ON THE MAXIMAL SIZE OF A SET OF ELEMENTS PAIRWISE GENERATING THE SYMMETRIC GROUPS OF EVEN DEGREE

Martino Garonzi, University of Brasilia, Brasilia (DF, Brazil). Joint work with

Francesco Fumagalli, University of Firenze, Firenze (Italy), Attila Maróti, Rényi Institute of Mathematics, Budapest (Hungary).

Binghamton University
April $13^{\text {th }}, 2021$

We dedicated this work to the memory of Carlo Casolo (1958-2020).

Let G be a group that can be generated by two elements but not by one element. For instance, all finite nonabelian simple groups have this property (this is a consequence of the CFSG).

Let G be a group that can be generated by two elements but not by one element. For instance, all finite nonabelian simple groups have this property (this is a consequence of the CFSG).

The generating graph of G, introduced by M.W. Liebeck and A. Shalev in [8], is the simple graph whose vertices are the elements of G and there is an edge between two vertices x and y if and only if $\langle x, y\rangle=G$.

Let G be a group that can be generated by two elements but not by one element. For instance, all finite nonabelian simple groups have this property (this is a consequence of the CFSG).

The generating graph of G, introduced by M.W. Liebeck and A. Shalev in [8], is the simple graph whose vertices are the elements of G and there is an edge between two vertices x and y if and only if $\langle x, y\rangle=G$.
A graph is said to be complete if there are edges connecting any two of its vertices. The generating graph of a noncyclic 2-generated group G is never complete because of the identity element.

Let G be a group that can be generated by two elements but not by one element. For instance, all finite nonabelian simple groups have this property (this is a consequence of the CFSG).

The generating graph of G, introduced by M.W. Liebeck and A. Shalev in [8], is the simple graph whose vertices are the elements of G and there is an edge between two vertices x and y if and only if $\langle x, y\rangle=G$.

A graph is said to be complete if there are edges connecting any two of its vertices. The generating graph of a noncyclic 2-generated group G is never complete because of the identity element.

A clique of a graph is a complete subgraph. The clique number of G is the maximal size of a clique in the generating graph of G. It is denoted by $\omega(G)$ (although some authors denote it $\mu(G)$).

Let G be a group that can be generated by two elements but not by one element. For instance, all finite nonabelian simple groups have this property (this is a consequence of the CFSG).

The generating graph of G, introduced by M.W. Liebeck and A. Shalev in [8], is the simple graph whose vertices are the elements of G and there is an edge between two vertices x and y if and only if $\langle x, y\rangle=G$.

A graph is said to be complete if there are edges connecting any two of its vertices. The generating graph of a noncyclic 2-generated group G is never complete because of the identity element.

A clique of a graph is a complete subgraph. The clique number of G is the maximal size of a clique in the generating graph of G. It is denoted by $\omega(G)$ (although some authors denote it $\mu(G)$).
In other words, $\omega(G)$ is the maximal size of a subset S of G with the property that any two distinct elements of S generate G.

It is hard to draw generating graphs in a meaningful way, because either there are too many edges or the graph is too simple.

It is hard to draw generating graphs in a meaningful way, because either there are too many edges or the graph is too simple.

To understand the idea, here is the complement of the generating graph of the alternating group A_{4} with the identity element removed from the set of vertices.

It is hard to draw generating graphs in a meaningful way, because either there are too many edges or the graph is too simple.

To understand the idea, here is the complement of the generating graph of the alternating group A_{4} with the identity element removed from the set of vertices.
(132)
(123)
(124)
(142)

It is hard to draw generating graphs in a meaningful way, because either there are too many edges or the graph is too simple.

To understand the idea, here is the complement of the generating graph of the alternating group A_{4} with the identity element removed from the set of vertices.
(132)
(123)
(124)
(142)

In this case, a maximal clique of the generating graph is obtained by choosing a representative in each connected component of the above graph.

It is hard to draw generating graphs in a meaningful way, because either there are too many edges or the graph is too simple.
To understand the idea, here is the complement of the generating graph of the alternating group A_{4} with the identity element removed from the set of vertices.
(132)
(123)
(124)
(142)

In this case, a maximal clique of the generating graph is obtained by choosing a representative in each connected component of the above graph.

Note (for later) that the subgroups generated by the connected components form a minimal covering of A_{4}.

No group is the union of two proper subgroups.

No group is the union of two proper subgroups.
A group G is a union of three proper subgroups A, B, C if and only if $G / N \cong C_{2} \times C_{2}$ where $N:=A \cap B \cap C \unlhd G$. (Scorza, 1926.)

No group is the union of two proper subgroups.
A group G is a union of three proper subgroups A, B, C if and only if $G / N \cong C_{2} \times C_{2}$ where $N:=A \cap B \cap C \unlhd G$. (Scorza, 1926.)

A covering of a non-cyclic group G is a family of proper subgroups of G whose union is G. In 1994, Cohn defined $\sigma(G)$ to be the smallest size of a covering of G. This is called the covering number of G.

This is because if $x, y \in G$ generate G then they cannot lie in the same proper

No group is the union of two proper subgroups.
A group G is a union of three proper subgroups A, B, C if and only if $G / N \cong C_{2} \times C_{2}$ where $N:=A \cap B \cap C \unlhd G$. (Scorza, 1926.)

A covering of a non-cyclic group G is a family of proper subgroups of G whose union is \boldsymbol{G}. In 1994, Cohn defined $\sigma(G)$ to be the smallest size of a covering of G. This is called the covering number of G.

If G is cyclic, we set $\sigma(G)=\infty$ for consistency of notation, with the convention that $m<\infty$ for every integer m.

No group is the union of two proper subgroups.
A group G is a union of three proper subgroups A, B, C if and only if $G / N \cong C_{2} \times C_{2}$ where $N:=A \cap B \cap C \unlhd G$. (Scorza, 1926.)

A covering of a non-cyclic group G is a family of proper subgroups of G whose union is \boldsymbol{G}. In 1994, Cohn defined $\sigma(G)$ to be the smallest size of a covering of G. This is called the covering number of G.
If G is cyclic, we set $\sigma(G)=\infty$ for consistency of notation, with the convention that $m<\infty$ for every integer m.

We have a basic but very important inequality:

$$
\omega(G) \leq \sigma(G)
$$

This is because if $x, y \in G$ generate G then they cannot lie in the same proper subgroup of G.

No group is the union of two proper subgroups.
A group G is a union of three proper subgroups A, B, C if and only if $G / N \cong C_{2} \times C_{2}$ where $N:=A \cap B \cap C \unlhd G$. (Scorza, 1926.)

A covering of a non-cyclic group G is a family of proper subgroups of G whose union is \boldsymbol{G}. In 1994, Cohn defined $\sigma(G)$ to be the smallest size of a covering of G. This is called the covering number of G.

If G is cyclic, we set $\sigma(G)=\infty$ for consistency of notation, with the convention that $m<\infty$ for every integer m.

We have a basic but very important inequality:

$$
\omega(G) \leq \sigma(G)
$$

This is because if $x, y \in G$ generate G then they cannot lie in the same proper subgroup of G.

