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Chapter 14 - Section 8 - Lagrange Multipliers

Section Overview

In this section we learn how to use the Lagrange Technique to locate extreme (maximum or minimum) values of a
multivariable function subject to some constraints. As we shall see, the technique outlined is extremely similar to
the method we used in Calculus | to locate extreme values of a single variable function on an interval. We will
describe the technique three times, once for a three-variable function with one constraint, once for a three-variable
function with two constraints, and finally for the case of an $n$-variable function with $m$ constraints. We will
assume throughout that our objective function is differentiable and our constraints have non-zero gradient, except
for a couple examples in which we will discuss how and why the technique may fail when a constraint gradient is
the zero vector.

Three variable function, single constraint

Let $ w = f(x,y,z) $ denote our objective function and $ g(x,y,z) = k $ our constraint; that is, we seek for the
extreme values attained by the function $ f $ on the level surface $ g = k $. Suppose $ f $ does have an extreme
value at a point $ P = (x_0,y 0,z 0) $ on the surface $ g =k $. Let $ C $ be a curve with differentiable
parametrization $ \mathbf{r}(t) $ that lies on the surface $ g = k $ and passes through the point $ P $. Let$t 0 $
denote the parameter value corresponding to the point $ P $, so $ \mathbf{r}(t 0) =\langlex 0,y 0,z 0\rangle
$, and let $ h(t) = f\circ \mathbf{r}(t) $. Now $ h $ has an extreme value at $ t 0 $, so it has a critical point there.
Since $ f $ is differentiable at $ P $ and $ \mathbf{r} $ is differentiable, it follows that the composition $ h $ is
differentiable at $ t_0 $, and so the critical point $ t_0 $ is a root of the derivative. Hence, by the chain rule we have

$$ \begin{aligned} 0 &= h~{'}(t_0) \\ &= \frac{\partial f}{\partial x} (x_0,y_0,z_0) \frac{dx}{dt} (t_0) +
\frac{\partial f} {\partial y} (x 0,y 0,z 0) \frac{dy}{dt} (t 0) + \frac{\partial f}{\partial z} (x 0,y 0,z 0)
\frac{dz}{dt} (t 0) \\ &= \nabla f(x _0,y_0,z 0) \cdot \mathbf{r}~{'}(t_0) \end{aligned} $$

Thus the gradient of $ f $ at the point $ P $ is orthogonal to the line tangent to the curve $ C $ at the point $ P $.
Since this holds for all curves in the surface $ g = k $ through the point $ P §, it follows that the gradient of $ f $ at
$ P $ is parallel to the direction of the plane tangent to the surface $ g = k $ at the point $ P $; in other words, at
the point $ P $, if $ \nabla g \neq \mathbf{0} $ then $ \nabla f = \lambda \nabla g $ for some number $ \lambda $.

Let us recall the technique used in Calculus | to locate extreme values of a differentiable function $ y = f(x) $ on an
open interval $1$. If $ f $ has an extreme value at a point $ x 0\in 1 $, then $ x 0 $ is a critical point of $ f $, and
since we are assuming that $ f $ is differentiable on $ 1 $ we must have $ f~{'}(x_0) = 0 $. We use this result to
develop our technique as follows. Assuming that $ f $ has extreme values on $ | $, we locate them in two steps:

1. Solve $f~{'}=0%
2. Evaluate $ f $ at each solution $ ¢ $ found in step 1.; largest value is the maximum, smallest is the minimum.

The Lagrange technique works in a very similar way; assuming extreme values exist, we first find critical points,
then evaluate at each to determine the extreme values. There is a slight difference in our Lagrange technique
though, in that it is not the critical points of $ f $ which we seek for but rather one which involves $ f $ together with
our constraint $ g = k $. Let $ \lambda $ denote a fourth variable and set $ F = f - \lambda (g - k) $. Critical points
of $ F $ are found by solving the vector equation $ \mathbf{0} = \nabla F $, which yields the following system of
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four equations with four unknowns:

$$ \begin{array}{ll} 0 =F x =f x-\lambdag xW0=F y =f y-\lambdag yW0=F z=f z-\lambdag z\\0 =
F \lambda = g - k\end{array} $$

We see that the first three equations represent the vector equation $ \nabla f = \lambda \nabla g $ and the fourth
equation is our constraint $ g = k $. From our discussion above, we can conclude that if $ f $ has an extreme value
ata point $ P =(x 0,y 0,z 0) $ on the surface $ g=k $ and if $ \nabla g \neq \mathbf{0} $ at $ P $ then there exists
a number $ \lambda_0 $ such that $ \nabla f = \lambda O\nablag$at$P $andso $ (x 0,y 0,z 0\lambda 0) $is a
critical point of $ F $. Therefore, assuming that $ f $ has extreme values on the surface $ g=k $ and that the
gradient of $ g $ is non-zero, we can find the extreme values in two steps:

