Discrete Math (Spring 2019)

This is the official website of math314-02-s19.¹⁾ Please read our syllabus...

Our Final Exam is scheduled for 13 May 2019.

Here are documents on basic proof techniques and proof-writing style for your own reference.

THIS PAGE NO LONGER RECEIVES UPDATES

General Information

Meetings: Monday, Wednesday, Friday 8am - 9:30am in WH G02

Office Hours: Tuesday 10am - 1pm in WH236 (or by appointment in WH310)

Textbook: Mathematics for Computer Science (Lehman, Leighton, Meyer)

Grading: See the course syllabus for a grade distribution.

Content: Propositional logic, methods of proof, naive set theory, functions and relations, induction and recursion, counting, and basic graph theory.

Schedule

W 23 Jan (C1)

- Discussed Syllabus
- Brief introduction to propositional logic (what is meant by the terms statement, connective, etc.)
- HW: Read textbook section 3.1 (4 pages)

F 25 Jan (C2)

- Translation of English statements into the formal language
- Truth tables (optional: read textbook section 3.2)
- Practice: problem set 1
- HW: Read textbook sections 3.3 and 3.4 (2 pages and 5 pages)

M 28 Jan (C3)

- Quiz: Truth table construction
- Validity, satisfiability, and logical equivalence
- Developed several basic equivalences of propositional statements.

W 30 Jan (C4)

- Disjunctive Normal Form and Conjunctive Normal Form
- Algebra of propositions (textbook section 3.4)
- Basic rules of equivalence
- Practice: problem set 2
- HW: Read textbook section 3.6 (5 pages)

F 1 Feb (C5)

Quantified predicate logic (textbook section 3.6)

M 4 Feb (C6)

- Basics of sets (textbook section 4.1)
- Example proofs involving sets (direct proof)

W 6 Feb (C7)

- More proofs of set theoretic identities (proof by cases, proof via a string of equivalent statements).
- Introduced general relations (lots of examples)
- Defined equivalence relations
- HW: Read about functions and relations for Friday's class (caution: I'm NOT following the textbook here!)

F 8 Feb (C8)

- Equivalence relations (many examples)
- Introduction to functions (defined injective, surjective, and bijective)
- Written Homework 1: Complete this list of problems (Due 15 Feb 2019)

M 11 Feb (C9)

- Quiz: Equivalence relations
- Images and preimages, right and left inverses (many examples)
- Various propositions, examples, and practice problems concerning functions
- HW: Read textbook section 5.1 through section 5.1.4 (5 pages)

W 13 Feb (C10)

- Quiz: Functions and equivalence relations
- Relationship between functions inverses and injectivity, surjectivity, and bijectivity
- Introduction to the Principle of Mathematical Induction (textbook section 5.1.1-5.1.4)

F 15 Feb (C11)

- Collected Written Homework 1
- Quiz: Induction and Well Ordering
- More proofs by induction
- A false proof by induction (to illustrate the importance of the base case)!
- Number Theory: Properties of Divisibility (textbook section 9.1.1)

M 18 Feb (C12)

- Recursion and the relationship to induction
- Fibonacci numbers and relations therebetween (more induction proofs!)
- Here is a list of cool problems involving Fibonacci numbers!

W 20 Feb (C13)

- The Quotient-Remainder Theorem (i.e. the Division Algorithm, i.e. textbook Theorem 9.1.4 "The Division Theorem")
- Proof of the Quotient-Remainder Theorem (for the case n and d are natural numbers)
- HW: Finish the proof of the Quotient-Remainder Theorem for n and d integers.

F 22 Feb (C14)

- Quiz: Quotient-Remainder Theorem
- Using the Quotient-Remainder Theorem
- Modular Arithmetic
- HW: Read my notes on basic number theory
- Written Homework 2: Complete this list of problems (Due 4 Mar 2019)

M 25 Feb (C15)

- Greatest common divisor
- Bezout's Identity (one proof given in this pdf)
- Euclid's (Extended) Algorithm
- Examples involving Euclid's Algorithm

W 27 Feb (C16)

- Quiz: Modular Arithmetic and Euclid's Algorithm
- Using Euclid's Algorithm to solve modular equations
- Prime numbers
 - Definition
 - Prop: Every natural number n > 1 is divisible by some prime number.
 - Prop: There are infinitely many prime numbers.

F 1 Mar (C17)

- Proved Euclid's Lemma
- Proved the Fundamental Theorem of Arithmetic via Strong Induction
- Exercise: Translate the proof into a Well Ordering Principle type of proof
- Introduced the Sieve of Eratosthenes
- NB: I updated the number theory notes.

M 4 Mar (C18)

- Collected Written Homework 2.
- Computed the list of primes not exceeding 50 via the Seive of Eratosthenes.
- Briefly discussed some ways of improving the Seive of Eratosthenes.
- Discussed the RSA Cryptosystem (including a small example).
- HW: Read textbook section 9.11 (on RSA Cryptography)

W 6 Mar (C19)

- More work on RSA (try these problems).
- HW (assigned in class, sent also by email): Let p = 11, q = 19, and e = 13.
 - What is the corresponding public key?
 - Encrypt m = 19 using RSA encryption.
 - Compute the private key d in this encryption scheme.
 - Decrypt an encoded message m' = 47 using RSA.
- Question: Why does RSA work? (Answer: Euler's Totient Theorem!)
- Set the stage to study Euler's Totient Function

F 8 Mar (C20)

- Studied Euler's Totient Function, laying groundwork for the proof
- Proof of Correctness of RSA (assuming Euler's Totient Theorem)
- HW: Study for our Midterm Exam
 - Material for the Midterm stops at RSA
 - Know definitions and major theorems and be ready to use them
 - Be sure to look over your notes
 - By popular request, here is a practice midterm.
 - Disclaimer: The practice midterm DOES NOT pretend to be comprehensive, and I make no claims about its fitness as a study guide.

