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Abstract We introduce combinatorial types of planar arrangements of convex bodies,
extending order types of point sets to arrangements of convex bodies, and study their
realization spaces. Our main results witness a trade-off between the combinatorial
complexity of the bodies and the topological complexity of their realization space.
First, we show that every combinatorial type is realizable and its realization space is
contractible under mild assumptions. Second, we prove a universality theorem that
says the restriction of the realization space to arrangements polygons with a bounded
number of vertices can have the homotopy type of any primary semialgebraic set.
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1 Introduction

We introduce a generalization of order type that provides a framework to study planar
arrangements of convex sets and their convex dependencies. The notion we introduce
is closely related to wiring diagrams [8] or primitive sorting networks [20]. It is also
related to double pseudoline arrangements introduced by Pocchiola and Habert [16]
and double allowable sequences introduced by Goodman and Pollack [12]. These
related notions have applications in the study of visibility, transversal, and separation
properties of convex sets [3,15,18,24,25]. Combinatorial type, the generalization of
order type studied here, was fundamental to the authors’ work on generalizations of
the Erdős–Szekeres theorem to arrangements of convex sets in the plane [4,5]. In this
paper, we address the relevant realizability questions.

Two indexed point sets P = {p1, . . . , pn} and Q = {q1, . . . , qn} in the plane are
said to have the same order type when for every triple (i, j, k), the orientation of the
triples pi , p j , pk and qi , q j , qk coincides. Equivalently, a point set P corresponds to
a dual family P∗ of oriented great circles in the sphere by projective duality, and point
sets P and Q have the same order type when the families P∗ and Q∗ subdivide the
sphere in the same way. That is, when there is a self-homeomorphism of the sphere
that sends each cell of P∗ to a corresponding cell of Q∗ and preserves orientations.

More generally, we say that a sign function χ : L3 → {+, 0,−} is an order type
when it satisfies the axioms of rank 3 acyclic chirotopes [2, p. 126], [20, Chap. 10].
Specifically, χ is alternating, satisfies the Grassman–Plücker Relations, is acyclic
(a restatement of Radon’s Partition Theorem in terms of orientations), and is not
identically zero. Order types that satisfyχ(i, j, k) �= 0 for any i, j, k distinct are called
simple, and are equivalent to uniform rank 3 acyclic chirotopes and to Donald Knuth’s
CC-systems. Many geometric properties of point sets (such as convex dependency,
transversal, and separation properties) depend solely on the order type of the points
and not on the actual coordinates, and these axioms have been used to prove theorems
and design algorithms involving such properties [1,2,20,24,25].

Not every order type can be realized by points in the plane, or dually by oriented
great circles in the sphere. However, by the Topological Representation Theorem, any
order type can be realized by a pseudocircle arrangement [7]. That is in the case of
simple order types, by a family of simple oriented closed curves on the sphere such that
each pair of curves intersect at exactly two points, any other curve separates these two
points, and some point on the sphere is to the left of every curve. We may alternatively
define a simple order type to be any subdivision of the sphere by such a pseudocircle
arrangement S = {S1, . . . , Sn}. The orientations χ(i, j, k) can be recovered from this
subdivision by the order Si , S j , Sk appear on the boundary of the region to the left of
all three pseudocircles.

Like simple order types, combinatorial types arefinite combinatorial objects that can
be associated to families of geometric objects and serve as an invariant for properties
that can be defined from their dual objects.Namely, they are associated to arrangements
of convex bodies that satisfy certain genericity conditions. Combinatorial types will
be defined precisely in Sect. 2, but for now we describe their invariant properties in
terms of a duality for convex bodies that is analogous to projective duality for points in
the plane. The dual support curve A∗ of a convex body A in the plane, is the graph of
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Fig. 1 Top: an arrangement A and its common supporting tangents. Bottom: its dual support system A∗

its support function hA : S1 → R
1, hA(θ) := maxp∈A〈θ, p〉 on the cylinder S1 ×R

1,
where S1 is the unit circle and 〈·, ·〉 is the standard inner product; see Fig. 1. In this
way, every arrangement A = {A1, . . . , An} corresponds to the dual support system
A∗ = {A∗

1, . . . , A
∗
n} of curves on the cylinder S1 × R

1 given by the graphs of the
functions {hA1 , . . . , hAn }. In the other direction, not all functions h : S1 → R

1 are
support functions, but we do have the following sufficient conditions due to Blaschke
[13, Lem. 2.2.3].

Proposition 1.1 If h : S1 → R
1 is C2-smooth and h + h′′ > 0, then h is the support

function of a convex planar curve with curvature bounded by 1
h+h′′ . Hence, by adding

a sufficiently large constant to a finite family of smooth functions, we can ensure the
family is the dual support system of an arrangement of convex bodies.

Essentially, the combinatorial type of an arrangement of bodies ct(A) encodes the
subdivision of the cylinder S1 × R

1 by the dual support curves A∗. The definition
of combinatorial type is more technical than its intuitive significance so we postpone
a detailed definition to Sect. 2. The advantage of the technical definition is that it is
completely combinatorial and does not make reference to geometric objects (neither
arrangements of convex bodies nor systems of curves), but only to equivalence classes
of certain sequences of permutations (see 2.2). The following theorem gives the main
invariant property of combinatorial types. One can take the equivalence relation on
arrangements provided by this theorem as an alternative topological definition of
combinatorial type.

Theorem 1.2 Two arrangements of convex bodies A and B have the same com-
binatorial type if and only if their dual systems A∗ and B∗ are related by a
self-homeomorphism of the cylinder that preserves orientation and +∞.

Here, we say that a self-homeomorphism φ : S1 × R
1 → S

1 × R
1 preserves +∞

when for y sufficiently large the second coordinate of φ(θ, y) is positive for all θ .
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0 2π

Fig. 2 Three generic points and their support curves

Equivalently, if C ⊂ S
1 ×R

1 is an oriented curve that wraps once around the cylinder
in the counter-clockwise direction, then so is its image φ(C).

In the case of points, the duality that we defined through support functions is the
usual projective duality renormalized to be on the cylinder. Consequently, two generic
point sets have the same order type if and only if they have the same combinatorial type.
Specifically, a point in the plane can be represented in homogeneous coordinates by a
line inR3, and its dual support curve is the intersection of the orthogonal complement
of this line with the cylinder embedded in R

3. The same relationship holds between
a body in the plane represented by a cone in R

3 and the body’s dual support curve
represented by its polar cone.

1.1 Realizing Order Types

Although combinatorial types of arrangements are more general than simple order
types, we associate an order type to the class of arrangements defined by the fol-
lowing local condition on triples of bodies. We say a triple of bodies is orientable
when it has the combinatorial type of three generic points (Fig. 2), and we say an
arrangement is orientable when it consists of at least three bodies and every triple is
orientable. In the case of an orientable arrangementA, every triple {Ai , A j , Ak} ⊂ A

contributes a single connected arc to the boundary of conv(Ai , A j , Ak), and we define
the orientation of an ordered triple (Ai , A j , Ak) to be positive when the bodies appear
counter-clockwise in the given order on the boundary, and to be negative otherwise.
Grünbaum implicitly observes that the cyclic orderings of the triples of an orientable
arrangement form an order type in his discussion on planar arrangements of simple
closed curves [14, Sect. 3.3].

Most order types cannot be realized by points, and in fact, it is NP-hard to decide if a
given order type can [30]. Having a notion of combinatorial type allows us to approach
questions regarding realizability by bodies rather than points [17]. The smallest non-
realizableorder type is theNon-PappusConfiguration, a configurationof nine elements
that violates Pappus’s Theorem [21,29]. Pach and Tóth showed that the Non-Pappus
Configuration can be realized by an arrangement of segments in the plane [26]. Figure 3
shows a non-realizable order type that can be realized by triangles, Goodman and
Pollack’s “Bad Pentagon” [9], and the authors conjecture that this order type cannot
be realized by segments. In contrast to point sets, we show that any order type, and in
fact any combinatorial type, can be realized by an arrangement of bodies.

