Thomas Zaslavsky (Binghamton)

Polygon Space

Abstract for the Combinatorics and Number Theory Seminar 2003 April 7

A polygon is a Hamiltonian circuit of the complete graph on n vertices. If we assign real-number ``lengths to the edges, each polygon has a length (that is, a real number), which induces a linear quasiordering of the set of all polygons. We call such a quasiordering realizable. Now suppose the ``lengths really are lengths. That is, we pick n points in Euclidean space E^d , $(P_i) = (P_1, P_2, ..., P_n)$, and define the length of edge ij to be the distance $d(P_i, P_j)$. There are some obvious questions. Which realizable quasiorderings are realizable by points in E^d ? One could allow some of the points to coincide, or not; these give different answers. Given points (P_i) , inducing a certain realizable quasiordering, which other realizable quasiorderings are realizable by points (Q_i) arbitrarily near (P_i) ? I will discuss these questions.

This will be a very informal talk with at most bits of hints of proof.

From

http://www2.math.binghamton.edu/ - **Department of Mathematics and Statistics, Binghamton University**

Permanent link:

http://www2.math.binghamton.edu/p/seminars/comb/abstract.200304zas

Last update: 2020/01/29 19:03

