Solution

Problem	1	2	3	4	5	6	Total
Full Score	20	20	20	20	20	20	120
Your Score							' i

- Read all problems before beginning and try to work from easiest to hardest.
- In order to get credit, you must show all of your work.
- NO calculators of any kind! NO cell phones!
- Check to make sure that your exam has six (6) pages and six (6) questions.
- 1. <u>Clearly</u> circle "True" or "False" for each of the following problems. Circle "True" only if the statement is always true. No explanation necessary.

TRUE FALSE

(a) Let A be an $m \times n$ matrix with m > n. Then any row echelon form contains at least m - n zero rows.

TRUE FALSE

(b) An $m \times n$ matrix has m rows and n columns.

TRUE) FALSE

(c) The matrix $\begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ is in reduced row echelon form.

TRUE (FALSE

(d) Suppose that A is a 5×3 matrix. Then $A\vec{x} = \vec{0}$ has infinitely many solutions.

TRUE FALSE

(e) The rank of an 11×7 matrix is greater or equal to 7.

TRUE FALSE

(f) Every elementary matrix is nonsingular.

TRUE FALSE

(g) $(AB^T)^T$ is always equal to A^TB for all matrices A and B such that AB^T is defined.

TRUE FALSE

(h) The matrix $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ is in diagonal form.

TRUE FALSE

(i) Let A, B be $n \times n$ matrices and rank(A) = n. Then the matrix equation AX = B is always solvable.

TRUE FALSE

(j) Let $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ be different solutions of the nonhomogeneous system $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$. Then $\vec{\mathbf{u}} - \vec{\mathbf{v}}$ is a nontrivial solution of the associated homogeneous system.

2. Suppose that

$$M = \begin{bmatrix} 0 & 1 & -1 & 1 & 2 & 5 \\ 0 & 2 & -2 & 2 & 6 & 18 \\ 0 & -1 & 4 & 5 & -2 & -11 \end{bmatrix}$$

is the augmented matrix of a system of linear equations in the variables x_1, x_2, x_3, x_4, x_5

a) Bring the matrix M into reduced row echelon form, indicating all elementary row operations.

$$\Gamma_{2}=R_{2}-2R_{1} \quad \begin{bmatrix} 0 & 1 & -1 & 1 & 2 & 15 \\ 0 & 0 & 0 & 0 & 2 & 18 \\ 0 & 0 & 3 & 6 & 0 & 1-6 \end{bmatrix}$$

$$\Gamma_{3}=R_{3}+R_{1} \quad \begin{bmatrix} 0 & 0 & -1 & 1 & 2 & 15 \\ 0 & 0 & 3 & 6 & 0 & 1-6 \end{bmatrix}$$

$$\Gamma_{3}=R_{3}+R_{1} \quad \begin{bmatrix} 0 & 0 & -1 & 1 & 2 & 15 \\ 0 & 0 & 3 & 6 & 0 & 1-6 \end{bmatrix}$$

$$\Gamma_{3}=R_{3}+R_{2} \quad \begin{bmatrix} 0 & 1 & -1 & 1 & 2 & 15 \\ 0 & 0 & 0 & 1 & 2 & 1-2 \\ 0 & 0 & 0 & 1 & 1+4 \end{bmatrix}$$

$$\Gamma_{1}=R_{1}+2R_{2} \quad \begin{bmatrix} 0 & 1 & 0 & 3 & 0 & 1-5 \\ 0 & 0 & 0 & 1 & 1+4 \end{bmatrix}$$

$$\Gamma_{1}=R_{1}+2R_{2} \quad \begin{bmatrix} 0 & 1 & 0 & 3 & 0 & 1-5 \\ 0 & 0 & 0 & 1 & 1+4 \end{bmatrix}$$

b) Which variables are the basic variables?

c) Which variables are the free variables?

$$\chi_1$$
 , χ_4

d) What is the rank of M?

e) List the columns of M which are pivot columns.

$$\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix}$$

f) If the system is consistent, write its solution in parametric form.

$$\chi_{2} = -5 - 3\chi_{4}$$
 χ_{4} anything $\chi_{3} = -2 - 2\chi_{4}$ $\chi_{5} = 4$

3. Given a matrix

$$M = \left[\begin{array}{cccc|ccc|c} 1 & 2 & 0 & 3 & a & b \\ 0 & 0 & 1 & 1 & c & d \\ 0 & 0 & 0 & 0 & e & f \end{array} \right]$$

representing the augmented matrix of a system of equations in reduced row echelon form. Compute the following by filling in the blanks.

(a) For $a = \underline{anything} b = \underline{O}$, $c = \underline{anything}$, $d = \underline{O}$, $e = \underline{O}$, $f = \underline{1}$, the matrix M represents the reduced row echelon form of an inconsistent system of equations. $4 \Rightarrow f = 1, b = d = 0$ The pivots are located at \underline{O} , \underline{O} , \underline{O} (Give your answer in the form \underline{M}).

The rank of the coefficient matrix is _____.

