

Calculating the Frattini subgroup of a polycyclic group

Zassenhaus and Friends 2021

M. Neumann-Brosig 1,2 B. Eick 1, June 05, 2021

¹ Institut für Analysis und Algebra, TU Braunschweig, Germany

²IAV GmbH, Gifhorn, Germany

Introduction

Definition:

Let G be a polycyclic group. The intersection of all maximal subgroups of G is called the Frattini subgroup $\varphi(G)$ of G.

June 05, 2021 | M. Neumann-Brosig , B. Eick | Calculating the Frattini subgroup of a polycyclic group | Seite 1

Definition:

Let G be a polycyclic group. The intersection of all maximal subgroups of G is called the Frattini subgroup $\varphi(G)$ of G.

Objective: describe a *practical* algorithm for calculating the Frattini subgroup of a polycyclic group (given a consistent polycyclic presentation).

Definition:

Let G be a polycyclic group. The intersection of all maximal subgroups of G is called the Frattini subgroup $\varphi(G)$ of G.

Objective: describe a *practical* algorithm for calculating the Frattini subgroup of a polycyclic group (given a consistent polycyclic presentation).

Known prior work:

• Gaschütz [1] and Eick [2], based on pre-Frattini groups (does not generalise to the infinite case).

Definition:

Let G be a polycyclic group. The intersection of all maximal subgroups of G is called the Frattini subgroup $\varphi(G)$ of G.

Objective: describe a *practical* algorithm for calculating the Frattini subgroup of a polycyclic group (given a consistent polycyclic presentation).

Known prior work:

- Gaschütz [1] and Eick [2], based on pre-Frattini groups (does not generalise to the infinite case).
- Baumslag, Cannonito, Robinson and Segal [3] (not practical)

Polycyclic groups: Definition and Examples

Definition: (Hirsch 1938 [4])

A group G is polycyclic if there exists a series of subnormal subgroups

 $G = G_1 > G_2 > \ldots > G_n > G_{n+1} = \{1\}$

so that G_i/G_{i+1} is (finite or infinite) cyclic for $1 \leq i \leq n$.

Polycyclic groups: Definition and Examples

Definition: (Hirsch 1938 [4])

A group G is polycyclic if there exists a series of subnormal subgroups

$$G = G_1 > G_2 > \ldots > G_n > G_{n+1} = \{1\}$$

so that G_i/G_{i+1} is (finite or infinite) cyclic for $1 \leq i \leq n$.

Example:

The following groups are polycyclic:

- finite soluble groups
- finitely generated abelian or nilpotent groups
- wallpaper groups, space groups
- extensions of polycyclic groups by polycyclic groups

Polycyclic groups: Definition and Examples

Definition: (Hirsch 1938 [4])

A group G is polycyclic if there exists a series of subnormal subgroups

 $G = G_1 > G_2 > \ldots > G_n > G_{n+1} = \{1\}$

so that G_i/G_{i+1} is (finite or infinite) cyclic for $1 \leq i \leq n$.

Example:

The following groups are not polycyclic:

- groups with non-abelian, free subgroups
- groups with non-finitely generated subgroups
- non-soluble groups

Let G be a polycyclic group, $N \trianglelefteq G$ a normal subgroup and $\pi: G \to G/N$ the natural epimorphism.

Let G be a polycyclic group, $N\trianglelefteq G$ a normal subgroup and $\pi:G\to G/N$ the natural epimorphism. Then

$$\phi(G) = \bigcap_{M \leqslant_{max} G} M$$

Let G be a polycyclic group, $N\trianglelefteq G$ a normal subgroup and $\pi:G\to G/N$ the natural epimorphism. Then

$$\Phi(G) = \bigcap_{M \leqslant_{max} G} M$$
$$= \begin{pmatrix} \bigcap_{M \leqslant_{max} G} & M \\ M \leqslant_{max} & G \\ N \subseteq M \end{pmatrix} \cap \begin{pmatrix} \bigcap_{M \leqslant_{max} G} & M \\ M \leqslant_{max} & G \\ N \not\subseteq M \end{pmatrix}$$