Theorem 1.3 The orientations of the triples of any orientable arrangement is a simple
order type. Two orientable arrangements have the same order type if and only if they
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Fig. 3 Two realizations of theBadPentagon.Left: a realization in a topological plane [9].Right: a realization
by convex sets in the Euclidean plane

have the same combinatorial type. And, every simple order type can be realized by an
orientable arrangement.

If we bound the complexity of the bodies, then some simple order types can no
longer be realized. Indeed, we show that simple order types can always be realized by
k-gons, but may require k to be arbitrarily large.

Theorem 1.4 Let kn be the smallest integer for which every simple order type on n
elements can be realized by an arrangement of kn-gons. There are constants c1, c2 > 0
such that

c1
n

log n
≤ kn ≤ c2n

2.

1.2 Realization Spaces

An old conjecture of Ringel claimed that given two point sets with the same order type,
one point set can be continuously deformed to the other while maintaining the order
type [29]. This naturally leads to the study of realization spaces of order types, the set of
all families of points with a fixed order type modulo projectivities. The conjecture can
then be restated as, any non-empty realization space is connected. Ringel’s conjecture
was disproved in the early eighties, and the strongest result in this direction is Mnev’s
Universality Theorem [22,23], which states that for any primary semialgebraic set Z,
there exists an order type whose realization space is homotopy equivalent to Z. Recall
that a primary semialgebraic set is the set of common solutions to some finite list of
polynomial equations and strict inequalities in several real variables. This has lead to
a growing body of work [2,19,27,28,31,32].

The main objective of this paper is to extend the study of realization spaces to
arrangements of bodies of a fixed combinatorial type and exhibit a trade-off between
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the combinatorial complexity of the bodies and the topological complexity of their
realization space. The first indication of this trade-off may be observed from Theo-
rems 1.3 and 1.4, which imply that for general convex bodies the realization space
of any simple order type is non-empty, but this fails for k-gons. We prove two con-
trasting results. First, we show in Theorem 2.4 that Ringel’s intuition is correct in
this generalized context: the realization space of any combinatorial type satisfying
some mild assumptions is contractible; that is, it is non-empty and has no holes of any
dimension. In particular, the set of arrangements (modulo planar rotations) of convex
bodies realizing any fixed simple order type is contractible, and therefore connected.
Second, we show in Theorem 2.5 that if the bodies are restricted to polygons with
at most k vertices, then Mnev’s Theorem generalizes.1 Specifically, we show that for
every k and every primary semialgebraic set Z there is a combinatorial type whose
k-gon realization space is homotopy equivalent to Z.

The proof of Theorem 2.4 provides an explicit deformation retraction to a standard
arrangement, which will be defined for each combinatorial type. The proof of Theo-
rem 2.5 depends onMnev’s Theorem. Specifically, the proof uses a reduction from the
case of k-gons to the case of points by constructing an arrangement of k-gons where
the only obstruction to realizability is that certain vertices must always have the same
fixed order type.

1.3 Relationship to Double Pseudoline Arrangements

Pocchiola andHabert introduced an extension of chirotopes to arrangements of convex
sets based on a similar notion of duality to what is presented here, called double pseu-
doline arrangements [16]. The essential difference is that the dual double pseudoline
of a convex set is defined as the quotient of the dual support curve by the Z2 action
on the cylinder (θ, y) ∼ (−θ,−y). Instead of a curve that wraps monotonically once
around the cylinder, the dual double pseudoline is a curve that wraps monotonically
twice around the Möbius strip. This leads to an extended notion of chirotopes that
provides information about arrangements of convex sets which combinatorial types
do not distinguish, such as disjointness and visibility. On the other hand, combinato-
rial types distinguish convex position of subarrangements and are simpler in certain
respects that are crucial to the analysis in [4,5] and the results of this paper.

1.4 Organization of the Paper

Section 2 gives definitions, states the main theorems of the paper, and clarifies some
issues that were treated vaguely in the introduction. Section 3 deals with realizing
order types, Theorems 1.3 and 1.4; this section conveys the overall theme of the paper,
but in a less technical setting, and involves ideas similar to what will be used in the rest
of the paper. Section 4 proves contractibility, Theorem 2.4. Section 5 proves the topo-
logical invariance of combinatorial type, Theorem 1.2. While Theorem 1.2 is a more

1 Note that Mnev’s Theorem is more specific as it deals with stable equivalence.
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fundamental result, it appears later in the text as it depends crucially on Theorem 2.4.
Section 6 gives the universality construction for convex k-gons, Theorem 2.5. Finally,
Sect. 7 ends with some remarks and open problems.

2 Preliminaries and Main Theorems

2.1 Genericity Assumptions

A common supporting tangent of a pair of bodies is a directed line tangent to each body
such that both bodies are on its left side. In the dual, this corresponds to an intersection
between two support curves. We say that a pair of bodies intersect transversally when
no point of intersection is contained in a common supporting tangent. In the dual this
corresponds to a pair of curves in the cylinder that cross at each point of intersection;
that is, for a pair of curves that are respectively the graphs of functions f1, f2, the
function f1 − f2 has only isolated zeros and changes sign at each zero. By an arrange-
ment we mean a finite indexed non-empty collection of compact convex sets, which
we call bodies, that satisfy following genericity conditions:

– Each pair of bodies intersect transversally.
– No three bodies share a common supporting tangent.
– There are finitely many common supporting tangents.

Analogously, by a system we mean a finite indexed collection of closed curves in
the cylinder S1 × R

1 that are monotonic in the first coordinate and satisfy following
genericity conditions:

– Each pair of curves cross at each point of intersection.
– No three curves share a common point of intersection.
– There are finitely many crossings.

2.2 Combinatorial Type

Let Sm be the symmetric group on m elements and [m] = {1, . . . ,m}. Given i ∈
[m − 1], the adjacent transposition τi ∈ Sm is the permutation interchanging the i’th
and i+1’st entries,

τi (x1, . . . , xm) = (x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xm).

Let H(τi ) = i denote the height of an adjacent transposition. A swap sequence
σ : [N ] → Sm is any sequence of adjacent transpositions such that σN ◦ · · · ◦ σ1 is
the identity permutation.

Fix an index set L of size n. A swap pair (ρ, σ ) on L is a bijection ρ : [n] → L
together with a swap sequence σ : [N ] → Sn . We define an equivalence relation
(

swap∼) on swap pairs as follows. Let (ρ′, σ ′) swap∼ (ρ, σ ) when (ρ′, σ ′) can be obtained
from (ρ, σ ) by performing any sequence of the following two elementary operations:
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ρ = (a, b, c, d )
H (σ ) = (1 , 2, 2, 3, 1, 3)
ρσ = ((b, a), (c, a ), (a, c ), (d, c ), (a, b), (c, d ))

Fig. 4 A system with its swap pair (ρ, σ ) and its incidence sequence ρσ . Note that systems are drawn as
viewed from outside the cylinder, so counter-clockwise is to the right

– a cyclic shift

ρ′ = τσ1(ρ), σ ′
i = σ(i+1 mod N ),

– an independent transposition

ρ′ = ρ, σ ′ = τi (σ ) provided |H(σi ) − H(σi+1)| > 1.

A combinatorial type � on L is the equivalence class � = {(ρ′, σ ′) : (ρ′, σ ′) swap∼
(ρ, σ )} of a swap pair (ρ, σ ).

To define the combinatorial type of a system S, we order the crossings of S lexico-
graphically in S1 ×R

1 where S1 is ordered according to the standard parametrization
by the half-open interval (0, 2π ]. Let ρ be the order of the indices of each curve from
bottom to top before the first crossing of the system. Let σ be the swap sequence cor-
responding to each crossing. That is, let H(σi ) be 1 plus the number of curves below
the i’th crossing of S. Observe that the sequence σi ◦ · · · ◦ σ1(ρ) for i = 0, 1, . . . , N
records the order of the curves in a sweep of the cylinder. The combinatorial type
ct(S) of a system S is the equivalence class of its swap pair (ρ, σ ). The combinatorial
type of an arrangement A is that of its dual system, and by slight abuse of notation,
we write ct(A) = ct(A∗) (Fig. 4).

