Schur's exponent conjecture for p-groups of class p

Patali K.
IISER TVM
June 5, 2020

Introduction

Let G be a group.
The Schur Multiplier $M(G)$ of G :
The second homology group $H_{2}(G, \mathbb{Z})$ of G with coefficients in integers.
Conjecture:
Does $\exp (M(G)) \mid \exp (G)$ for every group G ?

Introduction

Let G be a group.
The Schur Multiplier $M(G)$ of G :
The second homology group $H_{2}(G, \mathbb{Z})$ of G with coefficients in integers.
Conjecture:
Does $\exp (M(G)) \mid \exp (G)$ for every group G ?

Theorem A (A. Antony, P. Komma, V.Z. Thomas, Commutator expansions and the Schur Multiplier 2019)

Let G be a finite p-group of class p, then the exponent of the Schur multiplier $M(G)$ of G divides the exponent of G.

Notations

Notations:

- ${ }^{x} y=x y x^{-1}$ and $[x, y]=x y x^{-1} y^{-1}$.
- right normed notation for commutators:
$[z, y, x]$ denote $[z,[y, x]]$.
- $\left[{ }_{n} x, y\right]=[\underbrace{x, x, \ldots, x}_{n \text {-times }}, y]$.
- $\gamma_{1}(G)=G, \gamma_{i}(G)=\left[G, \gamma_{i-1}(G)\right]$ for $i \geq 2$.

The nilpotency class of G is c if $\gamma_{c}(G) \neq\{e\}$ and $\gamma_{c+1}(G)=\{e\}$.

- A group G is n-central if $g^{n} \in Z(G)$ for every $g \in G$. In other words G is n-central if $\left.\exp \left(\frac{G}{Z(G)}\right) \right\rvert\, n$.

Theorem B

Definition

A covering group of G is a central extension

$$
0 \rightarrow Z \rightarrow E \rightarrow G \rightarrow 1
$$

of G such that $Z \subset Z(E) \cap \gamma_{2}(E)$ and $Z \cong M(G)$.

Theorem B

Let G be a p-group of class $p+1$. If G is p^{n}-central then $\exp \left(\gamma_{2}(G)\right) \mid p^{n}$.
To prove Theorem A it is enough to prove Theorem B.

Theorem B

Definition

A covering group of G is a central extension

$$
0 \rightarrow Z \rightarrow E \rightarrow G \rightarrow 1
$$

of G such that $Z \subset Z(E) \cap \gamma_{2}(E)$ and $Z \cong M(G)$.

Theorem B

Let G be a p-group of class $p+1$. If G is p^{n}-central then $\exp \left(\gamma_{2}(G)\right) \mid p^{n}$.
To prove Theorem A it is enough to prove Theorem B.

Lemma

Let G be a regular p-group or a p-group of class p. If G is p^{n}-central, then $\exp \left(\gamma_{2}(G)\right) \mid p^{n}$.

Commutator collection formula

Let G be a group $a, b \in G$. Then $\mathcal{A}_{i}(\{a, b\})$ denote all basic commutators of a, b of weight $\leq i$. Commutator collection formula:

$$
(a b)^{n}=\prod_{C \in \mathcal{A}_{i}(\{a, b\})} C^{f_{C}(n)} a^{n} b^{n} \quad \bmod \gamma_{i+1}(\langle a, b\rangle) .
$$

Commutator collection formula

Let G be a group $a, b \in G$. Then
$\mathcal{A}_{i}(\{a, b\})$ denote all basic commutators of a, b of weight $\leq i$.
Commutator collection formula:

$$
(a b)^{n}=\prod_{C \in \mathcal{A}_{i}(\{a, b\})} C^{f_{C}(n)} a^{n} b^{n} \quad \bmod \gamma_{i+1}(\langle a, b\rangle) .
$$

For a basic commutator C of a, b

$$
f_{C}(n)=a_{1}\binom{n}{1}+\cdots+a_{r_{C}}\binom{n}{r_{C}}
$$

where r_{C} is the largest r with $a_{r} \neq 0, a_{i}$ are non negative integers depending only on the commutator C. Moreover, $r_{C} \leq$ weight of C in a, b. Remark:
Let p be a prime. Then $p^{n} \left\lvert\,\binom{ p^{n}}{r}\right.$ for $r<p$.