1. Solve $ \nabla \mathbf{F} =0 $.
2. Evaluate $ f $ at the projections in $ \mathbb{R} "3 $ of each solution found in step 1.; largest is maximum,
smallest is minimum

Note that in step 1. above, we don't actually need the $ \lambda $ part of the solution. You may find it's values in
the course of finding $ x,y, $ and $ z $, but more often it will just be used to help relate the important variables. The
points found in step 1. are in four-space, but we need points in three space to evaluate $ f $; specifically, we need
the $ x,y,z $ part. The projection referred to above works as follows:

$$ (x,y,z\lambda) \rightarrow (x,y,z,0) \simeq (x,y,z) $$

In words, we replace our fourth coordinate with zero, then identify the point $ (x,y,z,0) $ in $ \mathbb{R}"4 $ with
the point $ (x,y,z) $ in $ \mathbb{R}"3 $.

Example Set One

One

Exercise: Use the Lagrange technique to find the maximum and minimum values of the function $ f(x,y,z) =
e”{xyz} $ on the ellipsoid $ 2x~2 + y™~2 + z"2 =24 §$.

Solution: Set $ F = e™{xyz} - \lambda (2x"2 + y"~2 + z"2 - 24) $. Then $ \mathbf{0} = \nabla F $ yields

$$ \begin{array}{ll} 0 = yze”~{xyz} - 4x \lambda \\ 0 = xze”™{xyz} - 2y \lambda \\ 0 = xye”™{xyz} - 2z \lambda \\ 0
=2X"2 +y"2 + 272 -24\end{array} $$

Multiplying equation one by $ x $, equation two by $ y $, and equation three by $ z $, we see that $$ xyze”~{xyz} =
4x”~2 \lambda = 2y”~2 \lambda = 2z~ 2 \lambda $$ First, suppose $ \lambda \neq 0 $. Then we have $ 2x"~2 = y"2
=z"2 $, and so from equation four we have $ 24 = 6x~2 $hence $ x=\pm2$and $y =z =\pm 2 \sqrt{2} $.
Now, since we multiplied equation one by $ x $, we have to account for the possibility that we have multiplied by $
0 $. However, in this case it is clear from equations two and three thatif $ x =0$thenalso$y=z=10%,
contradicting equation four as $ 0 \neq 24 $. Hence, $ x \neq 0 $, and similarly $ y,z\neq 0 $. Now, we've found
eight points which could yield extreme values, but we observe that there are only actually two possibilities; because
$ f(x,y,z) = e~ {xyz} $, the four points with an even number of negative coordinates map to the maximum value of
$ e~ {16} $, while the four points with an odd number of negatives map to the minimum value of $ e~ {-16} $.
Now, suppose $ \lambda =09$.Then$ 0 =xy =xz=yz $, so at leasttwo of $ x,y,z$are $ 0$, and our
corresponding solutions are $ (\pm 4 \sqrt{3},0,0) $, $ (0, \pm 2 \sqrt{6} , 0) $, and $ (0,0, \pm 2 \sqrt{6} ) $. At
each point we have $ xyz=0$%,s0$f=e"{0} =1%.Since $e~{-16} <1 <e™{16} $, we conclude that the
maximum value of $ f $ on the given ellipsoid is $ e~ {16} $ and it's minimum value is $ e~{-16} $.

https://www2.math.binghamton.edu/Printed on 2025/09/13 20:38



2025/09/13 20:38 3/4 Chapter 14 - Section 8 - Lagrange Multipliers

Two

Exercise: Find the maximum and minimum values attained by the function $ f(x,y,z) = x~4 + y~4 + z~4 $ on the
unit sphere.

Solution: Since the unit sphere is the surface $ x~2 + y™2 + 2”2 = 1 $ our auxiliary function is $ F(x,y,z,\lambda) =
X™4 +y™4 + z74 -\lambda (X2 + y*2 + 22 - 1) $, so the vector equation $ \mathbf{0} = \nabla F $ yeilds the
system

$$ \begin{array}{ll} 0 = 4x~3 - 2x \lambda = 2x(2x"2 - \lambda) \\ 0 = 4y”~3 - 2y \lambda = 2y(2y~2 - \lambda) \\
0 =4z"3-2z\lambda = 2z(2z"2 - \lambda) \\ 1 = x~2 + y*~2 + z"~2 \end{array} $$

Using a table to organize the possible cases we quickly locate the maximum value of $ 1 $ and the minimum value
of $ \frac{1}{3} $:

$$ \begin{array}{|c|c|c|c|c|c|} \hline x &y & 2 & X2 & y™2 & z~2 & f\\ \hline \neq 0 & \neq 0 & \neq 0 &
\frac{1}{3} & \frac{1}{3} &\frac{1}{3} &\frac{1}{3} \\hline\neq 0 &\neq 0 & 0 & \frac{1}{2} & \frac{1}{2}
& 0 & \frac{1}{2} \\\hline\neq 0 & 0 & \neq 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\hline 0 & \neq O
&\neq 0 & 0 &\frac{1}{2} &\frac{1}{2} & \frac{1}{2} \\hline\neq 0 & 0 &0 & 1 & 0 & 0 & 1\ \hline 0 &\neq 0
&0&0&1&0&1I\W\Nine0&O&\Neq0 &0 &0 & 1 & 1\ \hline\end{array} $$