φ

Let G be a polycyclic group, $N\trianglelefteq G$ a normal subgroup and $\pi:G\to G/N$ the natural epimorphism. Then

$$(G) = \bigcap_{M \leq_{max} G} M$$
$$= \left(\bigcap_{\substack{M \leq_{max} G \\ N \subseteq M}} M \right) \cap \left(\bigcap_{\substack{M \leq_{max} G \\ N \not\subseteq M}} M \right)$$
$$= \pi^{-1}(\Phi(G/N)) \cap \underbrace{\left(\bigcap_{\substack{M \leq_{max} G \\ N \not\subseteq M}} M \right)}_{:=I(G,N)},$$

June 05, 2021 | M. Neumann-Brosig , B. Eick | Calculating the Frattini subgroup of a polycyclic group | Seite 3

φ

Let G be a polycyclic group, $N \trianglelefteq G$ a normal subgroup and $\pi: G \to G/N$ the natural epimorphism. Then

$$(G) = \bigcap_{M \leq max G} M$$

= $\left(\bigcap_{\substack{M \leq max G \\ N \subseteq M}} M \right) \cap \left(\bigcap_{\substack{M \leq max G \\ N \not\subseteq M}} M \right)$
= $\pi^{-1}(\Phi(G/N)) \cap \left(\bigcap_{\substack{M \leq max G \\ N \not\subseteq M}} M \right)$
:= $I(G,N)$

so if $\phi(G/N)$ and I(G, N) can be calculated effectively, an effective calculation of $\phi(G)$ is possible.

Which $N \trianglelefteq G$ to choose?

June 05, 2021 | M. Neumann-Brosig , B. Eick | Calculating the Frattini subgroup of a polycyclic group | Seite 4

Which $N \trianglelefteq G$ to choose?

• In case F = Fit(G) is not abelian, choose N = F'. Due to $F' \leq \phi(G)$, the intersection I(G, N) over maximal subgroups not containing N is empty, and $\phi(G)/F' = \phi(G/F')$.

- In case F = Fit(G) is not abelian, choose N = F'. Due to $F' \leq \phi(G)$, the intersection I(G, N) over maximal subgroups not containing N is empty, and $\phi(G)/F' = \phi(G/F')$.
- If G has a finite normal subgroup, G has a minimal (elementary abelian) normal subgroup. Choose any such subgroup N. The calculation of maximal subgroups of G not containing N corresponds to the calculation of all (finitely many) complements of N in G.

- In case F = Fit(G) is not abelian, choose N = F'. Due to $F' \leq \phi(G)$, the intersection I(G, N) over maximal subgroups not containing N is empty, and $\phi(G)/F' = \phi(G/F')$.
- If G has a finite normal subgroup, G has a minimal (elementary abelian) normal subgroup. Choose any such subgroup N. The calculation of maximal subgroups of G not containing N corresponds to the calculation of all (finitely many) complements of N in G.
- If *G* has nontrivial centre, then *G* has nontrivial normal torsion or an infinite central subgroup $C \trianglelefteq G$. In the latter case, choose N = C.

- In case F = Fit(G) is not abelian, choose N = F'. Due to $F' \leq \phi(G)$, the intersection I(G, N) over maximal subgroups not containing N is empty, and $\phi(G)/F' = \phi(G/F')$.
- If G has a finite normal subgroup, G has a minimal (elementary abelian) normal subgroup. Choose any such subgroup N. The calculation of maximal subgroups of G not containing N corresponds to the calculation of all (finitely many) complements of N in G.
- If *G* has nontrivial centre, then *G* has nontrivial normal torsion or an infinite central subgroup $C \trianglelefteq G$. In the latter case, choose N = C.
- Let F = Fit(G). If G does not act semisimply on F/F^p for all but finitely many primes p, then there is a normal subgroup $L \leq G$ with $L \leq \Phi(G)$ that can be calculated from the radical of $F \otimes_{\mathbb{Z}} \mathbb{Q}$. Choose N = L.

- In case F = Fit(G) is not abelian, choose N = F'. Due to $F' \leq \phi(G)$, the intersection I(G, N) over maximal subgroups not containing N is empty, and $\phi(G)/F' = \phi(G/F')$.
- If G has a finite normal subgroup, G has a minimal (elementary abelian) normal subgroup. Choose any such subgroup N. The calculation of maximal subgroups of G not containing N corresponds to the calculation of all (finitely many) complements of N in G.
- If *G* has nontrivial centre, then *G* has nontrivial normal torsion or an infinite central subgroup $C \trianglelefteq G$. In the latter case, choose N = C.
- Let F = Fit(G). If G does not act semisimply on F/F^p for all but finitely many primes p, then there is a normal subgroup $L \leq G$ with $L \leq \Phi(G)$ that can be calculated from the radical of $F \otimes_{\mathbb{Z}} \mathbb{Q}$. Choose N = L.
- If none of the above approaches yield nontrivial normal subgroups, φ(G) is trivial.

