User Tools

Site Tools


people:fer:401ws:fall2018:daily_topics

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

people:fer:401ws:fall2018:daily_topics [2018/10/30 08:41]
fer
people:fer:401ws:fall2018:daily_topics [2018/11/19 08:57] (current)
fer
Line 1: Line 1:
 +~~META:​title=Daily topics~~
  
 +<WRAP centeralign>​
 +===== Math 401 - 01 Daily Topics - part 2 (Fall 2018)=====
 +</​WRAP>​
 +----
 +{{page>​people:​fer:​401ws:​defs&​nofooter&​noeditbtn}}
 +
 +
 +[[people:​fer:​401ws:​fall2018:​home| Home]]
 +
 +^Week 7^Topics^
 +|10/​01/​2018|Test 1 |
 +|10/​02/​2018|Lagrange'​s corollary 1 |
 +| |Orbit-Stabilizer theorem |
 +| |Examples: cube, truncated icosahedron (soccer ball) |
 +|10/​03/​2018|Corollaries 2-5 to Lagrange'​s theorem |
 +| |Addendum to cor 3: moreover, there is a unique group of order $p$, up to isomorphism.|
 +| |Thm. 7.2|
 +| |Example 6, p.144|
 +| |Corollary: if $p$ is the smallest prime divisor of $|G|$ and $p^2$ does not divide $|G|$, then $G$ has at most one subgroup of index $p$ (HW)|
 +|10/​05/​2018|Thm. 7.3|
 +
 +^Week 8^Topics^
 +|10/​08/​2018|Test 1 returned and reviewed|
 +| |Prop: if $\varphi:​G\to H$ is an isomorphism,​ then so is $\varphi^{-1}H\to G$.|
 +| |Prop: "​isomorphic to" is an equivalence relation|
 +| |Thm. 6.1 Cayley'​s theorem|
 +| |$\aut(G)$, $\inn(G)$|
 +|10/​09/​2018|Thm 6.4 $\aut(G)$ is a group and $\inn(G)$ is a subgroup of $\aut(G)$|
 +| |Example: $\inn(D_4) \isom K_4$|
 +| |Prop: Let $G = <a>$ cyclic and $H$ a group|
 +| |1. A homom $\varphi:​G\to H$ is uniquely determined by $\varphi(a)$.|
 +| |2. If $G$ has order $n$ and $u\in H$ has order $d$ where $d|n$, then there is (unique) homomorphism $\varphi:​G\to H$ s.t. $\varphi(a)=u$. Moreover, $\varphi$ is injective iff $d=n$.|
 +| |3. If $G$ has infinite order and $u\in H$, then there is (unique) homomorphism $\varphi:​G\to H$ s.t. $\varphi(a)=u$. ​ Moreover, $\varphi$ is injective iff $u$ has infinite order.|
 +| |Example: $\aut(\Z_n) \isom U_n$|
 +|10/​10/​2018|Board presentations PS 6|
 +| |Thms. 10.2 and 6.3|
 +|10/​12/​2018|Fall break|
 +
 +^Week 9^Topics^
 +|10/​15/​2018|Prop. Let N \leq G. TFAE|
 +| |(i)   ​$gNg^{-1} \subseteq N$  for all $g\in G$|
 +| |(ii)  $gNg^{-1} = N$  for all $g\in G$|
 +| |(iii) $gN = Ng$ for all $g\in G$|
 +| |(iv)  the product of any two left cosets is a left coset.|
 +| |Moreover, in the last one, we have $(gN)(hN) = ghN$|
 +| |Def:  normal subgroup|
 +| |Examples: 1. $A_n \normaleq S_n$|
 +| | $<​R_{360/​n}>​ \normaleq D_n$|
 +| |Prop: if $H$ is a subgroup of $G$ of index 2, then $H$ is a normal subgroup of $G$|
 +| |2. Prop: if $\varphi:​G\to \bar{G}$ is a homomorphism,​ then $ker(\varphi)$ is a normal subgroup of $G$|
 +| |3. If $G$ is abelian, then every subgroup of $G$ is normal|
 +| |4. $Z(G)$ is a normal subgroup of $G$.|
 +| |5. $G$ and $\{1\}$ are normal subgroups of $G$.|
 +| |Thm 9.2  proof using (iv) above.|
 +| |Example 9.10  Generalize ​ $\Z/n\Z \isom \Z_n$|
 +|10/​16/​2018| ​ Example 9.12|
 +| |Thm 10.3  1st Isom Thm|
 +| |Example $\varphi:\Z \to \Z_n$|
 +| |Thm 9.4|
 +| |Thm (N/C theorem) Let $H \leq G$.  $N_G(H) / C_G(H)$ is isomorphic to a subgroup of $\aut(H)$.|
 +|10/​17/​2018| proof of N/C theorem|
 +| |Example 10.17  $|G|=35$|
 +| |Thm 9.3|
 +| |Corollary: ​ If $|G|=pq$ and $Z(G) \neq 1$ then $G$ is abelian.|
 +| |Thm 9.5  Cauchy'​s thm for abelian gps.|
 +|10/​19/​2018|Thm 10.4 $N\normaleq G$,  $q:G \to G/N$ is an epimorphism with $ker(q)=N$|
 +| |Chapter 8 Direct Product|
 +| |Def:  $G_1 \oplus G_2$|
 +| |Prop: 1)  $G_1 \oplus G_2$ is a group.|
 +| |2) If $G_1$, $G_2$ are abelian then so is $G_1 \oplus G_2$.|
 +| |3) If $G_1$, $G_2$ are finite then so is $G_1 \oplus G_2$ and $$| G_1 \oplus G_2| = |G_1|\cdot |G_2|$$