The incidence sequence ρσ : [N ] → L2 of a swap pair (ρ, σ ) records the ordered
pair of indices transposed by the action of each swap,

ρσ i = (xH(σi )+1, xH(σi )) where x = σi−1 ◦ · · · ◦ σ1(ρ).

Note that the incidence sequence of equivalent swap pairs have the same multi-set of
entries.

The layers of a system are the connected components of the union of curves of the
system. Analogously, the layers of a combinatorial type are the connected components
of the graph on L defined by its incidence sequence. The depth of a combinatorial
type is the number of layers excluding isolated vertices, and the depth 1 case is called
non-layered.

Remark 2.1 Orientable combinatorial types are always non-layered.
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2.3 Realization Spaces

The full realization space R(�) of a combinatorial type � is defined by

R(�) := {A ∈ UL : ct(A) = �},

where UL is the set of all arrangements of bodies indexed by L. The Hausdorff
metric dH on compact subsets of R2 induces a metric on R(�) by taking the maxi-
mum distance between bodies having the same index. That is, for A = {Ai }i∈L and
B = {Bi }i∈L,

d(A,B) = max
i∈L dH (Ai , Bi ).

Remark 2.2 The map that takes a convex body to its support function is an isometry
from the space of convex bodies with the Hausdorff metric to the space of support
functions on S1 with the supremum metric.

Depending on context, it may be convenient to regard realizations of a fixed com-
binatorial type as “the same” when they are related by a projective transformation.
LetA proj∼ B when they are related by an admissible projectivity; that is, an invertible
projective transformation π such that π(Ai ) = Bi for all i ∈ L and π is bounded and
preserves orientation on the convex hull of

⋃
A. The (projective) realization space,

which we may simply call the “realization space”, is the quotient space

R̃(�) := R(�)/ proj∼ .

By a k-gon we mean a convex polygon with at most k vertices. The full k-gon
realization space is given by

Rk(�) := {A ∈ R(�) : ∀i ∈ L, Ai is a k-gon}.

Similarly, we have the (projective) k-gon realization space R̃k(�) := Rk(�)/ proj∼.

Remark 2.3 By considering the direction of some line 
 passing through an arrange-
ment A, the admissible projectivities of A factor into a contractible set of projective
transformations fixing the direction of 
 and rotations of the plane SO(2). As such,
R(κ) is homotopic to R̃(κ) × S

1.

We now state the main theorems on realization space of arrangements of convex
bodies.

Theorem 2.4 If � is a non-layered combinatorial type (in particular, if � cor-
responds to a simple order types), then its realization space R̃(�) is contractible.
Moreover, if � has depth d > 1, then R̃(�) is homotopic to a product of d−1 circles.

Theorem 2.5 For every primary semialgebraic set Z and every positive integer k,
there exists a combinatorial type � such that its k-gon realization space R̃k(�) is
homotopic to Z.
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3 Realizing Order Types

3.1 Orientability and Order Types

We start by showing a bijective correspondence between orientable arrangements and
simple order types.

Proof of Theorem 1.3 The Topological Representation Theorem gives a bijective cor-
respondence between simple order types χ and equivalence classes of uniform acyclic
pseudocircle arrangements on the sphere S2. We extend this bijection to equivalence
classes of orientable arrangements by mapping the dual support systems to pseudocir-
cle arrangements. Note that a positive orientation on the sphere is chosen; if we were
to forget this orientation, then each equivalence class of pseudocircle arrangements
would correspond to the pair {χ,−χ}.

LetA = {A1, . . . , An} be an orientable arrangement. Let φ : S1 ×R
1 → S

2 be the
compactification of the cylinder defined by adding one point p+∞ at +∞ and another
point p−∞ at −∞ where (θ, y) → p±∞ ∈ S

2 as y → ±∞. The image of the dual
support system φ(A∗) = {φ(A∗

1), . . . , φ(A∗
n)} is now a uniform acyclic pseudocircle

arrangement; φ(A∗) is a uniform pseudocircle arrangement by the genericity assump-
tions and φ(A∗) is acyclic since the region of cylinder that is above every curve ofA∗
is now to the left of every curve of φ(A∗).

For the other direction, let S = {S1, . . . , Sn} be a uniform acyclic pseudocircle
arrangement, and let p+∞ be a point to the left of each curve and p−∞ be a point to
the right of each curve. Pseudocircle arrangements can be swept, meaning a path γt
from the point p−∞ to the point p+∞ can be continuously deformed while keeping its
end-points fixed such that it passes through all other points on the sphere exactly once
returning to its original position and it always intersects each pseudocircle at exactly
one point [10, Thm. 2.9]. This defines a homeomorphism from S

2 \ {p+∞, p−∞}
to the cylinder such that the image of each pseudocircle is the graph of a function
fi : S1 → R

1. Each of the fi can then be approximated by a smooth function hi while
preserving their order above each point on the circle,

∀θ ∈ S
1, fi1(θ) ≤ · · · ≤ fin (θ) ⇔ hi1(θ) ≤ · · · ≤ hin (θ).

By Proposition 1.1, we may now assume the hi are support functions of an arrange-
ment A. With this, φ(A∗) is a pseudocircle arrangement of the same order type
as S.

An orientable arrangement A now has a simple order type given by φ(A∗), and
the orientations of a triple Ai , A j , Ak are given by the order φ(A∗

i ), φ(A∗
j ), φ(A∗

k)

appear on the boundary of the region to the left of each curve. By Theorem 1.2 two
orientable arrangements have the same combinatorial type if and only if they have
the same order type. And, every simple order type can be realized by an orientable
arrangement. ��
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3.2 Counting Arrangements of Polygons

Herewe give an upper bound on the number of combinatorial types that can be realized
by k-gons, and bounds on the value of kn needed to realize all simple order types on
[n] by kn-gons. Our results are based on the following.

Theorem 3.1 (Goodman and Pollack [11]) Let t (n) denote the number of distinct
order types (not necessarily simple) on [n] that can be realized by points. For some
constants c1, c2,

24n log n+c1n ≤ t (n) ≤ 24n log n+c2n .

Theorem 3.2 (Felsner and Valtr [6]) Let tot(n) denote the number of distinct simple
order types on [n].

20.188n
2 ≤ tot(n) ≤ 20.6571n

2
.

Theorem 3.3 Let tk(n) denote the number of distinct combinatorial types on [n] that
can be realized by k-gons. For some constant c,

tk(n) ≤ 2ckn(log n+log k).

Proof Since the combinatorial type of an arrangement of n k-gons is determined by the
order type of the kn vertices of the arrangement, we have the inequality, tk(n) ≤ t (kn).
Specifically, for every combinatorial type � that can be realized by k-gons, fix a
realization by k-gons A = {A1, . . . , An}. Then, for each k-gon As , fix a labeling of
vertices so that As is the convex hull of a point set {ps1, . . . , psk}. Now associate the
order type of the points {p11, . . . , pnk } to �. In this way, we define an injective map
from the set of combinatorial types on [n] that can be realized by k-gons to the set of
order types on

{(1
1

)
, . . . ,

(n
1

)}
that can be realized by points. The upper bound on the

number of combinatorial types now follows from Theorem 3.1. ��
Theorem 3.4 A combinatorial type � with N common supporting tangents can be
realized by N-gons.

Proof Recall that the wiring digram of a sequence of adjacent transpositions σ is a
family of polygonal paths that cross according to σ [8]. Informally, we will define an
arrangement of N -gons by “wrapping” a wiring diagram of σ around a large circle.

