Essential Derivative Forms for Business and Economics Applications

These (except the first) relate to the power rule:

$$f(x) = c$$

$$f'(x) = 0$$

(c is a constant)

$$f(x) = cx$$

$$f'(x) = c$$

$$f(x) = x^n$$

$$f'(x) = nx^{n-1}$$

 $f(x) = x^n$ $f'(x) = nx^{n-1}$ (n is a real number \neq zero)

$$f(x) = cx^n$$

$$f(x) = cx^n f'(x) = ncx^{n-1}$$

$$f(x) = \sqrt{x}$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

The next are the exponential and logarithmic derivatives (natural and general):

$$f(x) = e^x f'(x) = e^x$$

$$f'(x) = e^{x}$$

$$f(x) = a^x$$

$$f(x) = a^x f'(x) = a^x \ln a$$

$$f(x) = \ln x$$

$$f'(x) = \frac{1}{x}$$

$$f(x) = \log_a x$$

$$f(x) = \log_a x \qquad f'(x) = \frac{1}{x \ln a}$$

The properties of derivatives for sums and differences as well as for constant follow (they are easy to verify):

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

$$[f(cx)]' = cf'(x)$$

Hence, the derivative of a polynomial is the sum of the monomials that it comprises.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 \qquad f'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + a_1 + 0$$

The *chain rule* for differentiation applies when f is *composed* with another function, u.

$$\left[\left(f\circ u\right)(x)\right]'\equiv\left[f(u(x))\right]'=f'(u(x))u'(x)$$

The chain rule is employed in the *u*-substitution forms, where f is a function of u, where u is a function of x. They are analogous to the first set:

$$f(u(x)) = [u(x)]^n$$
 $f'(u(x)) = n(u(x))^{n-1}u'(x)$

$$f(u(x)) = \sqrt{u(x)} \qquad f'(u(x)) = \frac{1}{2\sqrt{u(x)}}u'(x)$$

$$f(u(x)) = e^{u(x)}$$
 $f'(u(x)) = e^{u(x)}u'(x)$

$$f(x) = a^{u(x)} \qquad f'(x) = a^{u(x)}u'(x)\ln a$$

$$f(x) = \ln u(x) \qquad f'(x) = \frac{1}{u(x)}u'(x)$$

$$f(x) = \log_a u(x) \qquad \qquad f'(x) = \frac{1}{u(x) \ln a} u'(x)$$

The properties don't hold for products and quotients of derivatives. For these we need the *product and quotient rules*:

$$\left[f(x)g(x)\right]' = f'(x)g(x) + g'(x)f(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - g'(x)f(x)}{\left[g(x)\right]^2}$$

The analogous u-substitution forms are as you would expect. It's best to do examples and let them develop organically than to formulate.