It is a natural question to ask whether $\omega(G)=\sigma(G)$ for a given G.

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).
(-) $\sigma\left(S_{n}\right)=2^{n-1}$ for $9 \neq n \geq 7$ odd, Maróti (2005).

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).
(- $\sigma\left(S_{n}\right)=2^{n-1}$ for $9 \neq n \geq 7$ odd, Maróti (2005).
(0) $\sigma\left(S_{6}\right)=13$, Abdollahi, Ashraf and Shaker (2007).

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).
(- $\sigma\left(S_{n}\right)=2^{n-1}$ for $9 \neq n \geq 7$ odd, Maróti (2005).
(0) $\sigma\left(S_{6}\right)=13$, Abdollahi, Ashraf and Shaker (2007).
($\sigma\left(S_{8}\right)=64, \sigma\left(S_{9}\right)=256=2^{9-1}, \sigma\left(S_{10}\right)=221, \sigma\left(S_{12}\right)=761$, Kappe, Nikolova-Popova and Swartz (2016).

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).
(- $\sigma\left(S_{n}\right)=2^{n-1}$ for $9 \neq n \geq 7$ odd, Maróti (2005).
(0) $\sigma\left(S_{6}\right)=13$, Abdollahi, Ashraf and Shaker (2007).
(. $\sigma\left(S_{8}\right)=64, \sigma\left(S_{9}\right)=256=2^{9-1}, \sigma\left(S_{10}\right)=221, \sigma\left(S_{12}\right)=761$, Kappe, Nikolova-Popova and Swartz (2016).

- $\sigma\left(S_{n}\right)$ for $n \geq 18$ divisible by 6 , Swartz (2016).

The invariant $\sigma(G)$ has a reasonable history. One very basic fact is that if $N \unlhd G$ then

$$
\sigma(G) \leq \sigma(G / N)
$$

because every covering of G / N can be lifted to a covering of G.
We will list some facts about $G=S_{n}$, the symmetric group.
(1) $\sigma\left(S_{3}\right)=4$, the Sylow subgroups form a minimal covering.
(2) $\sigma\left(S_{4}\right)=4$ because S_{4} has S_{3} as homomorphic image.
(3) $\sigma\left(S_{5}\right)=16$, Cohn (1994).
(- $\sigma\left(S_{n}\right)=2^{n-1}$ for $9 \neq n \geq 7$ odd, Maróti (2005).
(0) $\sigma\left(S_{6}\right)=13$, Abdollahi, Ashraf and Shaker (2007).
(. $\sigma\left(S_{8}\right)=64, \sigma\left(S_{9}\right)=256=2^{9-1}, \sigma\left(S_{10}\right)=221, \sigma\left(S_{12}\right)=761$, Kappe, Nikolova-Popova and Swartz (2016).

- $\sigma\left(S_{n}\right)$ for $n \geq 18$ divisible by 6, Swartz (2016).
(3) $\sigma\left(S_{14}\right)=3096$, Oppenheim and Swartz (2019).

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.

Consider $G=S_{n}$ with n odd.
The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

In order to prove that $\sigma(G)=X$ one usually proves that

Consider $G=S_{n}$ with n odd.

The works of Maróti ($n \neq 9$), Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{(n-1) / 2}\binom{n}{i}=2^{n-1} .
$$

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{(n-1) / 2}\binom{n}{i}=2^{n-1} .
$$

In order to prove that $\sigma(G)=X$ one usually proves that

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{(n-1) / 2}\binom{n}{i}=2^{n-1} .
$$

In order to prove that $\sigma(G)=X$ one usually proves that

- Upper bound. $\sigma(G) \leq X$ by exhibiting a covering of size X.

Consider $G=S_{n}$ with n odd.

The works of Maróti $(n \neq 9)$, Kappe, Nikolova-Popova and Swartz $(n=9)$ show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{(n-1) / 2}\binom{n}{i}=2^{n-1} .
$$

In order to prove that $\sigma(G)=X$ one usually proves that

- Upper bound. $\sigma(G) \leq X$ by exhibiting a covering of size X.
- Lower bound. $\sigma(G) \geq X$ by finding a set Π of elements of G that require at least X proper subgroups to be covered.

Consider $G=S_{n}$ with n odd.

The works of Maróti ($n \neq 9$), Kappe, Nikolova-Popova and Swartz ($n=9$) show that a minimal covering of G is given by the following subgroups.

- The alternating group A_{n}.
- The intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq(n-1) / 2$.

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{(n-1) / 2}\binom{n}{i}=2^{n-1} .
$$

In order to prove that $\sigma(G)=X$ one usually proves that

- Upper bound. $\sigma(G) \leq X$ by exhibiting a covering of size X.
- Lower bound. $\sigma(G) \geq X$ by finding a set Π of elements of G that require at least X proper subgroups to be covered.
In the case of S_{n} with n odd, the above set Π is given by the elements of S_{n} that are product of at most two disjoint cycles.

Let us look closely at Swartz's result about S_{n} when n is divisible by 6 , since this was one of our starting points.

We will leave $n=18$ out since it is a bit different. If $n \geq 24$ is divisible by 6 then

A minimal covering is given by

- the alternating group A_{n},
- the intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq n / 3-1$,
- the imprimitive maximal subgroups $S_{n / 2}$ \& S_{2} stabilizing partitions with two blocks of equal size.

Let us look closely at Swartz's result about S_{n} when n is divisible by 6 , since this was one of our starting points.

We will leave $n=18$ out since it is a bit different. If $n \geq 24$ is divisible by 6 then

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{n / 3-1}\binom{n}{i}+\frac{1}{2}\binom{n}{n / 2}
$$

A minimal covering is given by

- the alternating group A_{n},
- the imprimitive maximal subgroups $S_{n / 2}$ < S_{2} stabilizing partitions with two

Let us look closely at Swartz's result about S_{n} when n is divisible by 6 , since this was one of our starting points.
We will leave $n=18$ out since it is a bit different. If $n \geq 24$ is divisible by 6 then

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{n / 3-1}\binom{n}{i}+\frac{1}{2}\binom{n}{n / 2}
$$

A minimal covering is given by

- the alternating group A_{n},
- the intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq n / 3-1$,
- the imprimitive maximal subgroups $S_{n / 2}$ ८ S_{2} stabilizing partitions with two blocks of equal size.

Let us look closely at Swartz's result about S_{n} when n is divisible by 6 , since this was one of our starting points.
We will leave $n=18$ out since it is a bit different. If $n \geq 24$ is divisible by 6 then

$$
\sigma\left(S_{n}\right)=1+\sum_{i=1}^{n / 3-1}\binom{n}{i}+\frac{1}{2}\binom{n}{n / 2}
$$

A minimal covering is given by

- the alternating group A_{n},
- the intransitive maximal subgroups $S_{i} \times S_{n-i}$ stabilizing a set of size i for every i with $1 \leq i \leq n / 3-1$,
- the imprimitive maximal subgroups $S_{n / 2}$ S_{2} stabilizing partitions with two blocks of equal size.
Two years ago, in the beginning of 2019, Francesco Fumagalli and I tried to adapt Eric Swartz's argument to deal with all the even values of n, but we didn't succeed. Things progressed when we talked to Attila Maróti about this, in April of 2020.