Let (ρ, σ ) ∈ � and πt = σt ◦ · · · ◦ σ1. Choose r sufficiently large and let
pi,t = (2π t/N ; r + π t

−1(i)) in polar coordinates, so that each point set Pi =
{pi,1, . . . , pi,N } for i ∈ [n] is in convex position. For this, r ≥ (1 − cos(2π/N ))−1

would suffice. Let Ai = conv(Pi ). Since the support functions hi of the Ai now satisfy

hρπ t
−1(1)(θt ) < · · · < hρπ t

−1(n)(θt )

for θt = 2π t/N with only once crossing between θt and θt+1, the swap pair of the
arrangementA = {A1, . . . , An} is (ρ, σ ). Hence,A is an arrangement of N -gons with
combinatorial type �. ��
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12 Discrete Comput Geom (2017) 58:1–29

Proof of Theorem 1.4 The upper bound follows immediately from Theorem 3.4 and
the observation that an orientable arrangement on [n] always has N = n(n − 1)
common supporting tangents. For the lower bound, observe fromTheorems 3.2 and 3.3
that for any fixed k, the number of simple order types grows faster than the number of
combinatorial types that can be realized by k-gons. Specifically, there is some constant
c1 such that if k ≤ c1

n
log n then tk(n) < tot(n), which implies that some simple order

type on [n] cannot be realized by k-gons. ��

4 Contractibility

To show contractibility, we construct a standard arrangement of convex bodies
for each combinatorial type by defining its dual support system. We then show
that the full realization space R(�) is equivariantly homotopic to a circle S

1 by
defining a deformation retraction to the subspace of rotated copies of the standard
arrangement. By equivariantly homotopic we mean that the corresponding homo-
topy maps commute with SO(2). We then pass to the (projective) realization space
R̃(�) by identifying arrangements related by admissible projectivities. Since rota-
tions are admissible projectivities, this defines a deformation retraction from R̃(�) to
a point.

The deformation retraction from R(�) to a circle will proceed in two steps; see
Fig. 7. First in Lemma 4.2, we deform the support system of a given arrangement to
a system of the same combinatorial type that depends only on the (angular) position
of each crossing. We can then consider just the positions of the crossings and ignore
the rest of the geometry of the system. Second in Lemma 4.5, we move the crossings
to a set of standard positions that depend only on: the given combinatorial type and
the position of a certain crossing that we fix. The set of possible standard systems we
get in the end is parametrized by the position of this fixed crossing, which defines
an embedding of the circle in R(�). The first deformation retraction depends on the
following remark.

Remark 4.1 For any pair of convex bodies A and B, (A + B)∗ = A∗ + B∗ with
Minkowski addition on the left and addition of the support functions defining the
curves on the right. And, for t ≥ 0, (t A)∗ = t (A∗). Hence, the set of all support
functions is a convex cone. That is, if h1 and h2 are support functions, then so is
t1h1 + t2h2 for ti ≥ 0. Note however, that the set of dual support systems of a fixed
combinatorial type is not a convex set.

4.1 Support Configurations

The support configuration of an arrangement A indexed by L is a labeled vector con-
figuration sc(A) ⊂ L2 × S

1 which contains a triple (i, j, θ) if bodies Ai , A j have a
common supporting tangent line 
 that first meets Ai and then meets A j and has out-
ward normal vector θ .We say labels (i, j), (i ′, j ′) aredisjointwhen {i, j}∩{i ′, j ′} = ∅.
Note that a unit vector θ may appear in multiple elements of sc(A)with disjoint labels.
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Fig. 5 From top to bottom: (1) The dual support system of an arrangement A of combinatorial type �;
comparewith Fig. 1. (2) The system α∗ sc(A) of Lemma 4.2, which depends only on the angular positions of
the crossings ofA∗. (3) The system α∗W (�, θ, δ) obtained by fixing the marked crossing of α∗ sc(A), and
rotating all other crossings clockwise. (4) The standard system α∗W (�, θ) of Lemma 4.5, which depends
only on the angular position θ of the fixed crossing and �

Dually, sc(A) corresponds to the crossings ofA∗. Specifically, (i, j, θ) ∈ sc(A)when
curves A∗

i and A∗
j cross at θ with A∗

i crossing downward and A∗
j crossing upward.

That is, the respective support functions fi , f j of Ai , A j are equal at θ and f j − fi is
increasing at θ (Fig. 5).

Observe that the support configuration of an arrangement determines the combi-
natorial type of that arrangement. For a given combinatorial type �, we will define
its support configuration space V(�), which will turn out to be the set of support
configurations of all arrangements realizing �. We first define the set of labeled con-
figurations V(ρ, σ ) corresponding to a given swap pair (ρ, σ ). Recall that ρσ records
the ordered pairs of indices transposed by σ acting sequentially on ρ. Observe that if
(ρ, σ ) is the swap pair of a system, then ρσ i for i ∈ [N ] is the labeling of the i-th
crossing of the system. Recall also that we order S1 by the parametrization by (0, 2π ].
Let

V(ρ, σ ) :=
{{

(ρσ i , θi ) : i ∈ [N ]} : θi ∈ S
1, θi ≤ θi+1,

θi = θi+1 ⇒ |H(σi ) − H(σi+1)| > 1

}
,

V(�) :=
⋃

(ρ,σ )∈�

V(ρ, σ ).

Note that a vector θ ∈ S
1 might appear multiple times in V(�) with different labels

provided the pairs of indices in the labels are disjoint.
We define a metric on V(�) as follows. For a given support configuration X and a

given ordered pair of indices (i, j) ∈ (L
2

)
, let X(i, j) := {θ ∈ S

1 : (i, j, θ) ∈ X}. For
two support configurations, X,Y ⊂ L2 × S

1,
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d(X,Y ) = max
(i, j)∈(L2)

dH (X(i, j),Y(i, j)),

where the distance between two direction vectors is given by their angle and dH is the
corresponding Hausdorff metric on sets.

Lemma 4.2 For any combinatorial type �, the full realization space R(�) is non-
empty and equivariantly homotopic to the support configuration space V(�).

Proof For A ∈ R(�) with swap pair (ρ, σ ), we have sc(A) ∈ V(ρ, σ ) ⊂ V(�), so
assigning each arrangement to its support configuration defines a map sc : R(�) →
V(�), which will be one direction of the homotopy equivalence.

For the other direction, we define an embedding α : V(�) → R(�). For each
labeled configuration V ∈ V(�), we construct a system of curves α∗(V ) =
{A∗

i : i ∈ L} where A∗
i = fi (S1), fi : S1 → R

1, and show that α∗(V ) is the dual
support system of an arrangement α(V ) that has support configuration V . The system
α∗(V ) that we construct may be regarded as a smooth analog of Goodman’s wiring
diagram [8].

Fix V ∈ V(�), let Vi ⊂ S
1 denote the vectors of V with labels involving i , and let

δ be the minimum angular distance between any two vectors of V with non-disjoint
labels. For v = (i, j, θ) ∈ V define the open arc �(v) := (θ − δ/2, θ + δ/2) ⊂ S

1.
Now define fi to be constant on the complement of the arcs �(Vi ), and to smoothly
increase or decrease by ±1 symmetrically about θ in each arc �(v) according to
the label on v ∈ Vi ; that is, fi increases on �(v) if ( j, i, θ) ∈ V and decreases if
(i, j, θ) ∈ V for some j .2 We claim that each fi is well defined up to an additive
constant, and these constants can be chosen so that each pair fi , f j coincides on
Vi ∩ Vj and nowhere else.

Since σN · · · σ1 is the identity permutation, each fi increases the same number of
times as it decreases on arcs in �(Vi ), so traversing once around S

1 results in no net
change in the value of fi , which is therefore well defined up to an additive constant.

Let c be some constant to be determined later. For ξ ∈ S
1 ordered by (0, 2π ],

let j (ξ) be the largest integer for which θ j (ξ) < ξ where θ j is the angle of the
j’th vector of V . We will show that letting fi (ξ) = c + σ j (ξ) · · · σ1ρ(i) on the
complement of �(Vi ) satisfies our claim. For consecutive angles θa, θb ∈ Vi , the
labels on the vectors of V in the interval [θa + δ/2, θb − δ/2] do not involving i , so
i remains fixed by the corresponding adjacent transpositions of the swap sequence
σ j (θa+δ/2)+1, . . . , σ j (θb−δ/2), which implies fi is constant on this interval. Since the
fi are defined to increase or decrease on �(Vi ) according to the action of the swap
sequence, this completely determines a smooth function fi . Since the fi increase or
decrease symmetrically in each arc of �(Vi ), each pair fi , f j coincide exactly on
Vi ∩ Vj .

To fix the constant c, let

min
(i,θ)∈L×S1

( fi (θ) + f i
′′(θ)) = 1.