Proof of Theorem B

Proof of Theorem B:

We have class $(G)=p+1$, and $G^{p^{n}} \subset Z(G)$.
claim: $[b, a]^{p^{n}}=1$ for every $a, b \in G$.

Proof of Theorem B

Proof of Theorem B:

We have class $(G)=p+1$, and $G^{p^{n}} \subset Z(G)$.
claim: $[b, a]^{p^{n}}=1$ for every $a, b \in G$.

$$
1=\left[b, a^{p^{n}}\right]=b a^{p^{n}} b^{-1} a^{-p^{n}}=\left({ }^{b} a\right)^{p^{n}} a^{-p^{n}}=([b, a] a)^{p^{n}} a^{-p^{n}} .
$$

Applying commutator collection formula we obtain

$$
1=\prod_{C \in \mathcal{A}_{p}(\{[b, a], a\})} C^{f_{C}\left(p^{n}\right)}[b, a]^{p^{n}} .
$$

Proof of Theorem B

Proof of Theorem B:

We have class $(G)=p+1$, and $G^{p^{n}} \subset Z(G)$.
claim: $[b, a]^{p^{n}}=1$ for every $a, b \in G$.

$$
1=\left[b, a^{p^{n}}\right]=b a^{p^{n}} b^{-1} a^{-p^{n}}=\left({ }^{b} a\right)^{p^{n}} a^{-p^{n}}=([b, a] a)^{p^{n}} a^{-p^{n}} .
$$

Applying commutator collection formula we obtain

$$
1=\prod_{C \in \mathcal{A}_{p}(\{[b, a], a\})} C^{f_{C}\left(p^{n}\right)}[b, a]^{p^{n}} .
$$

- If weight $(C) \leq p-1$ in $a,[b, a]$ then $p^{n} \mid f_{C}\left(p^{n}\right)$. As class $(\langle[b, a], a\rangle) \leq p, C^{p^{n}}=1$.

Proof of Theorem B

Proof of Theorem B:

We have class $(G)=p+1$, and $G^{p^{n}} \subset Z(G)$.
claim: $[b, a]^{p^{n}}=1$ for every $a, b \in G$.

$$
1=\left[b, a^{p^{n}}\right]=b a^{p^{n}} b^{-1} a^{-p^{n}}=\left({ }^{b} a\right)^{p^{n}} a^{-p^{n}}=([b, a] a)^{p^{n}} a^{-p^{n}} .
$$

Applying commutator collection formula we obtain

$$
1=\prod_{C \in \mathcal{A}_{p}(\{[b, a], a\})} C^{f_{C}\left(p^{n}\right)}[b, a]^{p^{n}} .
$$

- If weight $(C) \leq p-1$ in $a,[b, a]$ then $p^{n} \mid f_{C}\left(p^{n}\right)$. As class $(\langle[b, a], a\rangle) \leq p, C^{p^{n}}=1$.
- If C has weight r in $[b, a]$ and $p-r$ in a, then $C \in \gamma_{2 r+p-r}(G)$. $\gamma_{p+2}(G)=1$ gives $2 r+p-r=p+1$. Thus $r=1$ and $C=\left[{ }_{p-1} a,[b, a]\right]$.