The result I am now presenting is the following.

If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

It is quite surprising that we achieved the value of $\sigma(G)$ by calculating $\omega(G)$, which looks harder.

The result I am now presenting is the following.

Theorem (Fumagalli, G., Maróti)

If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

$$
\omega\left(S_{n}\right)= \begin{cases}1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{n / 3-1}\binom{n}{i} & \text { if } n \equiv 0 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-1) / 3-2}\binom{n}{i}+\binom{n}{(n-1) / 3} & \text { if } n \equiv 1 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-2) / 3}\binom{n}{i} & \text { if } n \equiv 2 \bmod 3 .\end{cases}
$$

The result I am now presenting is the following.
Theorem (Fumagalli, G., Maróti)
If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

$$
\omega\left(S_{n}\right)= \begin{cases}1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{n / 3-1}\binom{n}{i} & \text { if } n \equiv 0 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-1) / 3-2}\binom{n}{i}+\binom{n}{(n-1) / 3} & \text { if } n \equiv 1 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-2) / 3}\binom{n}{i} & \text { if } n \equiv 2 \bmod 3 .\end{cases}
$$

It is quite surprising that we achieved the value of $\sigma(G)$ by calculating $\omega(G)$, which looks harder.

It is time to present our second starting point. After Maróti's result about $\sigma\left(S_{n}\right)$ when n is odd and $n \neq 9$ (2005), Blackburn
[2] (2006) proved that $\omega(G)=\sigma(G)$ when G is a symmetric group of large
enough odd degree. Later, Stringer studied the small values of the degree. Combining their results, what they proved is

Interestingly, this result gives us examples of groups for which $\omega \neq \sigma$, the

It is time to present our second starting point.
After Maróti's result about $\sigma\left(S_{n}\right)$ when n is odd and $n \neq 9$ (2005), Blackburn [2] (2006) proved that $\omega(G)=\sigma(G)$ when G is a symmetric group of large enough odd degree. Later, Stringer studied the small values of the degree. Combining their results, what they proved is

Theorem (Blackburn, Stringer, 2006)

If $n \geq 5$ is an odd integer and $n \neq 5,9,15$ then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ (which equals 2^{n-1} by Maróti's result). Moreover $\omega\left(S_{5}\right)=13$ and
$235 \leq \omega\left(S_{9}\right) \leq 244<256=\sigma\left(S_{9}\right)$.

It is time to present our second starting point.
After Maróti's result about $\sigma\left(S_{n}\right)$ when n is odd and $n \neq 9$ (2005), Blackburn [2] (2006) proved that $\omega(G)=\sigma(G)$ when G is a symmetric group of large enough odd degree. Later, Stringer studied the small values of the degree. Combining their results, what they proved is

Theorem (Blackburn, Stringer, 2006)
If $n \geq 5$ is an odd integer and $n \neq 5,9,15$ then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ (which equals 2^{n-1} by Maróti's result). Moreover $\omega\left(S_{5}\right)=13$ and
$235 \leq \omega\left(S_{9}\right) \leq 244<256=\sigma\left(S_{9}\right)$.
Interestingly, this result gives us examples of groups for which $\omega \neq \sigma$, the symmetric groups S_{5} and S_{9}.

It is time to present our second starting point.
After Maróti's result about $\sigma\left(S_{n}\right)$ when n is odd and $n \neq 9$ (2005), Blackburn [2] (2006) proved that $\omega(G)=\sigma(G)$ when G is a symmetric group of large enough odd degree. Later, Stringer studied the small values of the degree. Combining their results, what they proved is

Theorem (Blackburn, Stringer, 2006)

If $n \geq 5$ is an odd integer and $n \neq 5,9,15$ then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ (which equals 2^{n-1} by Maróti's result). Moreover $\omega\left(S_{5}\right)=13$ and
$235 \leq \omega\left(S_{9}\right) \leq 244<256=\sigma\left(S_{9}\right)$.
Interestingly, this result gives us examples of groups for which $\omega \neq \sigma$, the symmetric groups S_{5} and S_{9}.

The values of $\omega\left(S_{9}\right)$ and $\omega\left(S_{15}\right)$ are not known. It is also not known whether $\omega\left(S_{15}\right)$ equals $\sigma\left(S_{15}\right)$ or not.

It is time to present our second starting point.
After Maróti's result about $\sigma\left(S_{n}\right)$ when n is odd and $n \neq 9$ (2005), Blackburn [2] (2006) proved that $\omega(G)=\sigma(G)$ when G is a symmetric group of large enough odd degree. Later, Stringer studied the small values of the degree. Combining their results, what they proved is

Theorem (Blackburn, Stringer, 2006)

If $n \geq 5$ is an odd integer and $n \neq 5,9,15$ then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ (which equals 2^{n-1} by Maróti's result). Moreover $\omega\left(S_{5}\right)=13$ and
$235 \leq \omega\left(S_{9}\right) \leq 244<256=\sigma\left(S_{9}\right)$.
Interestingly, this result gives us examples of groups for which $\omega \neq \sigma$, the symmetric groups S_{5} and S_{9}.

The values of $\omega\left(S_{9}\right)$ and $\omega\left(S_{15}\right)$ are not known. It is also not known whether $\omega\left(S_{15}\right)$ equals $\sigma\left(S_{15}\right)$ or not.

Surprisingly, the main tool to prove this theorem was probabilistic.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.
- Choose, uniformly and independently, an element g_{M} in each of the sets $C(M), M \in \mathscr{M}$.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.
- Choose, uniformly and independently, an element g_{M} in each of the sets $C(M), M \in \mathscr{M}$.
- Suppose that, whenever $M, K \in \mathscr{M}$ and $M \neq K$, the elements g_{M}, g_{K} generate G with high probability.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.
- Choose, uniformly and independently, an element g_{M} in each of the sets $C(M), M \in \mathscr{M}$.
- Suppose that, whenever $M, K \in \mathscr{M}$ and $M \neq K$, the elements g_{M}, g_{K} generate G with high probability.
- Then, by a probabilistic argument based on the Lovász local lemma, the probability that the randomly chosen elements, one for each $C(M)$, generate G pairwise is positive.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.
- Choose, uniformly and independently, an element g_{M} in each of the sets $C(M), M \in \mathscr{M}$.
- Suppose that, whenever $M, K \in \mathscr{M}$ and $M \neq K$, the elements g_{M}, g_{K} generate G with high probability.
- Then, by a probabilistic argument based on the Lovász local lemma, the probability that the randomly chosen elements, one for each $C(M)$, generate G pairwise is positive.
This guarantees the existence of $g_{M} \in C(M)$ for every $M \in \mathscr{M}$ such that $\left\langle g_{M}, g_{K}\right\rangle=G$ for every $M, K \in \mathscr{M}, M \neq K$. This implies that $\left\{g_{M}: M \in \mathscr{M}\right\}$ is a clique of the generating graph of G, and its size is $|\mathscr{M}|$, so $|\mathscr{M}| \leq \omega(G)$.