2 The definition of fi on �(v) is irrelevant as long as fi is C
2-smooth, monotonic, symmetric about θ ,

and varies continuously with respect to V . A cubic spline would suffice for this.

123



Discrete Comput Geom (2017) 58:1–29 15

d
c

b
a

20 π

b c c b
a a
a a d d
c cd

c
b
a

d
c

b

a

20 π

a a
c c b b
a a d d
c cd

c

b
a

Fig. 6 Left: a system and its associated tableau of local sequences �. Right: the tableau bump(�, {a, b})
and a corresponding system

By Proposition 1.1, the system α∗(V ) defined by the functions fi is the dual support
system of an arrangement α(V ) ∈ R(�) that is uniquely and continuously determined
by V ∈ V(�), and sc(α(V )) = V . This gives us a subspace α(�) := {α(V ) : V ∈
V(�)} ⊂ R(�) that is homeomorphic to V(�) = sc(R(�)). For A ∈ R(�) define
At := tα(sc(A)) + (1 − t)A for 0 ≤ t ≤ 1 by Minkowski addition on each body of
the arrangement. Since sc(A) = sc(α(sc(A))) and, as we linearly interpolate between
two systems with the same crossings, the crossings remain fixed by Remark 4.1,
sc(At ) is constant for all t ∈ [0, 1]. Thus, α(�) is an equivariant deformation retract
of R(�). ��

4.2 Local Sequences and Associated Tableau

Wenow introduce an encoding of the combinatorial type extending the local sequences
of a point set. This encoding will be used in several proofs, including in later sections
of the paper.

For a system S, the local sequence λi = (λi,1, . . . , λi,ni ) of i ∈ L lists the indices
of the curves that Si crosses ordered by (0, 2π ]; see Fig. 6. Analogously for a pair
(ρ, σ ) ∈ �, the local sequence λi lists the indices λi, j appearing together with i as
part of a pair (λi, j , i) or (i, λi, j ) in the incidence sequence ρσ . The associated tableau
� of (ρ, σ ) is the tableau whose rows are the local sequences for (ρ, σ ) ordered by
ρ from bottom to top. We say � is a tableau representation of the combinatorial type
�. The local sequences and associated tableau of a system or arrangement are that of
its swap pair.

Like in the definition of combinatorial type, we define an equivalence relation on
associated tableau. We say a pair j, k ∈ L are adjacent in a tableau � with rows λi
when

λ j = (k, λ j,2, . . . , λ j,n j ) and λk = ( j, λk,2, . . . , λk,nk ).
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In this case, bumping { j, k} sends � to the tableau �′ = bump(�, { j, k}) with rows

λ′
i =

⎧
⎨

⎩

(λ j,2, . . . , λ j,n j , k), i = j,
(λk,2, . . . , λk,nk , j), i = k,
λi , i �= j, k

and the order of rows j , k in the tableau is reversed.

Remark 4.3 Apair of tableaux represent the same combinatorial type if and only if one
can be obtained from the other by a sequence of bumps, since cyclic shifts correspond
to bumps and independent transpositions do not change the associated tableau.

For a pair of tableau �1,�2 with respective rows λ1i , λ
2
i appearing in the same

order ρ, let �1 · �2 denote row-wise concatenation. That is, �1 · �2 has rows

λi = (
λ1i,1, . . . , λ

1
i,n1,i , λ

2
i,1, . . . , λ

2
i,n2,i

)
.

The periodicity p of a tableau � is the largest p such that � is a p-fold concatenation
of a tableau �′,

� = �′ · · · �′
×p

.

We call the tableau �′, the period of �. We say � is non-periodic when p = 1. The
periodicity of a combinatorial type � is that of any tableau representing �, which is
well defined by the following lemma.

Lemma 4.4 The period of a tableau is unique, and all tableau representing a fixed
combinatorial type have the same periodicity.

Proof For uniqueness, just observe that row λ′
i of �′ consists of the first ni/p entries

of row λi of � where ni is the length of λi . Now consider a pair of tableau �1 and
�2 = bump(�1, {i, j}) representing the same � with periodicities p1, p2 respec-
tively, and let �′

1 be the period of �1. Then �2 is the p1-fold concatenation of
�′

2 = bump(�′
1, {i, j}). Therefore, p2 ≥ p1. Since any tableau representing �

can be obtained from any other tableau representing � by a sequence of bumps, all
tableaux have the same periodicity. ��

4.3 Standard Configurations (Non-periodic)

For non-periodic non-layered combinatorial types�,wewill construct a standard set of
labeled vector configurationsW(�) ⊂ V(�) parametrized by S1. Here we arbitrarily
choose a standard configuration similar to the “compressed form” given in [20, p. 31].
For layered combinatorial types, we can apply this construction independently to each
layer. The periodic case will be dealt with in the next subsection.

We first construct a labeled vector configuration W (�, θ, δ) for θ ∈ S
1 and

δ > 0 sufficiently small as follows. Let�min be the lexicographically minimal tableau
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representing � for which there exists exactly one adjacent pair. By Lemma 4.5 below,
such a tableau always exists, provided � is non-layered. We will define a sequence of
configurations Wt recursively starting from t = 0. To start, set �0 = �min, ξ0 = θ ,
W0 = ∅. Let {(it,1, jt,1), . . . , (it,mt , jt,mt )} be the set of all adjacent pairs in�t ordered
according to the rows of �t . Let

Wt+1 = Wt ∪ {(it,1, jt,1, ξt ), . . . , (it,mt , jt,mt , ξt )},
ξt+1 = ξt + δ, and let �t+1 be the tableau obtained from �t by interchanging the
corresponding pairs of rows and deleting the first entry from each of these rows. Note
that this is similar to a bump except that initial entries are deleted instead of being
moved to the end of their respective rows. Eventually, �T = ∅ for some minimal T .
Let W (�, θ, δ) = WT . Finally, let

W(�) = {W (�, θ, 2π/N ) : θ ∈ S
1}.

Lemma 4.5 For any non-layered combinatorial type�, V(�) is equivariantly homo-
topic toW(�) � S

1.

Proof (� non-periodic) For each V ∈ V(�), we will inductively define a sequence
of partitioned vector configurations Wk ∪ Rk ∈ V(�) starting from k = 1, and maps
ψk : V(�) × [0, 1] → V(�) that perform each step of the induction continuously.
Together, these maps will define an equivariant deformation retraction from V(�) to
W(�).

Let � (y, x) denote the angular distance from x to y in the counter-clockwise direc-
tion, and as in the proof of Lemma 4.2, let δ be the minimum angular distance
between vectors of V that have non-disjoint labels, so that for all x, y ∈ Vi we
have 0 < δ ≤ � (y, x) < 2π . Fix a labeled vector v ∈ V , and set W1 = {v} and
R1 = V \ {v}. We will continuously deform V to a configuration W (v). Later we
will make a choice of v = ṽ that depends continuously on the initial configuration
V ∈ V(�).

At each step, rotate the sub-configuration Rk clockwise by a continuous rotation
φk,t : [0, 1] → SO(2), φk,0 = id, that decreases angular distances among the vec-
tors of Wk ∪ φk,t Rk with non-disjoint labels, until reaching the minimal rotation
φk = φk,1 such that there is some x ∈ Rk and y ∈ Wk with non-disjoint labels and
� (φk x, y) = δ. Let X be the set of all such x ∈ Rk , let Wk+1 = Wk ∪ φk X and
Rk+1 = φk(Rk \ X), and continue inductively until RK = ∅. Since � is non-layered,
such a pair x, y exists provided Rk �= ∅, and since each step removes elements
from Rk , the process terminates in a configuration WK = WK (v) such that for every
x ∈ WK \ {v} there exists a y ∈ WK such that � (x, y) = δ and x, y have non-
disjoint labels; see Fig. 7. Let ψk(V, t) = Wk ∪ φk,t Rk for k ≤ K . Since vectors of
ψk(V, t) are only rotated through other vectors with disjoint labels, this process only
changes the swap pair of a configuration by elementary operations, which implies
ct(Aψk (V,t)) = ct(AV ). Finally, let ψK+1(V, t) start from ψK+1(V, 0) = WK and
continuously scale the angular distance of each vector from v by sending a labeled
vector at u to ut where � (u, v) = rδ, � (ut , v) = trδ′ + (1 − t)rδ, and δ′ = 2π/N .
Let W (v) = ψK+1(V, 1).

