#### Punctured groups for exotic fusion systems

Justin Lynd

joint with Ellen Henke (Dresden), Assaf Libman (Aberdeen)



April 6, 2021

Binghamton Algebra Seminar

#### Invariants of a finite group around a prime p

G a finite group, S a Sylow p-subgroup of G



## Fusion systems

#### Fusion systems encode conjugation maps

G a finite group, p a prime, S a Sylow p-subgroup of G

Fusion system of a finite group

 $\mathcal{F} = \mathcal{F}_{S}(G)$ , a category:

• objects: subgroups  $P \leq S$ ;

morphisms: conjugation homomorphisms induced from G

 $\mathsf{Hom}_{\mathcal{F}}(P,Q) := \mathsf{Hom}_{\mathcal{G}}(P,Q) = \{ c_{g} \colon P \hookrightarrow Q \mid g \in \mathcal{G}, gPg^{-1} \leq Q \}$ 

• 
$$\operatorname{Aut}_{\mathcal{F}}(P) = \operatorname{Hom}_{\mathcal{F}}(P, P) = N_G(P)/C_G(P)$$

#### Saturated fusion systems (Puig)

Let S be a finite p-group.

- A fusion system on S is a category F with objects {P ≤ S} and morphisms satisfying Hom<sub>S</sub>(P, Q) ⊆ Hom<sub>F</sub>(P, Q) ⊆ Inj(P, Q) and one more weak axiom.
- ► The fusion system *F* is saturated if Inn(*S*) ∈ Syl<sub>p</sub>(Aut<sub>F</sub>(*S*)) and one more axiom holds (which allows you to extend certain morphisms to larger subgroups).

 $\mathcal{F}_{D_8}(D_8)$ 





 $\mathcal{F}_{D_8}(A_6)$ 



 $\mathcal{F}_{D_8}(PSL_2(q)), q \equiv \pm 9 \pmod{16}$ 



#### Exotic fusion systems

#### Exotic fusion system

Not realizable, i.e. not of the form  $\mathcal{F}_{S}(G)$  for any finite group G with Sylow S.

#### The Benson-Solomon systems at p = 2

Sol(q) on S, a Sylow 2-subgroup of  $Syl_2(Spin_7(q))$ , q odd.

- ▶ |Z(S)| = 2 and  $N_{Sol(q)}(Z(S)) \cong \mathcal{F}_S(Spin_7(q))$  (normalizer subsystem).
- Sol(q) has one conjugacy class of involutions;  $Spin_7(q)$  has two.
- ▶ In  $H = \text{Spin}_7(q)$ , maximal torus T of rank 3 with  $N_H(T)/T = C_2 \times S_4$ ; in Sol(q) maximal 2-torus  $T_2 \leq S$  has  $\text{Aut}_{\text{Sol}(q)}(T_2) = C_2 \times GL_3(2)$ .

#### At odd primes p: lots of them

- Ruiz-Viruel (2004): Three at p = 7 on  $S = 7^{1+2}_+$ .
- Oliver (2014), Craven-Oliver-Semeraro (2017), Oliver-Ruiz (2020): Fusion systems on S having abelian A with |S : A| = p.

▶ Parker-Stroth (2015): Fusion systems on  $S = p_+^{1+2n} \rtimes C_p$ .

▶ ...

#### Picture of a Ruiz-Viruel exotic fusion system

 $\mathcal{F} = RV_3$  on  $S = 7^{1+2}_+$ : all eight subgroups  $C_7 \times C_7$  of order  $7^2$  conjugate, all subgroups of order 7 conjugate, Aut<sub>F</sub> $(7^2) \cong SL_2(7)$ : 2.



### Transporter systems

#### Transporter categories encode group elements doing the conjugating

Δ a (nonempty) "overgroup-closed", "G-conjugacy invariant" collection of subgroups of S

#### Transporter category of a group: $\mathcal{T}_{\Delta}(G)$

objects:  $P \in \Delta$ morphisms:  $N_G(P, Q) = \{g \in G \mid gPg^{-1} \leq Q\}$  (composition: mult. in G)

Note: Have quotient functor  $\pi: \mathcal{T}_{\Delta}(G) \to \mathcal{F}_{S}(G)$ ,  $g \mapsto c_{g}$ , which is the inclusion on objects and surjective on morphisms. Say  $\mathcal{T} = \mathcal{T}_{\Delta}(G)$  is associated with  $\mathcal{F} = \mathcal{F}_{S}(G)$ .