The proof of our result uses the same tool used by Blackburn and Stringer. Let us outline their argument for any group G.

- Consider a family \mathscr{M} of maximal subgroups of G and $\Pi \subseteq G$.
- Suppose that the sets $C(M):=\Pi \cap M, M \in \mathscr{M}$, are non-empty and partition Π.
- Choose, uniformly and independently, an element g_{M} in each of the sets $C(M), M \in \mathscr{M}$.
- Suppose that, whenever $M, K \in \mathscr{M}$ and $M \neq K$, the elements g_{M}, g_{K} generate G with high probability.
- Then, by a probabilistic argument based on the Lovász local lemma, the probability that the randomly chosen elements, one for each $C(M)$, generate G pairwise is positive.
This guarantees the existence of $g_{M} \in C(M)$ for every $M \in \mathscr{M}$ such that $\left\langle g_{M}, g_{K}\right\rangle=G$ for every $M, K \in \mathscr{M}, M \neq K$. This implies that $\left\{g_{M}: M \in \mathscr{M}\right\}$ is a clique of the generating graph of G, and its size is $|\mathscr{M}|$, so $|\mathscr{M}| \leq \omega(G)$.
If \mathscr{M} happens to be a covering of G, then $|\mathscr{M}| \leq \omega(G) \leq \sigma(G) \leq|\mathscr{M}|$ therefore $\omega(G)=\sigma(G)=|\mathscr{M}|$.

It is time to present the main idea of the probabilistic argument we used. It could be informally phrased as follows: events with high probability have a chance of occurring simultaneously.

More formally, we have the following beautiful result, proved by Erdős and Lovász in 1975.

It is time to present the main idea of the probabilistic argument we used. It could be informally phrased as follows: events with high probability have a chance of occurring simultaneously.

More formally, we have the following beautiful result, proved by Erdős and Lovász in 1975.
directed graph, where $V=\{1, \ldots, n\}$, and assume that

It is time to present the main idea of the probabilistic argument we used. It could be informally phrased as follows: events with high probability have a chance of occurring simultaneously.

More formally, we have the following beautiful result, proved by Erdős and Lovász in 1975.

Theorem (Lovász Local Lemma, Erdős and Lovász, 1975)
Let A_{1}, \ldots, A_{n} be events in an arbitrary probability space. Let (V, E) be a directed graph, where $V=\{1, \ldots, n\}$, and assume that

$$
P\left(A_{i} \mid \bigcap_{j \in S} \overline{A_{j}}\right)=P\left(A_{i}\right) \quad \forall i \in V, \quad \forall S \subseteq\{j \in V:(i, j) \notin E\} .
$$

(This is a mutual independence condition.) Let d be the maximum valency of a vertex of the graph (V, E).

$$
\text { If } \quad P\left(A_{i}\right) \leq \frac{1}{e(d+1)} \quad \forall i \in V \quad \text { then } \quad P\left(\bigcap_{i \in V} \overline{A_{i}}\right)>0
$$

As I mentioned, the idea of using the local lemma to compute $\omega(G)$ was introduced by Blackburn [2].

Let $G:=S_{\Pi}$ and assume that Π is a subset of G and \mathscr{M} is a set of maximal subgroups of G which can be partitioned $\Pi=\bigcup_{i \in I} \Pi_{i}, \mathscr{M}=\bigcup_{i \in I} \mathscr{M}_{i}$ in such a way that

The sets

As I mentioned, the idea of using the local lemma to compute $\omega(G)$ was introduced by Blackburn [2].

Let $G:=S_{n}$ and assume that Π is a subset of G and \mathscr{M} is a set of maximal subgroups of G which can be partitioned $\Pi=\bigcup_{i \in I} \Pi_{i}, \mathscr{M}=\bigcup_{i \in I} \mathscr{M}_{i}$ in such a way that

- (Covering condition.) $\bigcup_{M \in \mathscr{M}} M=G$.
- (Partition condition.) The sets

$$
C(M):=M \cap \Pi, \quad M \in \mathscr{M},
$$

are non-empty and pairwise disjoint. Moreover, $C(M) \subseteq \Pi_{i}$ if $M \in \mathscr{M}_{i}$, for every $i \in I$.

As I mentioned, the idea of using the local lemma to compute $\omega(G)$ was introduced by Blackburn [2].

Let $G:=S_{n}$ and assume that Π is a subset of G and \mathscr{M} is a set of maximal subgroups of G which can be partitioned $\Pi=\bigcup_{i \in I} \Pi_{i}, \mathscr{M}=\bigcup_{i \in I} \mathscr{M}_{i}$ in such a way that

- (Covering condition.) $\bigcup_{M \in \mathscr{M}} M=G$.
- (Partition condition.) The sets

$$
C(M):=M \cap \Pi, \quad M \in \mathscr{M},
$$

are non-empty and pairwise disjoint. Moreover, $C(M) \subseteq \Pi_{i}$ if $M \in \mathscr{M}_{i}$, for every $i \in I$.
Choose, uniformly and independently, an element g_{M} in every $C(M)$.

As I mentioned, the idea of using the local lemma to compute $\omega(G)$ was introduced by Blackburn [2].
Let $G:=S_{n}$ and assume that Π is a subset of G and \mathscr{M} is a set of maximal subgroups of G which can be partitioned $\Pi=\bigcup_{i \in I} \Pi_{i}, \mathscr{M}=\bigcup_{i \in I} \mathscr{M}_{i}$ in such a way that

- (Covering condition.) $\bigcup_{M \in \mathscr{M}} M=G$.
- (Partition condition.) The sets

$$
C(M):=M \cap \Pi, \quad M \in \mathscr{M},
$$

are non-empty and pairwise disjoint. Moreover, $C(M) \subseteq \Pi_{i}$ if $M \in \mathscr{M}_{i}$, for every $i \in I$.
Choose, uniformly and independently, an element g_{M} in every $C(M)$. Let V be the set of 2 -element subsets of \mathscr{M} and set

$$
E:=\{(v, w) \in V \times V: v \cap w \neq \varnothing\} .
$$

Then (V, E) is a simple regular graph with valency $d=2(|\mathscr{M}|-2)$.

For every $v=\{M, K\} \in V$ let E_{V} be the event " $\left\langle g_{M}, g_{K}\right\rangle \neq G$ ".
The valency of every vertex is $d=2(|\mathscr{M}|-2)$. Using the local lemma, if we can prove that

$$
P\left(E_{v}\right) \leq \frac{1}{e(d+1)}=\frac{1}{e(2|\mathscr{M}|-3)}
$$

then we can deduce that the event

$$
\bigcap_{v \in V} \overline{E_{v}}="\left\langle g_{M}, g_{K}\right\rangle=G \quad \forall M, K \in \mathscr{M}, \quad M \neq K^{\prime \prime}
$$

has positive probability.