Proof of the Theorem B

- We deduce that

$$
\begin{equation*}
1=\left[{ }_{p-1} a,[b, a]\right]^{\left(p_{p}^{n}\right)}[b, a]^{p^{n}} . \tag{0.1}
\end{equation*}
$$

Proof of the Theorem B

- We deduce that

$$
\begin{equation*}
1=\left[{ }_{p-1} a,[b, a]\right]^{\left(p_{p}^{n}\right)}[b, a]^{p^{n}} . \tag{0.1}
\end{equation*}
$$

- By replacing a with $a b$ in equation (0.1) we have

$$
\begin{equation*}
\left.\left(\prod_{x_{i} \in\{a, b\}}\left[x_{p-1}, x_{p-2}, \ldots, x_{1},[b, a]\right]\right)^{\left({ }^{p_{p}^{n}}\right.}{ }^{2}\right)[b, a]^{p^{n}}=1 . \tag{0.2}
\end{equation*}
$$

- Let $E_{r}=\prod \quad\left[x_{p-1}, x_{p-2}, \ldots, x_{1},[b, a]\right]$, $0 \leq r \leq p-a$.

Proof of the Theorem B

- We deduce that

$$
\begin{equation*}
1=\left[{ }_{p-1} a,[b, a]\right]{ }^{\left(p_{p}^{n}\right)}[b, a]^{p^{n}} . \tag{0.1}
\end{equation*}
$$

- By replacing a with $a b$ in equation (0.1) we have

$$
\begin{equation*}
\left.\left(\prod_{x_{i} \in\{a, b\}}\left[x_{p-1}, x_{p-2}, \ldots, x_{1},[b, a]\right]\right)^{\left({ }^{p_{p}^{n}}\right.}{ }^{2}\right)[b, a]^{p^{n}}=1 . \tag{0.2}
\end{equation*}
$$

- Let $E_{r}=\prod \quad\left[x_{p-1}, x_{p-2}, \ldots, x_{1},[b, a]\right]$, $x_{i} \in\{a, b\}, x_{i}=b$ for exactly $r x_{i}^{\prime} s$
$0 \leq r \leq p-a$.
- The above equation becomes $\left(\prod_{r=0}^{p-1} E_{r}\right)^{\left(\rho^{p^{n}}\right)}[b, a]^{p^{n}}=1$. Comparing it with (0.1) gives

$$
\begin{equation*}
\left(\prod_{r=1}^{p-1} E_{r}\right)^{\binom{p^{n}}{p}}=1 \tag{0.3}
\end{equation*}
$$

Proof of Theorem B

Definition

$\alpha_{m}(n)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m-1}<n}\binom{n}{i_{m-1}}\binom{i_{m-1}}{i_{m-2}} \ldots\binom{i_{2}}{i_{1}}$, where $1<m \leq n \in \mathbb{N}$.

Proof of Theorem B

Definition

$\alpha_{m}(n)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m-1}<n}\binom{n}{i_{m-1}}\binom{i_{m-1}}{i_{m-2}} \ldots\binom{i_{2}}{i_{1}}$, where $1<m \leq n \in \mathbb{N}$.
Example:
The values of $\alpha_{m}(n)$ for $2 \leq m \leq n \leq 4$ are listed below:

$$
\begin{aligned}
& \alpha_{2}(2)=\binom{2}{1}=2, \alpha_{2}(3)=\binom{3}{1}+\binom{3}{2}=6, \\
& \alpha_{2}(4)=\binom{4}{1}+\binom{4}{2}+\binom{4}{3}=14, \\
& \alpha_{3}(3)=\binom{3}{2}\binom{2}{1}=6, \alpha_{3}(4)=\binom{4}{2}\binom{2}{1}+\binom{4}{3}\binom{3}{1}+\binom{4}{3}\binom{3}{2}=36, \\
& \alpha_{4}(4)=\binom{4}{3}\binom{3}{2}\binom{2}{1}=24 .
\end{aligned}
$$

Proof of Theorem B

Observation: Replacing a with $a b$ in E_{r} gives $\prod_{s=r}^{p-1} E_{s}^{\binom{s}{r}}$.