The rank of the augmented matrix is_____.

(b) For a = 0, b = anything c = 0, d = anything e = 1, f = 2, the matrix M is the augmented matrix of a consistent nonhomogeneous system in reduced row echelon form.

Let C Lnot all zero; b, d, f Like C = 0.

The pivots are located at c = 0.

The pivots are located at $_{m_{11}}$, $_{m_{23}}$, $_{m_{35}}$.

The rank of the augmented matrix is 2

The rank of the coefficient matrix is 2.

(c) For a = 1, b = 0, c = 1, d = 0, e = 0, f = 0, the matrix M is the augmented matrix of a homogeneous system of rank 2 in reduced row echelon form.

The complete solution in parameterized form is

$$x_1 = \underline{\hspace{1cm}}, x_2 = \underline{\hspace{1cm}}, x_3 = \underline{\hspace{1cm}}, x_4 = \underline{\hspace{1cm}}, x_5 = \underline{\hspace{1cm}}.$$

$$X_1 = -2x_2 - 3x_4 - 25$$

X4 X5 anything

- 4. Consider the matrices $A = \begin{bmatrix} 1 & 2 \\ \frac{1}{2} & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & -4 \\ -1 & \frac{1}{2} & 2 \end{bmatrix}$. For each of the following operations, either do the indicated calculations or explain why it is not defined.
 - (i) A + B

Undefined

$$(2\times3)(2\times2)$$

Undefined

(iv)
$$(A \cdot B)^2$$
 Undefined

(vi) $B^T \cdot A^T$.

$$= \begin{bmatrix} 2 & -1 \\ -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(vii) How are the matrices $A \cdot B$ and $B^T \cdot A^T$ related? Justify your answer.

5. Let A be the vector space consisting of column vectors of length 4 and let B be the vector space of column vectors of length 3. Consider the function $f:A\longrightarrow B$ given by

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + 2x_2 + 2x_3 + 6x_4 \\ 2x_1 + 2x_2 + x_3 + 3x_4 \\ x_1 + 2x_2 + x_3 + 3x_4 \end{bmatrix} \qquad \text{for } \mathbb{R}^4 \to \mathbb{R}^3$$

(a) What is the domain of f? What is the codomain?

$$R^4$$
 R

(b) Determine $f(\vec{e_i})$ for i = 1, 2, 3, 4 for the standard basis $\{\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4}\}$ of \mathbb{R}^4 written as column vectors.

$$f(\vec{e_1}) = \int_{7}^{2} \int_{7}^{2} f(\vec{e_2}) = \left[\frac{2}{2}\right]_{7}^{2} f(\vec{e_3}) = \left[\frac{3}{4}\right]_{7}^{2} f(\vec{e_4}) = \left[\frac{6}{3}\right]_{7}^{2}$$

(c) Using (b), write down the standard matrix M such that $f(\vec{\mathbf{x}}) = M \cdot \vec{\mathbf{x}}$.

$$M = \begin{bmatrix} 2 & 2 & 2 & 6 \\ 2 & 2 & 1 & 3 \\ 1 & 2 & 1 & 3 \end{bmatrix}$$

(d) Determine the rank of M.

$$\Gamma_1 = \frac{1}{2}R_1$$
 $\Gamma_1 = \frac{1}{2}R_1$
 $\Gamma_2 = \frac{1}{3}$
 $\Gamma_3 = \frac{1}{3}R_3 - R_1$
 $\Gamma_4 = \frac{1}{3}R_3 - R_1$
 $\Gamma_5 = \frac{1}{3}R_3 - R_1$
 $\Gamma_6 = \frac{1}{3}R_3 - R_1$
 $\Gamma_7 = \frac{1}{3$

(e) Is the function f one-to-one? Explain.

$$\frac{NO}{\text{rank}(M) = 3 + 4 = \# columns}$$

(f) Is the function f onto? Explain.

6. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 2 & 2 & 0 & 1 \end{bmatrix}$.

(a) Find
$$A^{-1}$$
 and check your result.

$$[A:T_2] = [25:01] \Gamma_2 = R_2 - 2R_1 [01:-21] \Gamma_1 = R_1 - 2R_2$$

$$\begin{bmatrix} 10:5-2\\01:-2 \end{bmatrix} = \begin{bmatrix} I_2:A^{-1} \end{bmatrix}$$

(b) Use your work from part (a) to express A^{-1} and then A as a product of elementary matrices.

$$\Gamma_2 = R_2 - 2R_1$$
 corresponds to multiplication by $E_1 = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$
 $\Gamma_1 = R_1 - 2R_2$ "

 $E_2 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

$$A^{-1} = E_2 E_1$$

$$A = E_1 E_2 = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

(c) Solve the matrix equation AX = B using A^{-1} from part (a). (You must use A^{-1} , not any other method.)

$$AX=B \Rightarrow A^{T}AX=A^{T}B$$

$$\Rightarrow X=A^{T}B = \text{with commutativity.}$$