For every $v=\{M, K\} \in V$ let E_{V} be the event " $\left\langle g_{M}, g_{K}\right\rangle \neq G$ ".
The valency of every vertex is $d=2(|\mathscr{M}|-2)$. Using the local lemma, if we can prove that

$$
P\left(E_{v}\right) \leq \frac{1}{e(d+1)}=\frac{1}{e(2|\mathscr{M}|-3)}
$$

then we can deduce that the event

$$
\bigcap_{v \in V} \overline{E_{v}}="\left\langle g_{M}, g_{K}\right\rangle=G \quad \forall M, K \in \mathscr{M}, \quad M \neq K^{\prime \prime}
$$

has positive probability. Therefore there exists a choice of the elements g_{M} forming a clique of the generating graph of G, so that

$$
|\mathscr{M}| \leq \omega(G) .
$$

Since $\bigcup_{M \in \mathscr{M}} M=G$, we have $\omega(G) \leq \sigma(G) \leq|\mathscr{M}|$, therefore

$$
\omega(G)=\sigma(G)=|\mathscr{M}| .
$$

Recall that our main result is the following.

If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

We will give a sketch of the proof of this in the case of large degree $n \equiv 2$

 $\bmod 3$ with $n / 2$ odd.Recall that our main result is the following.
Theorem (Fumagalli, G., Maróti)
If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

$$
\omega\left(S_{n}\right)= \begin{cases}1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{n / 3-1}\binom{n}{i} & \text { if } n \equiv 0 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-1) / 3-2}\binom{n}{i}+\binom{n}{(n-1) / 3} & \text { if } n \equiv 1 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-2) / 3}\binom{n}{i} & \text { if } n \equiv 2 \bmod 3 .\end{cases}
$$

Recall that our main result is the following.
Theorem (Fumagalli, G., Maróti)
If n is even and $n \geq 20, n \neq 22$, then $\omega\left(S_{n}\right)=\sigma\left(S_{n}\right)$ and

$$
\omega\left(S_{n}\right)= \begin{cases}1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{n / 3-1}\binom{n}{i} & \text { if } n \equiv 0 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-1) / 3-2}\binom{n}{i}+\binom{n}{(n-1) / 3} & \text { if } n \equiv 1 \bmod 3, \\ 1+\frac{1}{2}\binom{n}{n / 2}+\sum_{i=1}^{(n-2) / 3}\binom{n}{i} & \text { if } n \equiv 2 \bmod 3 .\end{cases}
$$

We will give a sketch of the proof of this in the case of large degree $n \equiv 2$ $\bmod 3$ with $n / 2$ odd.

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Iet \mathbb{M} be the set eonsisting of the alternating groun 1 (\mathbb{M}), the maximal intransitive subgroups of type $S_{i} \times S_{n-i}$, with $i=1, \ldots, q\left(\mathscr{M}_{i}, i=1, \ldots, q\right)$, and the maximal imprimitive subgroups with two blocks, $S_{n / 2}$? $S_{2}\left(\mathscr{M}_{-1}\right)$. Se

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Let \mathscr{M} be the set consisting of the alternating group $A_{n}\left(\mathscr{M}_{0}\right)$, the maximal intransitive subgroups of type $S_{i} \times S_{n-i}$, with $i=1, \ldots, q\left(\mathscr{M}_{i}, i=1, \ldots, q\right)$, and the maximal imprimitive subgroups with two blocks, $S_{n / 2}$ \ $S_{2}\left(\mathscr{M}_{-1}\right)$.

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Let \mathscr{M} be the set consisting of the alternating group $A_{n}\left(\mathscr{M}_{0}\right)$, the maximal intransitive subgroups of type $S_{i} \times S_{n-i}$, with $i=1, \ldots, q\left(\mathscr{M}_{i}, i=1, \ldots, q\right)$, and the maximal imprimitive subgroups with two blocks, $S_{n / 2}$ $S_{2}\left(\mathscr{M}_{-1}\right)$. Set

$$
\begin{gathered}
\Pi_{-1}=(n), \quad \Pi_{0}=(n / 2-2, n / 2+2), \quad \Pi_{1}=(1, n / 2-2, n / 2+1), \\
\Pi_{2}=(2, n / 2-4, n / 2+2), \quad \Pi_{4}=(4, n / 2-2, n / 2-2) .
\end{gathered}
$$

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Let \mathscr{M} be the set consisting of the alternating group $A_{n}\left(\mathscr{M}_{0}\right)$, the maximal intransitive subgroups of type $S_{i} \times S_{n-i}$, with $i=1, \ldots, q\left(\mathscr{M}_{i}, i=1, \ldots, q\right)$, and the maximal imprimitive subgroups with two blocks, $S_{n / 2}$ \{ $S_{2}\left(\mathscr{M}_{-1}\right)$. Set

$$
\begin{gathered}
\Pi_{-1}=(n), \quad \Pi_{0}=(n / 2-2, n / 2+2), \quad \quad \Pi_{1}=(1, n / 2-2, n / 2+1), \\
\Pi_{2}=(2, n / 2-4, n / 2+2), \quad \Pi_{4}=(4, n / 2-2, n / 2-2) .
\end{gathered}
$$

For all i such that $3 \leq i \leq q-2, i \neq 4$, set

$$
\Pi_{i}= \begin{cases}(i,(n-i) / 2-1,(n-i) / 2+1) & \text { if } n-i \equiv 0 \quad(\bmod 4), \\ (i,(n-i) / 2-2,(n-i) / 2+2) & \text { if } n-i \equiv 2(\bmod 4), \\ (i,(n-i-1) / 2,(n-i+1) / 2) & \text { if } i \equiv 1 \quad(\bmod 2) .\end{cases}
$$

Sketch of proof.

Assume $n \equiv 2 \bmod 3$, with $n / 2$ odd, and write $n=3 q+2$, so that q is even. In this sketch, we will assume that n is as large as we need.

Let \mathscr{M} be the set consisting of the alternating group $A_{n}\left(\mathscr{M}_{0}\right)$, the maximal intransitive subgroups of type $S_{i} \times S_{n-i}$, with $i=1, \ldots, q\left(\mathscr{M}_{i}, i=1, \ldots, q\right)$, and the maximal imprimitive subgroups with two blocks, $S_{n / 2}$ ใ $S_{2}\left(\mathscr{M}_{-1}\right)$. Set

$$
\begin{gathered}
\Pi_{-1}=(n), \quad \Pi_{0}=(n / 2-2, n / 2+2), \quad \Pi_{1}=(1, n / 2-2, n / 2+1), \\
\Pi_{2}=(2, n / 2-4, n / 2+2), \quad \Pi_{4}=(4, n / 2-2, n / 2-2) .
\end{gathered}
$$

For all i such that $3 \leq i \leq q-2, i \neq 4$, set

$$
\Pi_{i}= \begin{cases}(i,(n-i) / 2-1,(n-i) / 2+1) & \text { if } n-i \equiv 0(\bmod 4), \\ (i,(n-i) / 2-2,(n-i) / 2+2) & \text { if } n-i \equiv 2(\bmod 4), \\ (i,(n-i-1) / 2,(n-i+1) / 2) & \text { if } i \equiv 1 \quad(\bmod 2) .\end{cases}
$$

Finally, set $\Pi_{q-1}=(q-1, q+1, q+2), \Pi_{q}=(q, q+1, q+1)$ and

$$
\Pi:=\Pi_{-1} \cup \Pi_{1} \cup \Pi_{2} \cup \ldots \cup \Pi_{q} .
$$

For every $M \in \mathscr{M}$ set $C(M):=\Pi \cap M$. For every maximal subgroup H of G outside \mathscr{M}, define

$$
f_{M}(H):=\frac{|C(M) \cap H|}{|C(M)|} .
$$

H varies in the set of maximal subgroups of G.