Three variable function, two constraints

Let $ f(x,y,z) $ be our objective function and $ g(x,y,z) = k $ and $ h(x,y,z) = \ell $ our two constraints. Let $$ F = f
-\lambda (g - k) - \mu (h - \ell) $$ If $ f $ has an extreme value at a point $ (x_0,y_0,z_0) $ on the intersection of the
level surfaces $ g=k $ and $ h=\ell $ and both $ \nabla g $ and $ \nabla h $ are non-zero, then there exist numbers
$ \lambda 0 $ and $ \mu_0 $ such that $ (x_0,y_0,z_ 0\lambda_0,\mu_0) $ is a critical point of $ F $. Thus, to find
extreme values of $ f $ subject to the given constraints, we solve $ \mathbf{0} = \nabla F $ and check each point.

Example Set Two

One

Exercise: Find the extreme values of $ z $ subject to the constraints $ x~2 +y"2=z"2%and$x+y+2z=24%§.

Solution: Set $ F =z -\lambda ( x~2 + y~2-2z"2) -\mu (x + y + z - 24) $ and solve the vector equation $
\mathbf{0} = \nabla F $. We get the system of equations

$$ \begin{array}{ll} 0 = 2x \lambda + \mu \\ 0 = 2y \lambda + \mu\\ 0 = 1 - 2z \lambda - \mu \\ 22 = x"2 + y"2
W\ 24 =x+ vy + z\end{array} $$

Weseeif$x=0%then$\mu=09%,s0$y=0%or$\lambda=04%.1f$y=0$then$z=0$ by equation four,
so equation three is $ 0 = 1 $ a contradiction. If $ \lambda = 0 $ then again we have $ 0 = 1 $ for equation three, a
contradiction. Hence, $ x \neq 0 $. Similarly, we find $ y,z, \lambda , \mu \neq 0 $. Now the first three equations
give $ x =y = \frac{-\mu}{2 \lambda} $ and $ z = \frac{1- \mu}{2 \lambda} $. Substituting into equations four
and five we have $ \frac{(1 - \mu)~2}{4 \lambda”~2} = \frac{\mu~2}{2 \lambda”2} $ and $ 24 = \frac{1 -3
\mu} {2 \lambda} $, from which we find two solutions $ \mu = -1 + \sqrt{2} $ and $ 2 \lambda = \frac{4 - 3
\sqrt{2}}{24} $ and $ \mu = -1 -\sqrt{2} $ and $ 2 \lambda = \frac{4 + 3 \sqrt{2}}{24} $ and so we have our
minimum value $ z = -24(1 + \sqrt{2}) $ when $ \mu = -1 + \sqrt{2} $ and our maximum value $ z = 24(1 +
\sqrt{2}) $ when $ \mu = -1 - \sqrt{2} $.
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$n$ variable function, $m$ constraints

As usual we form an auxiliary function $ F $ with of objective and all constraints and seek for solutions to the vector
equation $ \mathbf{0} =\nabla F $. Let $ x_1,x 2\ldots,x_n $ denote the $n$-variablesand $g 1=k 1,9 2=k 2,
\ldots, g_m = k_m $ the $ m $ constraints. Then we introduce $m$ variables $

\lambda_1,\lambda_2\ldots \lambda_m $ and set $$ F = f - \displaystyle \sum_{i=1}"m \lambda_i (g_i- k i) $$

Example Set Three

One

Exercise: Find the maximum and minimum values attained by summing the coordinates of a point on the unit $n$-
sphere.

Solution: Our objective function is $ f(x_1,x_2\ldots,x_n) = x_1 + x_2 + \ldots + x_n $ and our constraint is $ x_1"2
+Xx 272 +\ldots + x n”"2 =1%,sowe have $ F=x_1+ x_2 +\ldots + x_n -\lambda ( x_172 + x_2"2 + \ldots +
X n~2-1)$%. We see that for each $ 1\leq i\leq n $, we have $ \frac{\partial F}{\partial x_i} =1 -2 \lambda x_i $,
and so the vector equation $ \mathbf{0} = \nabla F $ yields $ x_i = \frac{1}{2 \lambda} $ for all $ i $. Hence, from
our last equation we have $ 1 = n(\frac{1}{4 \lambda~2} ) $ or $ x_i = \frac{1}{2 \lambda} = \pm
\frac{\sqrt{n}}{n} $. Thus, our maximum value is $ \sqrt{n} $, while our minimum value is $ - \sqrt{n} $.
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