123



18 Discrete Comput Geom (2017) 58:1–29

0 2πv

0 2πv

Fig. 7 Sending V (top) to its compressed form WK (v) (bottom)

We now define ṽ = ṽ(V ) in terms of the configurations {W (v) : v ∈ V }.
If we rotate W = W (v) by φ such that that there are no elements of φW in
the arc (0, φv) ⊂ S

1, then the associated tableau � of φAW will have exactly
one adjacent pair, which is given by the support information of v ∈ V . Since
� is non-periodic, there is a unique choice of v = ṽ such that � = �min.
With this, our final vector configuration becomes W = W (ṽ) = W (�, θ, 2π/N ),
where ṽ = (i, j, θ), and the desired equivariant deformation retraction is
ψK+1 · · · ψ1. ��

4.4 Standard Configurations (Periodic)

To define W(�) in the periodic case, set �0 to be the period of �min and otherwise
proceed as in the non-periodic case to obtain a configuration WT at the minimal T
such that �T = ∅. Let

W (�, θ, δ) = {(i, j, ξ + 2πk/p) : (i, j, ξ) ∈ WT , k ∈ [p]}

and defineW(�) as above. Note that althoughW(�) is homeomorphic to S1, the map
S
1 → W(�), θ �→ W (�, θ, 2π/N ) is a p-to-1 covering.

Proof of Lemma 4.5 (� periodic) We proceed the same way as in the non-periodic
case, except instead of fixing a single vector v = ṽ, we start by fixing all vec-
tors v1, . . . , vp = (i, j, ξ1), . . . , (i, j, ξp) corresponding to �min. After continuously
rotating certain vectors clockwise and then continuously rescaling the angular dis-
tance of each vector from the corresponding vi as above, we obtain ψK+1(V, 1) =
W (�′, ξ1, δ′) ∪ · · · ∪ W (�′, ξp, δ′) where �′ is the combinatorial type represented
by the period �′

min of �min and δ′ = 2π/N . Note that �′
min is the lexicographically

minimal tableau representing �′ with exactly one adjacent pair. Now, rotate each sub-
configuration W (�′, ξi , δ′) for which � (ξi , ξi−1) > 2π/p clockwise continuously by
φi,K+2,t until the vectors θi = φi,K+2,1ξi are spaced evenly around the circle, to obtain
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ψK+2(V, 1) = W (�, θ1, δ
′) = W (�′, θ1, δ′) ∪ · · · ∪ W (�′, θp, δ′) ∈ W(�). ��

4.5 Contractibility

Proof of Theorem 2.4 In the depth 1 case, the full realization spaceR(�) is homotopic
to the space of support configurations V(�) by Lemma 4.2, which is homotopic to
S
1 by Lemma 4.5. Since these homotopies are equivariant, by Remark 2.3, R̃(�) is

contractible.
In the depth d > 1 case, partition � into layers � = �1 ∪ · · · ∪ �d . If we restrict

a support configurations of � to vectors with labels in a layer �i , then we obtain
a support configuration of �i . Hence, V(�) ⊂ V(�1) × · · · × V(�d). In the other
direction, if we are given support configurations Vi ∈ V(�i ), then

⋃
i∈[d] Vi ∈ V(�).

Hence V(�) = V(�1) × · · · ×V(�d), and therefore by Lemmas 4.2 and 4.5, R(�) is
homotopic to a product of d circles, and again by Remark 2.3, R̃(�) is homotopic to
a product of d−1 circles. ��

5 Topological Invariance

In this section, we prove that combinatorial type is a complete topological invariant of
systems of curves on the cylinder. Specifically, we show that the associated tableaux
of two systems are related by a sequence of bumps if and only if the systems are
related by a self-homeomorphism of the cylinder that preserves orientation and +∞.
Theorem 1.2 then follows from Remark 4.3.

For 0 ≤ θ < 2π , let ζθ = {θ}×R
1. We call a curve γ : R → S

1×R
1 a cut-path of

a system Swhen γ diverges to±∞, is oriented from−∞ to+∞, intersects each curve
of S exactly once, and intersects each curve one at a time away from any crossings of
S and away from ζ0. We associate to each component γ ′ of γ \ ζ0, the region of the
cylinder to the left of γ ′ and bounded by ζ0. We assume every component of γ \ ζ0
intersects some curve of S; otherwise we can perform an isotopy of the cylinder that
preserves S and removes any components that do not intersect S. Let M = M(S, γ )

denote the sum of the number of curves intersecting each region plus the number of
crossings in each region. Note thatM ≥ n := |L|, since a cut-path intersects all curves
and defines at least one region.

We define two classes of isotopies of the cylinder, calledmoves, sending one system
and cut-path to another, while preserving the combinatorial type of the system; see
Fig. 8.

Remark 5.1 Move (i) removes an crossing from one or more regions and changes the
associated tableau of the system by bumping the pair of indices of the curves that cross
at that crossing. While move (ii) decreases the number of curves intersecting some
region, possibly deleting that region, the move does not change the associated tableau.
Thus, these moves decrease the value of M and preserve combinatorial type.

Proof of Theorem 1.2 By Theorem 2.4 for any pair of systems S, T of the same com-
binatorial type, there is a path in R(�) from S to T, so there is an isotopy sending S

to T.
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Fig. 8 The possible moves on a
system and cut-path: (i) If a pair
of curves cross each other after
ζ0 before crossing any other
curve or the cut-path, then
deform the curves to send this
crossing through ζ0 in the
clockwise direction. (ii) If a
curve crosses the cut-path before
intersecting any other curve and
the cut-path intersects ζ0 either
(a) immediately after or (b)
immediately before this
crossing, then deform the
cut-path by sending this crossing
through ζ0 in the clockwise
direction

0
γ

(i)

0
γ

0

γ

(ii.ab)

0

γ

0

γ

(ii.a)

0

γ

0

γ

(ii.b)

0

γ

For the other direction, suppose we are given a pair of systems S, T on L and an
orientation preserving homeomorphism ϕ : S1 ×R

1 → S
1 ×R

1 that preserves +∞.
We will find a sequence of bumps sending the associated tableau of T to that of S.
Choose some ε > 0 sufficiently small so thatM(S, ζε) = n. That is, ζε is a cut-path for
S with a single region that does not contain any crossings. And, choose ε generically
so that η := ϕ(ζ0) is a cut-path of T. We will perform a sequence of moves starting
from (T, η).

Since each move decreases the value of M and M ≥ n, we can perform a sequence
of moves on (T, η) until no more moves are possible. If some region contains an
crossing then we can perform move (i), and if there are multiple regions then we can
perform move (ii). Therefore, we obtain a system U with associated tableau � and
cut-path γ with a single region that contains no crossings. The local sequence of a
curveUi ∈ U is given by the order in whichUi crosses the other curves after crossing
γ , which is the same as that of Si ∈ S. The rows of � are the local sequences of U
in the order γ crosses the curves of U, which is the same as order as that of S. Hence
U and S have the same the associated tableau �. Furthermore, � is obtained from
the associated tableau of T by preforming the sequence of bumps corresponding to
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the above sequence of moves. Therefore U, T, and S all have the same combinatorial
type. ��

6 Universality

In this section,weprove auniversality theorem for arrangements of k-gons.Weactually
prove the following slightly more specific result.

Lemma 6.1 For any k order types χ1, . . . , χk on [n], where at least two are distinct,
there is a combinatorial type � on [n] such that its k-gon realization space R̃k(�) is
homotopy equivalent to R̃1(χ1) × · · · × R̃1(χk).

Theorem 2.5 follows immediately.