For every $M \in \mathscr{M}$ set $C(M):=\Pi \cap M$. For every maximal subgroup H of G outside \mathscr{M}, define

$$
f_{M}(H):=\frac{|C(M) \cap H|}{|C(M)|} .
$$

We can bound the probability of E_{v}, where $v=\{M, K\} \in V$, as follows, where H varies in the set of maximal subgroups of G.

$$
P\left(E_{V}\right) \leq \sum_{H} f_{M}(H) \cdot f_{K}(H)=\sum_{H \in \mathscr{H}_{1}} f_{M}(H) \cdot f_{K}(H)+\sum_{H \in \mathscr{H}_{2}} f_{M}(H) \cdot f_{K}(H) .
$$

Here \mathscr{H}_{1} is the set of intransitive maximal subgroups of G, \mathscr{H}_{2} is the set of transitive maximal subgroups of G.

For every $M \in \mathscr{M}$ set $C(M):=\Pi \cap M$. For every maximal subgroup H of G outside \mathscr{M}, define

$$
f_{M}(H):=\frac{|C(M) \cap H|}{|C(M)|} .
$$

We can bound the probability of E_{V}, where $v=\{M, K\} \in V$, as follows, where H varies in the set of maximal subgroups of G.

$$
P\left(E_{V}\right) \leq \sum_{H} f_{M}(H) \cdot f_{K}(H)=\sum_{H \in \mathscr{H}_{1}} f_{M}(H) \cdot f_{K}(H)+\sum_{H \in \mathscr{H}_{2}} f_{M}(H) \cdot f_{K}(H) .
$$

Here \mathscr{H}_{1} is the set of intransitive maximal subgroups of G, \mathscr{H}_{2} is the set of transitive maximal subgroups of G.

By the partition condition, if $H \in \mathscr{M}$ then one of $f_{M}(H)$ and $f_{K}(H)$ is zero, so we may assume that the sum is over the maximal subgroups H of G outside \mathscr{M}. We need to bound

$$
\ell_{j}=\sum_{H \in \mathscr{H}_{j}} f_{M}(H) \cdot f_{K}(H), \quad j \in\{1,2\} .
$$

We need to show that $\ell_{1}+\ell_{2} \leq \frac{1}{e(d+1)}$, which is roughly $(1 / 2)^{n}$.

It is possible to show that, for every $M \in \mathscr{M}$,

$$
|C(M)| \geq \frac{4}{n^{3}} 2^{2 n / 3}\left(\frac{n}{3 e}\right)^{n} .
$$

From now on, let H be a maximal subgroup of G outside
Assume first that H is intransitive. Using the fact that $H \notin \mathscr{M}$, it is possible
to show that

Let M, K be two distinct members of \mathscr{M}. Since at most two members of $\mathscr{H}_{1}-\mathscr{M}$ intersect both $C(M)$ and $C(K)$, we obtain that

It is possible to show that, for every $M \in \mathscr{M}$,

$$
|C(M)| \geq \frac{4}{n^{3}} 2^{2 n / 3}\left(\frac{n}{3 e}\right)^{n}
$$

From now on, let H be a maximal subgroup of G outside \mathscr{M}.
Assume first that H is intransitive. Using the fact that $H \notin \mathscr{M}$, it is possible to show that

Let M, K be two distinct members of \mathscr{M}. Since at most two members of $\mathscr{H}_{1}-\mathscr{M}$ intersect both $C(M)$ and $C(K)$, we obtain that

It is possible to show that, for every $M \in \mathscr{M}$,

$$
|C(M)| \geq \frac{4}{n^{3}} 2^{2 n / 3}\left(\frac{n}{3 e}\right)^{n} .
$$

From now on, let H be a maximal subgroup of G outside \mathscr{M}.
Assume first that H is intransitive. Using the fact that $H \notin \mathscr{M}$, it is possible to show that

$$
f_{M}(H) \leq \frac{6 n}{2^{2 n / 3}} .
$$

Let M, K be two distinct members of \mathscr{M}. Since at most two members of $\mathscr{H}_{1}-\mathscr{M}$ intersect both $C(M)$ and $C(K)$, we obtain that

$$
\ell_{1}=\sum_{H \in \mathscr{H}_{1}} f_{M}(H) \cdot f_{K}(H) \leq 2 \cdot\left(\frac{6 n}{2^{2 n / 3}}\right)^{2}=72 n^{2} \cdot(1 / 2)^{4 n / 3}
$$

This is good for us since $(1 / 2)^{4 / 3}<1 / 2$.

Assume now that H is transitive. If H is primitive then $|H| \leq 4^{n}$ (Praeger, Saxl 1980, not depending on CFSG), and if H is imprimitive then, since n is large and not divisible by 3 , the largest value of $|H|$ is given by the case $H \cong S_{n / 5}$ \} S_{5}. It follows that

$$
|H| \leq(n / 5)!^{5} \cdot 5!\leq 120 n^{3}(n / 5 e)^{n} .
$$

Assume now that H is transitive. If H is primitive then $|H| \leq 4^{n}$ (Praeger, Saxl 1980, not depending on CFSG), and if H is imprimitive then, since n is large and not divisible by 3 , the largest value of $|H|$ is given by the case $H \cong S_{n / 5}$ \} S_{5}. It follows that

$$
|H| \leq(n / 5)!^{5} \cdot 5!\leq 120 n^{3}(n / 5 e)^{n} .
$$

Therefore

$$
f_{M}(H)=\frac{|C(M) \cap H|}{|C(M)|} \leq \frac{|H|}{|C(M)|} \leq \frac{120 n^{3}(n / 5 e)^{n}}{\frac{4}{n^{3}} 3^{2 n / 3}\left(\frac{n}{3 e}\right)^{n}}=30 n^{6} \cdot\left(\frac{3}{5 \cdot 2^{2 / 3}}\right)^{n}
$$

Note that $\quad f_{M}(H) \leq 30 n^{6} \cdot a^{n}, \quad a=3 /\left(5 \cdot 2^{2 / 3}\right)<1 / 2$.