The algorithm: infinite cyclic central normal subgroups

Definition:

Let G be polycyclic, $N \cong \mathbb{Z}$ and $N \leq Z(G)$. Then $I_p(G, N)$ denotes the intersection of all maximal subgroups M of G having p-power index in G and satisfying $N \leq M$.

June 05, 2021 | M. Neumann-Brosig , B. Eick | Calculating the Frattini subgroup of a polycyclic group | Seite 5

The algorithm: infinite cyclic central normal subgroups

Definition:

Let G be polycyclic, $N \cong \mathbb{Z}$ and $N \leq Z(G)$. Then $I_p(G, N)$ denotes the intersection of all maximal subgroups M of G having p-power index in G and satisfying $N \leq M$.

This definition implies

$$I(G, N) = \bigcap_{p \text{ prime}} I_p(G, N)$$

The algorithm: infinite cyclic central normal subgroups

Definition:

Let G be polycyclic, $N \cong \mathbb{Z}$ and $N \leq Z(G)$. Then $I_p(G, N)$ denotes the intersection of all maximal subgroups M of G having p-power index in G and satisfying $N \leq M$.

This definition implies

$$I(G, N) = \bigcap_{p \text{ prime}} I_p(G, N)$$

Theorem:

Let N be an infinite cyclic, central subgroup of G. Then one of the following cases applies:

- If N/N^p only has complements in G/N^p for finitely many p, then there exists a finite set of primes P so that I(G, N) = ∩_{p∈P}I_p(G, N).
- 2. If N/N^p has a complement in G/N^p for infinitely many primes p, then I(G, N) = G'.

Theorem:

Let G be polycyclic, $N \trianglelefteq G$, $N \cong \mathbb{Z}^d$. Then one of the following two cases holds:

- G acts semisimply on N/N^p for almost all primes p. This is the case if and only if the induced action of G on Q^d = N ⊗_Z Q is semisimple.
- G acts semisimply on N/N^p for only finitely primes p. This is the case if and only if the induced action of G on Q^d = N ⊗_Z Q is not semisimple.

Definition:

Let G be polycyclic and F = Fit(G). If

- F is free abelian and
- G has no finite non-trivial normal subgroups,
- G has trivial centre,
- G acts semisimply on F $\otimes_{\mathbb{Z}} \mathbb{Q}$

then G has property \mathcal{P} .

Definition:

Let G be polycyclic and F = Fit(G). If

- F is free abelian and
- G has no finite non-trivial normal subgroups,
- G has trivial centre,
- G acts semisimply on $F \otimes_{\mathbb{Z}} \mathbb{Q}$

then G has property \mathcal{P} .

The normal subgroups discussed so far yield an iteration step if and only if G does not have property \mathcal{P} .

June 05, 2021 | M. Neumann-Brosig , B. Eick | Calculating the Frattini subgroup of a polycyclic group | Seite 7

Theorem:

Let G have property \mathfrak{P} and F = Fit(G). Then:

- $H^2(G/F, F)$ is finite,
- F/F^p has a complement in G/F^p for almost all primes p and
- φ(G) is trivial.

Theorem:

Let G have property \mathfrak{P} and F = Fit(G). Then:

- $H^2(G/F, F)$ is finite,
- F/F^p has a complement in G/F^p for almost all primes p and
- φ(G) is trivial.

The algorithm yields an answer after a finite number of iterations, because

- polycyclic groups are Hopfian and
- every ascending series of (normal) subgroups stabilizes after finitely many steps.

Bibliography I

[1] Wolfgang Gaschütz.

Praefrattinigruppen.

Arch. Math. (Basel), 13:418-426, 1962.

[2] Bettina Eick.

Special presentations for finite soluble groups and computing (pre-)Frattini subgroups.

In Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 101–112. Amer. Math. Soc., Providence, RI, 1997.

[3] Gilbert Baumslag, Frank B. Cannonito, Derek J. S. Robinson, and Dan Segal.

The algorithmic theory of polycyclic-by-finite groups.

J. Alg., 142:118 - 149, 1991.

[4] K. A. Hirsch.

On infinite soluble groups (I).

Proc. London Math. Soc., 44(2):53 - 60, 1938.