Proof of Theorem 2.5 Fix a basic primary semialgebraic set Z and k > 1. Let χ1 be
the order type of the Mnëv point set with point realization space homotopic to Z. Let
χ2, . . . , χk all be the order type of n points in convex position. Note that the point
realization space of n points in convex position is contractible. With this, the k-gon
realization space of � from Lemma 6.1 is also homotopic to Z. ��

To show Lemma 6.1, we construct a combinatorial type � such that for every
realization A of � by k-gons, the vertices of each k-gon can be labeled. That is, each
vertex can be uniquely identified using only information encoded in the combinatorial
type. Note that this is not possible in general, as combinatorial type does not provide
information about individual vertices directly. Furthermore, we construct � so that
the order type of the vertices ofA is the same in every realization and each χi appears
as a subset of the vertices.

We define � in two ways: in the primal we construct an arrangement of k-gons,
then in the dual we construct a system of curves. We show in Lemma 6.4 that these
two constructions define the same combinatorial type. We will use both the primal and
the dual construction in the proof of Lemma 6.1.

Before defining�, index theorder typesχi so that the cyclic orderingχ1, χ2, . . . , χk,

χ1, . . . is not periodic with period smaller than k. This is possible by the assumption
that there are at least two distinct order types.

6.1 The Primal Construction

The primal constructionA depends on certain arbitrary choices that will not affect the
combinatorial type. Assume for the primal construction that each χi is realizable; the
non-realizable case is defined by the dual construction only.

Let A0 be an arrangement of 2k points in convex position denoted by a11, a
n
1 , a12,

an2 , . . . , a
1
k , a

n
k in counter-clockwise order, such that the lines 
i spanning ani and a1i+1

bound a convex k-gon B.3 Observe that B \ conv(A0) consists of k triangular regions.
We constructA by placing a point set realizing one of the χi in each of these traingular

3 Here subscripts are indices over Zk , so in particular 
k is the line spanning ank and a11 .
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χ 1

χ 2

χ 3

χ 4

a61

a62

a63

a64

a11

a12

a13

a14

p11

p21

p31

p41

p51

p61

q61q11

Fig. 9 The point set P1 on the left is mapped to points on the right by the projective transformation
determined by p11 �→ a11 , q11 �→ a12 , p61 �→ a61 , q61 �→ a64

regions, then we define the k-gons As to have vertices consisting of one point from
each region; see Fig. 9 for an example with n = 6, k = 4.

Let χi be defined on the index set
{(1

i

)
, . . . ,

(n
i

)}
, and let Pi = {p1i , . . . , pni } be

a realization of χi . Furthermore, let χi be indexed so that p1i and p2i appear on the
boundary of the convex hull of Pi and the local sequence of p1i is p2i , p

3
i , . . . , p

n
i .

That is, the angles θ si at p1i from the semiline through p2i to the semiline through psi
are increasing in the counter-clockwise direction, 0 = θ2i < θ3i < · · · < θni < π .
Note that this implies pni is also on the boundary of the convex hull of Pi , which we
will call the convex boundary for short. Now augmentPi by two points as follows. Let
Qi = Pi ∪{q1i , qni } such that pni , q1i , qni , p1i appear consecutively in counter-clockwise
order on the convex boundary of Qi and no line through any two points of Pi separates
the points q1i , q

n
i , p1i . Note that this uniquely determines the order type of Qi ; see

Fig. 9 (left).
Now define projective transformations φi such that

φi (q
n
i ) = ani−1, φi (p

1
i ) = a1i , φi (p

n
i ) = ani , φi (q

1
i ) = a1i+1,

and let

P = {a11, a21 , . . . , a12, . . . , ann }

where asi = φi (psi ). Note that φi sends Qi into B and preserves the orientation
of q1i , q

n
i , p1i , so Qi

proj∼ {a1i , . . . , ani , ani−1, a
1
i+1} with appropriate relabeling. Let

A = {A1, . . . , An} where As = conv({as1, as2, . . . , ask}).
Finally, let � denote the combinatorial type of A, let χ denote the order type of P,

and let ψi denote the order type of Qi .
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6.2 Path Systems

We call the graph of some indexed family of functions defined over an interval a
path system. We say two path systems are equivalent when they are related by an
orientation preserving self-homeomorphism of the plane that also preserves indices
and the orientations of the paths. We will always assume that the end-points of a path
system are all distinct, and that the paths satisfy the same genericity conditions given in
Sect. 2.1 for systems of curves. For path systemsL1,L2 over intervals I1, I2 ⊂ Rwith
the same number of paths, the concatenation L1 · L2 is the path system obtained by
identifying the right edge of I1 ×Rwith the left edge of I2 ×R by a homeomorphism
sending the right end-points of L1 to the left end-points of L2. Here indices must
be dealt with appropriately. If the left end-points of L1 appear in the same order as
the right end-points, then we may form a system of curves �L1 by identifying the
left and right edges of I1 × R by a homeomorphism that identifies the left and right
end-points of each path inL1. Let�L1 denote the path system obtained by flippingL1
vertically by the map (x, y) �→ (x,−y). Given an order type χ , we say a path system
L is a pseudoline representation of χ when S = �(L · �L) is an orientable system
with order type χ as in Theorem 1.3. Note that classes of equivalent path pseudoline
representations of χ bijectively correspond to tableau representations of χ . We say an
element i is on the convex boundary of χ when the corresponding curve Si appears
on the upper envelope of a corresponding system S.

Remark 6.2 For each element i on the convex boundary of an order type χ , there is
a unique class of equivalent pseudoline representations L where Li starts as the top
most path and crosses all other paths, thereby going to the bottom, before any other
crossings occur.

6.3 The Dual Construction

Let χi be an order type on elements
{(1

i

)
, . . . ,

(n
i

)}
indexed as in the primal construc-

tion, and letLi be a pseudoline representation ofχi with paths L1
i , . . . , L

n
i such that L

1
i

starts at the top and crosses all other paths first as in Remark 6.2. LetC = {C1, . . . ,Ck}
be the dual system of k points in convex position indexed in counter-clockwise order,
and observe that each curve Ci appears exactly once on the upper envelope and once
on the lower envelope of C. Let S be a system of curves where each curve Ci ∈ C is
replaced by n curves {S1i , . . . , Sni } in a small tubular neighborhood about Ci cross-
ing to form a copy of Li above all other curves of S and a copy of �Li below all
other curves of S. Let T s be the upper envelope of the curves Ss1, . . . , S

s
k , and let

T = {T 1, . . . , T n}. Equivalently, let U be the path system of size n where each path
from bottom to top crosses all paths below itself (beginning with the bottom path
crossing no other paths and ending with the top path crossing all other paths), and let
T = �(L1 · U · L2 · U · · ·Lk · U). See Fig. 10 for an example with n = 6, k = 4.

Finally, let � denote the combinatorial type of T and let χ denote the order type of
S.
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�L1 �L2�L3 �L4

L1 L2 L3 L4

L1 L2 L3 L4

1L

Fig. 10 Top left: the pseudoline representation L1 of χ1. Top right: the system C. Center: the system S.
Bottom: the system T of combinatorial type �

Lemma 6.3 P∗ and S are orientable and have the same well defined combinatorial
type χ .

Proof Consider the orientations of a triple aru, a
s
v, a

t
w ∈ P, and the corresponding

curves Sru, S
s
v, S

t
w ∈ S. If u, v, w are distinct, then these points have the same orienta-

tion as a1u, a
1
v , a

1
w, since each a

x
i among these points is between a1i and a

n
i in the local

sequence of ani−1 among φi (Qi ), which implies axi is in convex position together with
A0 between a1i and ani in counter-clockwise order. Furthermore, the curves have the
same orientation as Cu,Cv,Cw, which is the same as that of a1u, a

1
v , a

1
w, since each

Sxi is in a small tubular neighborhood about Ci . If u = v = w then the orientation of
aru, a

s
u, a

t
u as well as that of S

r
u, S

s
u, S

t
u is determined by χu . If u = v and w is distinct,

then both the points and the curves have the same orientation as pru, p
s
u, p

1
u . In any

case, each triple of S is orientable and its orientation is fixed and is the same as that of
P∗, and since order types are completely determined by the orientation of each triple,
this determines the order type of P and S. ��

Lemma 6.4 A∗ and T have the same well defined combinatorial type �.