Assume now that H is transitive. If H is primitive then $|H| \leq 4^{n}$ (Praeger, Saxl 1980, not depending on CFSG), and if H is imprimitive then, since n is large and not divisible by 3 , the largest value of $|\mathrm{H}|$ is given by the case $H \cong S_{n / 5}$ \} S_{5}. It follows that

$$
|H| \leq(n / 5)!^{5} \cdot 5!\leq 120 n^{3}(n / 5 e)^{n} .
$$

Therefore

$$
f_{M}(H)=\frac{|C(M) \cap H|}{|C(M)|} \leq \frac{|H|}{|C(M)|} \leq \frac{120 n^{3}(n / 5 e)^{n}}{\frac{4}{n^{3}} 3^{2 n / 3}\left(\frac{n}{3 e}\right)^{n}}=30 n^{6} \cdot\left(\frac{3}{5 \cdot 2^{2 / 3}}\right)^{n}
$$

Note that $\quad f_{M}(H) \leq 30 n^{6} \cdot a^{n}, \quad a=3 /\left(5 \cdot 2^{2 / 3}\right)<1 / 2$.
For technical reasons (that depend on CFSG !!) the term $f_{M}(H)$ is the main contribution in the bound for ℓ_{2} in the sense that

$$
\ell_{2}=\sum_{H \in \mathscr{H}_{2}} f_{M}(H) \cdot f_{K}(H) \leq n^{O(1)} \cdot \max _{H \in \mathscr{H}_{2}} f_{M}(H) \leq n^{O(1)} a^{n} .
$$

This is less than $(1 / 2)^{n}$ when n is large.

Assume now that H is transitive. If H is primitive then $|H| \leq 4^{n}$ (Praeger, Saxl 1980, not depending on CFSG), and if H is imprimitive then, since n is large and not divisible by 3 , the largest value of $|\mathrm{H}|$ is given by the case $H \cong S_{n / 5}$ \} S_{5}. It follows that

$$
|H| \leq(n / 5)!^{5} \cdot 5!\leq 120 n^{3}(n / 5 e)^{n} .
$$

Therefore

$$
f_{M}(H)=\frac{|C(M) \cap H|}{|C(M)|} \leq \frac{|H|}{|C(M)|} \leq \frac{120 n^{3}(n / 5 e)^{n}}{\frac{4}{n^{3}} 3^{2 n / 3}\left(\frac{n}{3 e}\right)^{n}}=30 n^{6} \cdot\left(\frac{3}{5 \cdot 2^{2 / 3}}\right)^{n}
$$

Note that $\quad f_{M}(H) \leq 30 n^{6} \cdot a^{n}, \quad a=3 /\left(5 \cdot 2^{2 / 3}\right)<1 / 2$.
For technical reasons (that depend on CFSG !!) the term $f_{M}(H)$ is the main contribution in the bound for ℓ_{2} in the sense that

$$
\ell_{2}=\sum_{H \in \mathscr{H}_{2}} f_{M}(H) \cdot f_{K}(H) \leq n^{O(1)} \cdot \max _{H \in \mathscr{H}_{2}} f_{M}(H) \leq n^{O(1)} a^{n} .
$$

This is less than $(1 / 2)^{n}$ when n is large.
This finishes the sketch of the proof.

Let us go back to bounding the probability.

A technical computation shows that
[S] denotes the G-conjugacy class of a subgroup S of G. denotes the number of conjugacy classes of subgroups in \mathscr{H}_{j} such that there exists H in such a class such that $H \cap C(M) \neq \varnothing$ and

Let us go back to bounding the probability.
Given a family \mathscr{H}_{j} of maximal subgroups of $G=S_{n}$ outside \mathscr{M} and a vertex $v=\{M, K\}$ of the graph, let E_{V}^{j} be the event that " $g_{M}, g_{K} \in H$ for some $H \in \mathscr{H}_{j}^{\prime \prime}$. A technical computation shows that

$$
P\left(E_{V}^{j}\right) \leq c_{V, j} \cdot \min _{\left\{L_{1}, L_{2}\right\}=\{M, K\}}\left(\max _{\substack{S \in \mathcal{P}_{j} \\ H \in[s]}}\left(m_{L_{1}}([S]) \cdot f_{L_{2}}(H)\right)\right) .
$$

Let us go back to bounding the probability.
Given a family \mathscr{H}_{j} of maximal subgroups of $G=S_{n}$ outside \mathscr{M} and a vertex $v=\{M, K\}$ of the graph, let E_{V}^{j} be the event that " $g_{M}, g_{K} \in H$ for some $H \in \mathscr{H}_{j}^{\prime \prime}$. A technical computation shows that

$$
P\left(E_{V}^{j}\right) \leq c_{V, j} \cdot \min _{\left\{L_{1}, L_{2}\right\}=\{M, K\}}\left(\max _{\substack{S \in \mathcal{P}_{j} \\ H \in[s]}}\left(m_{L_{1}}([S]) \cdot f_{L_{2}}(H)\right)\right) .
$$

- [S] denotes the G-conjugacy class of a subgroup S of G.
- $m_{L}([S])=\max _{g \in C(L)}\left|\left\{S^{x}: x \in G, g \in S^{x}\right\}\right|$.
- $C_{v, j}$ denotes the number of conjugacy classes of subgroups in \mathscr{H}_{j} such that there exists H in such a class such that $H \cap C(M) \neq \varnothing$ and $H \cap C(K) \neq \varnothing$.

Let us go back to bounding the probability.

Given a family \mathscr{H}_{j} of maximal subgroups of $G=S_{n}$ outside \mathscr{M} and a vertex $v=\{M, K\}$ of the graph, let E_{V}^{j} be the event that " $g_{M}, g_{K} \in H$ for some $H \in \mathscr{H}_{j}{ }^{\prime \prime}$. A technical computation shows that

$$
P\left(E_{V}^{j}\right) \leq c_{V, j} \cdot \min _{\left\{L_{1}, L_{2}\right\}=\{M, K\}}\left(\max _{\substack{S \in \mathscr{K}_{j} \\ H \in[s]}}\left(m_{L_{1}}([S]) \cdot f_{L_{2}}(H)\right)\right) .
$$

- [S] denotes the G-conjugacy class of a subgroup S of G.
- $m_{L}([S])=\max _{g \in C(L)}\left|\left\{S^{x}: x \in G, g \in S^{x}\right\}\right|$.
- $C_{v, j}$ denotes the number of conjugacy classes of subgroups in \mathscr{H}_{j} such that there exists H in such a class such that $H \cap C(M) \neq \varnothing$ and $H \cap C(K) \neq \varnothing$.
It is elementary to see that $m_{L}([S]) \leq n^{3}$.

Let us go back to bounding the probability.

Given a family \mathscr{H}_{j} of maximal subgroups of $G=S_{n}$ outside \mathscr{M} and a vertex $v=\{M, K\}$ of the graph, let E_{V}^{j} be the event that " $g_{M}, g_{K} \in H$ for some $H \in \mathscr{H}_{j}{ }^{\prime \prime}$. A technical computation shows that

$$
P\left(E_{V}^{j}\right) \leq c_{V, j} \cdot \min _{\left\{L_{1}, L_{2}\right\}=\{M, K\}}\left(\max _{\substack{S \in \mathcal{P}_{j} \\ H \in[s]}}\left(m_{L_{1}}([S]) \cdot f_{L_{2}}(H)\right)\right) .
$$

- [S] denotes the G-conjugacy class of a subgroup S of G.
- $m_{L}([S])=\max _{g \in C(L)}\left|\left\{S^{x}: x \in G, g \in S^{x}\right\}\right|$.
- $C_{v, j}$ denotes the number of conjugacy classes of subgroups in \mathscr{H}_{j} such that there exists H in such a class such that $H \cap C(M) \neq \varnothing$ and $H \cap C(K) \neq \varnothing$.
It is elementary to see that $m_{L}([S]) \leq n^{3}$.
However, there is no elementary way (i.e. without CFSG) to effectively bound $c_{\nu, j}$ when \mathscr{H}_{j} is the family of primitive maximal subgroups. Using CFSG, a deep theorem of Liebeck and Shalev [7] (1996) implies that $c_{V, j} \leq n$ for large enough n in this case.