#### Examples

- $\Delta = \{S\}$ :  $\mathcal{T}_{\Delta}(G)$  is essentially  $N_G(S)$ .
- $\Delta$  = all nonidentity subgroups of *S*: the full *p*-local structure of *G*. Write as  $\mathcal{T}_{S}^{*}(G)$ , and call it the **punctured group** for *G*.
- $\Delta = \text{all subgroups of } S: \mathcal{T}_{S}(G) := \mathcal{T}_{\Delta}(G) \text{ is essentially } G, \text{ because } G = N_{G}(1).$

As  $\Delta$  gets larger,  $\mathcal{T}_{\Delta}(G)$  interpolates between  $N_G(S)$  and G.

#### Transporter systems and linking systems

## Transporter system associated with a saturated fusion system (Oliver-Ventura)

Category  ${\mathcal T}$  with object set  $\Delta$  and functors

$$\mathcal{T}_{\Delta}(S) \xrightarrow{\iota} \mathcal{T} \xrightarrow{\pi} \mathcal{F}$$

satisfying axioms that model the properties of  $\mathcal{T}_{\Delta}(G)$ .

#### p-centric subgroup

A *p*-subgroup  $Q \leq S$  such that  $C_G(Q) = Z(Q) \times O_{p'}(C_G(Q))$ . Write  $\mathcal{F}_S(G)^c$  or  $\mathcal{F}^c$  for the set of centric subgroups of S.

#### Examples of transporter systems

- $\mathcal{T}_{\Delta}(G)$ , any G, any nonempty  $\Delta$ .
- ► The centric linking system  $\mathcal{L} = \mathcal{L}_{\mathcal{S}}^{c}(\mathcal{G})$  with  $\Delta = \mathcal{F}_{\mathcal{S}}(\mathcal{G})^{c}$ : Here,

$$\operatorname{Mor}_{\mathcal{L}}(P,Q) = N_{G}(P,Q)/O_{p'}(C_{G}(P)).$$

Additional motivation for transporter systems: Centric linking systems and the Martino-Priddy Conjecture

Martino-Priddy Conjecture

For two finite groups G and H,

$$BG_p^{\wedge} \simeq BH_p^{\wedge} \iff \mathcal{F}_p(G) \cong \mathcal{F}_p(H)$$

Broto-Levi-Oliver (2003):  $\mathcal{L}_{S}^{c}(G)$  recovers  $BG_{p}^{\wedge}$ 

$$|\mathcal{L}_{S}^{c}(G)|_{p}^{\wedge} \simeq BG_{p}^{\wedge}$$

Thus, the "if" direction of the Martino-Priddy conjecture is equivalent to the uniqueness of  $\mathcal{L}_{S}^{c}(G)$  (up to isomorphism of transporter systems).

### Punctured groups

#### Punctured groups

#### Definition

A punctured group for the saturated fusion system  $\mathcal{F}$  is a transporter system  $\mathcal{T}$  with object set  $\Delta$  all nonidentity subgroups of S.

#### Example

 $\mathcal{T}_{S}^{*}(G)$  (for a finite group G) is a punctured group for  $\mathcal{F}_{S}(G)$ .

#### Question (Chermak)

Which exotic fusion systems have punctured groups?

#### Motivation

- 1. Aesthetics: how close is an exotic system to a group?
- 2. Usually,  $\pi_1(\mathcal{T}_S^*(G))$  is a much better approximation to G than is  $\pi_1(\mathcal{L}_S^c(G))$ .
- 3. It is not known whether every block fusion system  $\mathcal{F}_D(kGb)$  is realizable by a finite group. Is each block fusion system nevertheless realizable by a punctured group?

#### Approximating a (nonexistent) group by transporter categories

Given

▶ a(n) (exotic, say) saturated fusion system  $\mathcal{F}$  over S, and

▶ a reasonable filtration of the poset of subgroups of S:

 $\{S\} = \Delta_0 \subset \Delta_1 \subset \cdots \subset \Delta_n \subset \cdots \subset \Delta_N = \operatorname{Sub}^*(S) \subset \Delta_{N+1} = \operatorname{Sub}(S),$ 

Try to build inductively

$$\mathcal{T}_0 \hookrightarrow \mathcal{T}_1 \hookrightarrow \cdots \hookrightarrow \mathcal{T}_n \hookrightarrow \cdots \hookrightarrow \mathcal{T}_N \hookrightarrow \mathcal{T}_{N+1}$$

associated with  $\mathcal{F}$ .

