}
P_{A}(\lambda) & =\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 4 \\
1 & -2-\lambda
\end{array}\right]\right)=(1-\lambda)(-2-\lambda)-21 \\
& =-2+\lambda+\lambda^{2}-4=\lambda^{2}+\lambda-6=(\lambda-2)(\lambda+3)
\end{aligned}
$$

The 2×2 matrix has 2 distinct eigenvalues, therefore A is diagonalizable.

$$
\begin{aligned}
P_{c}(\lambda)=\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & -2 \\
4 & -\lambda & 4 \\
1 & -1 & 4-\lambda
\end{array}\right]\right) & \left.=(1-\lambda)(-1)^{+1} \operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 4 \\
-1 & 4-\lambda
\end{array}\right]\right)+(1)-(-1) \operatorname{det} d\left(\left[\begin{array}{cc}
4 & 4 \\
1 & 4
\end{array}\right]\right)+(-2)(-1)^{1+3}\right) \operatorname{det}\left(\left[\begin{array}{cc}
4 & -\lambda \\
1 & -1
\end{array}\right]\right) \\
& =(1-\lambda)(-\lambda(4-\lambda)+4)-(4(4-\lambda)-4)-2(-4+\lambda)=-\lambda^{3}+5 \lambda^{2}-6 \lambda \\
& =-\lambda\left(\lambda^{2}-5 \lambda+6\right)=-\lambda(\lambda-3)(\lambda-2)
\end{aligned}
$$

The 3×3 matrix has 3 distinct eigenvalues, therefore C is diagnalizable.