In other words, the technical reasons above (the ones depending on CFSG) depend on us being able to bound the number of conjugacy classes of primitive maximal subgroups of $G=S_{n}$.

This seems to be out of reach.

In other words, the technical reasons above (the ones depending on CFSG) depend on us being able to bound the number of conjugacy classes of primitive maximal subgroups of $G=S_{n}$.

To obtain a proof not depending of CFSG (for n large) we would need to prove, without using CFSG, that the number of conjugacy classes of maximal primitive subgroups of $G=S_{n}$ (n large) is at most

$$
(n / 8 e)^{n} .
$$

This seems to be out of reach.

In other words, the technical reasons above (the ones depending on CFSG) depend on us being able to bound the number of conjugacy classes of primitive maximal subgroups of $G=S_{n}$.

To obtain a proof not depending of CFSG (for n large) we would need to prove, without using CFSG, that the number of conjugacy classes of maximal primitive subgroups of $G=S_{n}$ (n large) is at most

$$
(n / 8 e)^{n} .
$$

This seems to be out of reach.
Even classifying primitive groups of degree n containing n-cycles requires the classification.

In other words, the technical reasons above (the ones depending on CFSG) depend on us being able to bound the number of conjugacy classes of primitive maximal subgroups of $G=S_{n}$.

To obtain a proof not depending of CFSG (for n large) we would need to prove, without using CFSG, that the number of conjugacy classes of maximal primitive subgroups of $G=S_{n}$ (n large) is at most

$$
(n / 8 e)^{n} .
$$

This seems to be out of reach.
Even classifying primitive groups of degree n containing n-cycles requires the classification.

Theorem (Turán 1941)

A simple graph on m vertices which does not contain a clique of size $r+1$ has at most $(1-1 / r) m^{2} / 2$ vertices.

Using this, together with a result of Virchow about generating pairs in the alternating and symmetric groups, we can prove without using CFSG that $\omega\left(S_{n}\right)>n / 5$ for large n.

There are certain hidden technicalities in the above sketch.
The main one is that when H is an imprimitive maximal subgroups with 3 or 4 blocks, i.e. of type $S_{n / 3}$ 亿 S_{3} or $S_{n / 4}$ 亿 S_{4}, the bound

is not good enough. We need to work out the exact value of $|C(M) \cap H|$ in these cases.

When looking at small values of $n(20 \leq n<166, n \neq 22)$, the above bound is not good enough either. We have a general lemma computing the exact value of $f_{M}(H)$ in case H is not primitive.

There are certain hidden technicalities in the above sketch.
The main one is that when H is an imprimitive maximal subgroups with 3 or 4 blocks, i.e. of type $S_{n / 3}$ \} S_{3} or $S_{n / 4}$ 亿 S_{4}, the bound

$$
f_{M}(H)=\frac{|C(M) \cap H|}{|C(M)|} \leq \frac{|H|}{|C(M)|}
$$

is not good enough. We need to work out the exact value of $|C(M) \cap H|$ in these cases.

There are certain hidden technicalities in the above sketch.
The main one is that when H is an imprimitive maximal subgroups with 3 or 4 blocks, i.e. of type $S_{n / 3}$ 〔 S_{3} or $S_{n / 4}$ 〔 S_{4}, the bound

$$
f_{M}(H)=\frac{|C(M) \cap H|}{|C(M)|} \leq \frac{|H|}{|C(M)|}
$$

is not good enough. We need to work out the exact value of $|C(M) \cap H|$ in these cases.

When looking at small values of $n(20 \leq n<166, n \neq 22)$, the above bound is not good enough either. We have a general lemma computing the exact value of $f_{M}(H)$ in case H is not primitive.

This settles the problem of calculating $\omega\left(S_{n}\right)$ and $\sigma\left(S_{n}\right)$ for every positive integer n, with the following exceptions.

$$
\begin{gathered}
\sigma\left(S_{16}\right), \sigma\left(S_{22}\right) \\
\omega\left(S_{6}\right), \omega\left(S_{8}\right), \omega\left(S_{9}\right), \omega\left(S_{10}\right), \omega\left(S_{12}\right) \\
\omega\left(S_{14}\right), \omega\left(S_{15}\right), \omega\left(S_{16}\right), \omega\left(S_{18}\right), \omega\left(S_{22}\right)
\end{gathered}
$$

In other words, our theorem reduces the set of unknown values of $\omega\left(S_{n}\right)$ and $\sigma\left(S_{n}\right)$ to the above list.
[1] N. Alon, J. H. Spencer.
The probabilistic method. Fourth edition.
Wiley Series in Discrete Mathematics and Optimization. John Wiley and Sons, Inc., Hoboken, NJ, 2016.
[2] S. R. Blackburn.
Sets of permutations that generate the symmetric group pairwise.
J. Combin. Theory Ser. A 113 (2006), no. 7, 1572-1581.
[3] J. R. Britnell, A. Evseev, R. M. Guralnick, P. E. Holmes, A. Maróti. Sets of elements that pairwise generate a linear group. J. Combin. Theory Ser. A 115 (2008), no. 3, 442-465.
[4] J. H. E. Cohn,
On n-sum groups.
Math. Scand., 75(1) (1994), 44-58.
[5] P. Erdős, L. Lovász.
Problems and results on 3-chromatic hypergraphs and some related questions,
A. Hajnal, R. Rado, V. Sós (Eds.), Colloquium Math. Society Janos Bolyai, vol. 11, North-Holland, Amsterdam, 1973, pp. 609-627.
[6] F. Fumagalli, M. Garonzi, A. Maróti.
The maximal number of elements pairwise generating the symmetric group of even degree.
Preprint. ArXiv link: https://arxiv.org/abs/2011.14426
[7] M.W. Liebeck, A. Shalev,
Maximal subgroups of symmetric groups,
J. Combin. Theory Ser. A 75 (1996) 341-352.
[8] M.W. Liebeck, A. Shalev.
Simple groups, probabilistic methods, and a conjecture of Kantor and
Lubotzky.
J. Algebra 184 (1996), no. 1, 31-57.
[9] A. Lucchini, A. Maróti,
On the clique number of the generating graph of a finite group.
Proc. Amer. Math. Soc. 137 (2009), no. 10, 3207-3217.
[10] A. Maróti.
Covering the symmetric groups with proper subgroups.
J. Combin. Theory Ser. A, 110(1):97-111, 2005.
[11] L. Stringer.
Pairwise generating sets for the symmetric and alternating groups. PhD thesis.
Royal Holloway, University of London, 2008.
[12] E. Swartz.
On the covering number of symmetric groups having degree divisible by six.
Discrete Math. 339(11):2593-2604, 2016.