Lemma 2

For $2<m \leq n, \alpha_{m}(n)=\sum_{k=m-1}^{n-1}\binom{n}{k} \alpha_{m-1}(k)$.

Proof of Theorem B

Observation: Replacing a with $a b$ in E_{r} gives $\prod_{s=r}^{p-1} E_{s}^{\binom{s}{r}}$.

Lemma 2

For $2<m \leq n, \alpha_{m}(n)=\sum_{k=m-1}^{n-1}\binom{n}{k} \alpha_{m-1}(k)$.

$$
\begin{equation*}
\text { We prove that for } 2 \leq m \leq p-1, \prod_{k=m}^{p-1}\left(E_{k} \alpha_{m}(k)\right)^{\binom{p^{n}}{p}}=1 \tag{0.4}
\end{equation*}
$$

In particular, $E_{p-1}^{\alpha_{p-1}(p-1)\binom{p^{n}}{p}}=1$.

Proof of Theorem B

Observation: Replacing a with $a b$ in E_{r} gives $\prod_{s=r}^{p-1} E_{s}^{\binom{s}{r}}$.

Lemma 2

For $2<m \leq n, \alpha_{m}(n)=\sum_{k=m-1}^{n-1}\binom{n}{k} \alpha_{m-1}(k)$.

$$
\begin{equation*}
\text { We prove that for } 2 \leq m \leq p-1, \prod_{k=m}^{p-1}\left(E_{k} \alpha_{m}(k)\right)^{\binom{p^{n}}{p}}=1 \tag{0.4}
\end{equation*}
$$

In particular, $E_{p-1}^{\alpha_{p-1}(p-1)\binom{p^{n}}{p}}=1$.
\quad - As $\alpha_{p-1}(p-1)=(p-1)!, E_{p-1}^{\left(p_{p}^{n}\right)}=1$.

Proof of Theorem B

Observation: Replacing a with $a b$ in E_{r} gives $\prod_{s=r}^{p-1} E_{s}^{\left(\frac{s}{r}\right)}$.

Lemma 2

For $2<m \leq n, \alpha_{m}(n)=\sum_{k=m-1}^{n-1}\binom{n}{k} \alpha_{m-1}(k)$.

$$
\begin{equation*}
\text { We prove that for } 2 \leq m \leq p-1, \prod_{k=m}^{p-1}\left(E_{k}^{\alpha_{m}(k)}\right)^{\left(p_{p}^{p}\right)}=1 . \tag{0.4}
\end{equation*}
$$

In particular, $E_{p-1}^{\alpha_{p-1}(p-1)\binom{p^{n}}{p}}=1$.

- As $\alpha_{p-1}(p-1)=(p-1)!, E_{p-1}^{\left(\begin{array}{c}p_{p}^{n}\end{array}\right)}=1$.
- $E_{p-1}=\left[{ }_{p-1} b,[b, a]\right],\left(E_{p-1}\right)^{-1}=\left[{ }_{p-1} b,[a, b]\right]$. Thus

$$
\begin{equation*}
\left[{ }_{p-1} b,[a, b]\left({ }^{\left(\rho_{p}\right)}\right)=1\right. \tag{0.5}
\end{equation*}
$$

Interchanging a, b in (0.5) gives $[p-1 a,[b, a]]^{\left(\rho_{p}^{n}\right)}=1$ as required.

Example

- Let $p=5$, equation (0.2) gives

$$
\begin{equation*}
\left(E_{1} E_{2} E_{3} E_{4}\right)^{\binom{5^{n}}{5}}=1 \tag{0.6}
\end{equation*}
$$

- Replacement of a in (0.6) with $a b$ gives

$$
\begin{equation*}
\left(\left(E_{1} E_{2}^{2} E_{3}^{3} E_{4}^{4}\right)\left(E_{2} E_{3}^{3} E_{4}^{6}\right)\left(E_{3} E_{4}^{4}\right)\left(E_{4}\right)\right)^{\binom{5^{n}}{5}}=1 \tag{0.7}
\end{equation*}
$$