 +| |Examples: (1) $\Z_2 \oplus \Z_3$ is abelian of order 6, so it is isomorphic to $\Z_6$|
 +| |(2) $G \oplus \{1\} \isom G \isom \{1\}\oplus G$|
 +| |Prop: Let $H_1 \leq G_1$ and $H_2 \leq G_2$.  Then $$H_1 \oplus H_2 \leq G_1 \oplus G_2$$
 +| |Cor:  $G_1 \oplus G_2$ contains subgroups isomorphic to $G_1$ and $G_2$ respectively.|
 +| |Def:  $G_1 \oplus \cdots \oplus G_n$|
 +| |Thm 8.1|
 +
 +^Week 10^Topics^
 +|10/​22/​2018|Thm 8.2  $G_1$, $G_2$ finite. ​ $G_1 \oplus G_2$ is cyclic iff $G_1$ and $G_2$ are cyclic or relatively prime orders.|
 +|10/​23/​2018|RSA cryptography. Public vs private keys|
 +| |Prop: $m^{ed}\equiv m \pmod n$.|
 +| |Internal direct product|
 +| |Thm.: Let $H,K\leq G$ be such that $HK=G$ and $H\intersection K=\{1\}$. Then $G\isom H\oplus K$.|
 +| |Def: When $H,K\leq G$ are such that $HK=G$ and $H\intersection K=\{1\}$, we say that $G$ is the internal direct product of $H$ and $K$, and write $G=H\times K$. |
 +| |Example: Consider $D_n$ with $n=2m$ and $m$ odd. |
 +| |Thm. 9.7 and corollary|
 +| |Prop: Let $H,N\leq G$.|
 +| |(1) If $N\normaleq G$ then $HN\leq G$.|
 +| |(2) If $H,​N\normaleq G$ then $HN\normaleq G$|
 +|10/​24/​2018|2nd,​ 3rd, 4th and 5th isomorphism theorems.|
 +| |$\sub(D_4)$ and $\sub(V_4)$ as examples.|
 +|10/​26/​2018|Thm If $G$ is a finite abelian group of order $n$, and $m|n$ then $G$ has a subgroup of order $m$.|
 +| |Fund. Thm. of Finite Abelian Groups|
 +| |Statement and examples, $n=12$ and $n=600$|
 +| |Elementary divisors form, and invariant factors form|
 +
 +^Week 11^Topics^
 +|10/​29/​2018|Board presentations. Problems sets 7 and 8|
 +|10/​30/​2018|Ch.24 Def: conjugate, conjugate class $\cl(a)$.|
 +| |Prop: (1) "​conjugate to" is an equivalence relation. The equivalence classes are the conjugacy classes.|
 +| |(2) $\cl(a)=\{a\} \iff a\in Z(G)$|
 +| |Thm. 24.1 without finite assumption|
 +| |Cor. 1|
 +| |Thm. Class equation (2 versions)|
 +| |Thm. 24.2 A non-trivial $p$-group has non-trivial center.|
 +| |Def: Finite $p$-group. ​ Metabelian group.|
 +| |Cor. Let $p$ be a prime. If $|G|=p^2$, then $G$ is abelian.|
 +| |Cor. Let $p$ be a prime. If $|G|=p^3$, then $G$ is metabelian. Moreover, $|Z(G)|=p$ or $|Z(G)|=p^3$.|
 +| |Example: Heisenber group $H$ has order $p^3$, and is not abelian. |
 +|10/​31/​2018|Thm. 24.3 Sylow'​s 1st Theorem|
 +| |Cor. Cauchy'​s theorem|
 +| |Cor. If $|G|=pq$ where $p<q$ are primes and $p\not\mid (q-1)$, then $G$ is cyclic. |
 +| |Lemma 1. (1) Let $H\leq G$ and $C=\{gHg^{-1}\mid g\in G\}$ the set of all conjugates of $H$. Then $|C|=[G:​N_G(H)]$.|
 +| |Definition of Sylow $p$-subgroup. |
 +| |(2) Let $H,K\leq G$. If $HK=KH$ then $HK\leq G$.|
 +| |Lemma 2. Let $P$ be a Sylow $p$-subgroup $G$. If $g\in N_G(P)$ and $|g|$ is a power of $p$, then $g\in P$.|
 +| |Lemma 3. Let $|G|=p^km$ and $p\not\mid m$. Let $P$ be a Sylow $p$-subgroup of $G$, i.e. $|P|=p^k$, and $H\leq G$ with $|H|=p^l$ for some $l\leq k$. Then there is a conjugate of $P$ that contains $H$, i.e. there is $g\in G$ such that $H\leq gPg^{-1}$. |
 +|11/​02/​2018|Board presentations. Problems set 9|
 +| |Proof of Lemma3|
 +
 +^Week 12^Topics^
 +|11/​05/​2018|Sylow Theorems |
 +| |Examples: (1) $|G|=35$ <​html>&​nbsp;&​nbsp;</​html>​ (2) $|G|=455$ <​html>&​nbsp;&​nbsp;</​html>​ (3) $|G|=21$ <​html>&​nbsp;&​nbsp;</​html>​ (4) $|G|=256$|
 +|11/​06/​2018|Test 2|
 +|11/​07/​2018|Rings. Definitions:​ ring, unity, ring with unity (unitary ring), commutative ring, units of a unitary ring|
 +| |Examples|
 +| |Prop: The units of a ring, $U(R)$ form a multiplicative group.|
 +|11/​09/​2018|No class.|
 +
 +[[people:​fer:​401ws:​fall2018:​daily_topics_3|Daily topics (3)]]
 +
 +[[people:​fer:​401ws:​fall2018:​home| Home]]