Proof This follows fromLemma 6.3 and the fact that the support function of a polygon
is the upper envelope of the support functions of its vertices. ��
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6.4 Proof of Lemma 6.1

First observe that R1(χi ) is homotopic to R1(ψi ), since ψi is reducible by q1i and
ωi := ψi \ q1i is reducible by qni [2, Lem. 8.2.1]. That is, for any realization Pi of χi ,
there is a non-empty convex region wherePi can be augmented by a point qni to obtain
a realization of ωi , and the fibers of the deletion map δ : R1(ωi ) → R1(χi ) defined
by deleting the point qni are given by this convex region, which implies R1(ωi ) and
R1(χi ) are homotopic. Likewise, R1(ψi ) and R1(ωi ) are homotopic.

Let ω denote the non-simple order type of the point set A0 ∪ {b1, . . . , bk} where
bi is the meet of lines 
i−1, 
i . We claim that R1(χ) is homeomorphic to R1(ω) ×
R̃1(ψ1) × · · · × R̃1(ψk). To see this, let

π0 : R1(χ) → R1(ω) and πi : R1(χ) → R̃1(ψi )

where π0 is defined by restricting to the points a11, a
n
1 , b1, . . . , a

1
n, a

n
n , bn , and πi is

defined by restricting to the points a1i , . . . , a
n
i , ani−1, a

1
i+1 respectively relabeled as

p1i , . . . , p
n
i , q

n
i , q1i and identifying realizations that are projectively equivalent. Let

π = π0 × · · · × πk . The construction of P in the primal definition of � shows that π
is surjective, and π is injective since the points of Qi are uniquely determined by the
projective equivalence class to which they belong and the positions of the points qni ,

p1i , p
n
i , q

1
i , which are fixed by a realization of ω. Hence π is a bijection, and since it

and its inverse are continuous, the claim holds.
Next, we claim Rk(�) is homeomorphic to R1(χ). Let ϕ : R1(χ) → Rk(�) by

taking convex hulls as in the primal definition of �. Assume Rk(�) is non-empty and
consider A = {A1, . . . , An} ∈ Rk(�); the existence of ϕ implies that if Rk(�) were
empty then R1(χ) would also be empty. We will show that there is a unique way of
indexing the vertices of each body As by {as1, . . . , asn} so that together they realize χ ,
which implies there is the unique point set V ∈ R1(χ) for which ϕ(V) = A.

We will first see that such an indexing exists, which implies ϕ is surjective. Notice
that A1∗ and At∗ cross 2k times for each t �= 1, so A1 and At each appear k times on the
boundary of conv(A1∪ At ), which implies each As must be a k-gon and the vertices of
A1 and At are in convex position. First choose some indexing of the vertices of A1 by
v11, . . . , v

1
k in counter-clockwise order, and then index the vertex of each At between

v1i and v1i+1 by vti , and let Vi = {v1i , . . . , vni }. Now let μt
i be the outward normal

direction of the common supporting tangent of A1 and At through v1i and vti , and let
ξ ti be the outward normal direction of the common supporting tangent through vti and
v1i+1. The support curve of the point vti coincides with At∗ on the half open interval
[μt

i , ξ
t
i ) ⊂ S

1, and by Lemma 6.4, has an crossing with As∗ in [μs
i , ξ

s
i ) corresponding

to a common supporting tangent through ati , a
s
i for t, s distinct. This fixes a pseudoline

representation for each Vi , which is equivalent to P∗
i−h for an appropriate cyclic shift

of indices by h ∈ Zk , so Pi := Vi+h ∈ R1(χi ). If we perform the primal construction
by choosing the point sets Pi as realizations of χi , and choosing q1i , q

n
i ,A0 among

the vertices of A1 and An so that each map φi is the identity, then we obtain the same
arrangementA that we started with. Thus, by Lemma 6.3 the vertices ofA labeled by
asi = vsi+h have order type χ .
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Fig. 11 Construction for k = 2, 3, 4 from the proof of universality for non-crossing combinatorial types

We will now see this indexing is unique, which implies ϕ is injective. Since the
vertices of A1 and At appear in an alternating order around the convex boundary of
their union, the indexing of the vertices is fixed up to a cyclic shift, and since the cyclic
ordering of χ1, . . . , χk does not have periodicity smaller than k, h is the unique cyclic
shift of indices for which the vertices have order type χ . Hence ϕ is a bijection, and
since it and its inverse are continuous, the claim holds.

Finally, Rk(�) is homeomorphic to R1(χ), which is homeomorphic to R1(ω) ×
R̃1(ψ1)×· · ·× R̃1(ψk), so by identifying projectively equivalent realizations, R̃k(�)

is homeomorphic to R̃1(ω) × R̃1(ψ1) × · · · × R̃1(ψk), and since R̃1(ω) is con-
tractible and R̃1(ψi ) is homotopic to R̃1(χi ), R̃k(�) is homotopic to R̃1(χ1) × · · · ×
R̃1(χk). ��

7 Open Problems and Concluding Remarks

What is the smallest integer kn such that any order type on n elements can be realized
by convex kn-gons? Theorem 1.4 gives asymptotic bounds, but there remains a wide
gap.

Does universality hold for realizations of order types by k-gons? The authors were
able to establish the weaker result, that universality holds for non-crossing arrange-
ments of k-gons. That is, arrangements for which every pair of bodies has the same
combinatorial type as a pair of distinct points, instead of every triple. The proof is sim-
ilar to that of Theorem 2.4, but depends on a construction where certain pairs bodies
of the arrangement are disjoint in every realization by k-gons; see Fig. 11.

Is the realization space of k-gons with the combinatorial type of n points in convex
position contractible?While thismay be the simplest order type, difficulties arisewhen
the k-gons intersect; see Fig. 12.

Can every order type be realized by arrangements of pairwise disjoint bodies?
Ziegler has given a construction of 2O(n2) distinct order types, all of which can be
realized by pairwise disjoint bodies [2, Thm. 7.4.2]. This fails for combinatorial types
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Fig. 12 Four triangles having
the same combinatorial type as
vertices of a square

Fig. 13 An arrangement with
combinatorial type that cannot
realized by disjoint bodies

in general, as there exists an arrangement of four non-crossing bodies in which some
pair must always intersect; see Fig. 13.

Our results mostly focus on the cases where k is a constant or k is infinite. It would
be interesting to understand how the realization space depends on k as a function on n.
For instance, Theorem 2.4 states that R̃(�) is contractible for any non-layered com-
binatorial type � on [n], but is there a function p(n) which guarantees that R̃p(n)(�)

is contractible? A natural guess would be p(n) ∈ O(n2). For combinatorial types �

on [n], are there upper bounds on the Betti numbers of R̃k(�) in terms of k and n?
Unlike the order type, the definition of combinatorial type is non-local, in the sense

that order type depends only on information about triples, whereas combinatorial type
depends on global information. In fact, there are pairs of arrangements where for
each triple, the corresponding combinatorial type of that triple is the same for both
arrangements, but the combinatorial type of the two arrangements overall is not the
same; see Fig. 14. Can combinatorial type be defined from local information when
the local complexity is bounded? More specifically, is there an integer mt , such that
the combinatorial type of an arrangement is uniquely determined by the combinatorial
type of each sub-arrangement of mt bodies, provided that each pair of bodies has at
most t common supporting tangents?

We have bounded the complexity of the bodies by working in the space of k-gons.
Are there other measures of complexity that yield a universality theorem? Any con-
tinuous map from R

c(n) to the space of arrangements of convex bodies defines a finite
dimensional subspace. In the case of k-gons in the plane, c(n) = 2kn. Does univer-

123



28 Discrete Comput Geom (2017) 58:1–29

• • • •

Fig. 14 Top two arrangements that are related by a bijection preserving the combinatorial type of triples,
but that do not have the same combinatorial type. Bottom their dual support system

sality hold for any other such map? Consider for instance subspaces having bounded
VC-dimension.

Our notion of combinatorial type extends to higher dimensions and to systems of
sections of vector bundles other than the cylinder. It would be interesting to see how
our results may extend in these cases.
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