Example

- Let $p=5$, equation (0.2) gives

$$
\begin{equation*}
\left(E_{1} E_{2} E_{3} E_{4}\right)^{\binom{5^{n}}{5}}=1 \tag{0.6}
\end{equation*}
$$

- Replacement of a in (0.6) with $a b$ gives

$$
\begin{equation*}
\left(\left(E_{1} E_{2}^{2} E_{3}^{3} E_{4}^{4}\right)\left(E_{2} E_{3}^{3} E_{4}^{6}\right)\left(E_{3} E_{4}^{4}\right)\left(E_{4}\right)\right)^{\binom{5^{n}}{5}}=1 \tag{0.7}
\end{equation*}
$$

- Comparing (0.6) and (0.7), $\left(\left(E_{2}^{2} E_{3}^{3} E_{4}^{4}\right)\left(E_{3}^{3} E_{4}^{6}\right)\left(E_{4}^{4}\right)\right)^{\binom{5^{n}}{5}}=1$.

$$
\begin{equation*}
\text { Thus }\left(E_{2}^{2} E_{3}^{6} E_{4}^{14}\right)^{\binom{5^{n}}{5}}=1 \tag{0.8}
\end{equation*}
$$

- Again replacement of a in (0.8) with $a b$ yields,

$$
\begin{equation*}
\left(\left(E_{2} E_{3}^{3} E_{4}^{6}\right)^{2}\left(E_{3} E_{4}^{4}\right)^{6} E_{4}^{14}\right)^{\binom{5^{n}}{5}}=1 \tag{0.9}
\end{equation*}
$$

Example

- Now by comparing (0.8) and (0.9) we get $\left(\left(E_{3}^{3} E_{4}^{6}\right)^{2}\left(E_{4}^{4}\right)^{6}\right)^{\left(\frac{5^{n}}{5}\right)}=1$. This gives

$$
\begin{equation*}
\left(E_{3}^{6} E_{4}^{36}\right)^{\left(\frac{5^{n}}{5}\right)}=1 \tag{0.10}
\end{equation*}
$$

Example

- Now by comparing (0.8) and (0.9) we get $\left(\left(E_{3}^{3} E_{4}^{6}\right)^{2}\left(E_{4}^{4}\right)^{6}\right)^{\left(\frac{5}{5}\right)}=1$. This gives

$$
\begin{equation*}
\left(E_{3}^{6} E_{4}^{36}\right)^{\left(\frac{5^{n}}{5}\right)}=1 \tag{0.10}
\end{equation*}
$$

- After replacing a in (0.10) with $a b,(0.10)$ becomes

$$
\begin{equation*}
\left(\left(E_{3} E_{4}^{4}\right)^{6} E_{4}^{36}\right)^{\binom{5^{n}}{5}}=1 \tag{0.11}
\end{equation*}
$$

Example

- Now by comparing (0.8) and (0.9) we get $\left(\left(E_{3}^{3} E_{4}^{6}\right)^{2}\left(E_{4}^{4}\right)^{6}\right)^{\binom{5^{n}}{5}}=1$. This gives

$$
\begin{equation*}
\left(E_{3}^{6} E_{4}^{36}\right)^{\left(\frac{5 n}{5}\right)}=1 \tag{0.10}
\end{equation*}
$$

- After replacing a in (0.10) with $a b,(0.10)$ becomes

$$
\begin{equation*}
\left(\left(E_{3} E_{4}^{4}\right)^{6} E_{4}^{36}\right)^{\binom{5^{n}}{5}}=1 \tag{0.11}
\end{equation*}
$$

- Finally comparing (0.10) and (0.11) yields

$$
\begin{equation*}
\left(E_{4}^{24}\right)^{\binom{5^{n}}{5}}=1 . \tag{0.12}
\end{equation*}
$$

Thank You