M 11 Mar (C21)

- Exam Review (questions from students)
- Proof of Euler's Totient Theorem
 - Remember that this implies correctness of the RSA Cryptosystem

NB: I leave for a visit to the IAS early Tuesday morning-I return after the midterm.

W 13 Mar (C22)

- Exam Review (led by guest lecturer David Cervantes Nava)
- Student questions on the Practice Exam
- Here are solutions to the practice midterm

F 15 Mar--Midterm Exam (in class)

- Happy Spring Break! ⁽²⁾
 - HW: Read textbook sections 15.1 15.3 on basic counting techniques

M 25 Mar (C23)

- Returned Midterm Exams
- Basics of counting
 - Addition Principle
 - Product Principle
 - Bijective Counting

W 27 Mar (C24)

More counting (with many examples and some recursive counting)

F 29 Mar (C25)

- Problem session on basic counting techniques
 - Counting with binomial coefficients
- **HW**: Finish the in-class problems for Monday
- **HW**: Complete these problems for 5 Apr.

M 1 Apr (C26)

- More counting with binomial coefficients
 - Algebraic Formula for the binomial coefficients
 - Counting anagrams of a word
- Learned the methods "Count Dracula" and the method of Monte Cristo²⁾

T 2 Apr--Withdrawal Deadline

W 3 Apr (C27)

- Quiz: Binomial coefficients and counting
- More advanced counting techniques
 - Inclusion-Exclusion Principle
 - Pigeonhole Principle
- More counting!

F 5 Apr (C28)

- Quiz: Pigeonhole principle
- Collected Homework on counting poker hands
- Simple graphs (textbook chapter 12)
 - Basic definitions
 - Many examples (the Petersen graph is my favorite)
 - Handshake Lemma

M 8 Apr (C29)

- Quiz: examples of simple graphs
- Matchings in graphs
 - Examples
 - Basic results
 - Hall's Marriage Theorem for bipartite graphs
 - Statement
 - Proof of sufficiency

W 10 Apr (C30)

- Quiz: perfect matchings
- Hall's Marriage Theorem
 - Proof of necessity
- Written Homework 3: Complete this list of problems (due 26 Apr 2019)

F 12 Apr (C31)

- Quiz: Hall's Marriage Theorem
- Algorithms to compute matchings in bipartite graphs
 - Algorithm suggested by Hall's Marriage Theorem
 - Augmenting Paths Algorithm
- Connection in graphs

M 15 Apr (C32)

- Quiz: Augmenting Paths Algorithm
- Graph coloring
 - Many examples
 - Basic properties

W 17 Apr (C33)

- Quiz
- More graph coloring
 - Brooks's Theorem
 - Every finite simple graph has chromatic number bounded above by one more than its maximum degree.

F 19 Apr No Classes :/

M 22 Apr (C34)

- Group Quiz (discussion led by guest lecturer Kunle Abawonse)
 - Solutions to these problems

W 24 Apr (C35)

- Quiz: Graph coloring
- More on connection in graphs
 - Reducing problems on graphs to problems on their connected components
 - **Exercise**: Prove that the chromatic number of a graph is the maximum of the chromatic numbers of its components.
- Eulerian graphs (short introduction)

F 26 Apr (C36)

- Quiz: Euler trails
- Collected Homework 3
- Eulerian graphs
 - Proved Euler's characterization of Eulerian graphs
 - A graph has an Euler trail if and only if it has at most one component with edges and at most two vertices of odd degree.
- Hamiltonian graphs
 - No nice equivalent conditions are known
 - Homework: Does the Petersen graph have a Hamilton cycle?
 - Solution is in this pdf
- You should read about Leonhard Euler...

M 29 Apr (C37)

- Quiz
- Trees (Textbook section 12.11)
 - Equivalent descriptions of trees
 - Spanning trees
 - Minimum weight spanning trees
 - Kruskal's Algorithm

W 1 May (C38)

- Quiz: Kruskal's Algorithm
- Algorithms and state machines (Textbook chapter 6)
 - State machine definitions and examples
 - Evaluations
 - Preserved Invariant Lemma (Textbook "Preserved Invariant Principle")
- Here are my notes on state machines.

F 3 May (C39)

- Quiz
- More algorithms and state machines
 - Examples encoding algorithms into state machines
 - Examples interpreting state machines as algorithms

M 6 May (C40)

- The fast exponentiation algorithm
 - State machine model
 - Proof of correctness

W 8 May (C41)

- Review for Final
 - Student questions
- Gave comment forms

F 10 May (C42)

- Review for Final
- Student questions
- I will hold extra office hours today!
 - Room: WH 236
 - Time: 11am 4pm

×

FINAL EXAM

- Date: Monday 13 May 2019
- Time: 8am 10am
- Room: S1 149

¹ If you have an idea to improve this space, please email eppolito-at-math-dot-binghamton-dot-edu with your suggestion; I would like this space to be as useful to students as possible...
² APRIL FOOLS!

From: https://www2.math.binghamton.edu/ - Department of Mathematics and Statistics, Binghamton University

Permanent link: https://www2.math.binghamton.edu/p/people/grads/eppolito/math314-02-s19

Last update: 2022/08/21 19:28