- ► Okay for Δ<sub>0</sub> = {S}.
  - ▶ The group extension problem  $1 \rightarrow Z(S) \rightarrow N_{\mathcal{T}_0}(S) \rightarrow \operatorname{Aut}_{\mathcal{F}}(S) \rightarrow 1$  is solvable.
- More generally, for a centric subgroup P, the group extension problem  $1 \rightarrow Z(P) \rightarrow N_{\mathcal{T}_k}(P) \rightarrow \operatorname{Aut}_{\mathcal{F}}(P) \rightarrow 1$  is solvable.

#### Theorem (Chermak (2013), Oliver, Glauberman-L.)

Can build  $\mathcal{T}_n$  up to  $\Delta_n = \mathcal{F}^c$  for any saturated fusion system. Get analogue  $\mathcal{L} = \mathcal{T}_n$  of the centric linking system of a group.

# Punctured groups for some exotic fusion systems

A necessary condition and a sufficient condition for the existence of a punctured group

#### Normalizer subsystem $N_{\mathcal{F}}(X)$ for $X \leq S$

objects:  $P \leq N_S(X)$ ; morphisms:  $\varphi \in \operatorname{Hom}_{\mathcal{F}}(P, Q)$  having an extension  $\tilde{\varphi} \in \operatorname{Hom}_{\mathcal{F}}(XP, XQ)$ such that  $\tilde{\varphi}(X) = X$ .

#### The largest normal *p*-subgroup of a fusion system

 $O_p(\mathcal{F})$  is the largest subgroup X of S such that  $\mathcal{F} = N_{\mathcal{F}}(X)$ .

#### Observation (necessary condition for a punctured group)

If  $\mathcal{F}$  has a punctured group  $\mathcal{T}$ , then the normalizer  $N_{\mathcal{F}}(X)$  of each  $1 \neq X \leq S$  is not exotic. (Because  $N_{\mathcal{F}}(X) = \mathcal{F}_{N_S(X)}(N_{\mathcal{T}}(X))$ .)

#### Theorem (Henke, sufficient condition)

If  $\mathcal{F}$  is of "characteristic p-type" (i.e.  $O_p(N_{\mathcal{F}}(X)) \in \mathcal{F}^c$  for each  $1 \neq X \leq S$ ), then  $\mathcal{F}$  has a punctured group.

Survey of some exotic fusion systems at odd primes

#### Has a punctured group?

- Ruiz-Viruel systems (2004) over  $7^{1+2}_+$ : Yes.
- Oliver's exotic systems (2014) (A abelian, |S : A| = p): Roughly half do, half do not.
- Clelland-Parker systems (2010): Roughly half do, half don't.
- ▶ Parker-Stroth systems (2015) over  $S \cong p_+^{1+2n} \rtimes C_p$ : Yes.

#### A punctured group for Sol(q)

In F = Sol(q) at the prime 2, each N<sub>F</sub>(X) with 1 ≠ X ≤ S is realizable by a finite group. For example, recall

 $N_{\mathrm{Sol}(q)}(Z(S)) \cong \mathcal{F}_{S}(\mathrm{Spin}_{7}(q)).$ 

•  ${Sol(3^{2^k}) | k \ge 0}$  is a nonredundant list of Sol(q)'s.

#### Theorem (Solomon, 1974), rephrased

 $Sol(3^{2^k})$  is exotic, i.e. it has no associated transporter system with objects all subgroups of S.

#### Theorem (Henke-Libman-L., 2020)

 $Sol(3^{2^k})$  has a punctured group, i.e. a transporter category on nonidentity subgroups of *S*, if and only if k = 0.

- For k = 0, can build one with  $C_T(Z(S)) = \text{Spin}_7(3)$ .
- Others with k = 0 might exist with  $C_{\mathcal{T}}(Z(S)) = \operatorname{Spin}_7(3^{1+6a})$  for certain  $a \neq 0$ , but we can't prove or disprove.
- Idea for k > 0: Can show C<sub>T</sub>(Z(S)) ~ Spin<sub>7</sub>(q) for some odd q. Look at two different maximal tori: T ≅ C<sup>3</sup><sub>q-1</sub> and T' ≅ C<sup>3</sup><sub>q+1</sub>. Get GL<sub>3</sub>(2) must have faithful action on ℝ<sup>3</sup><sub>p</sub> for every prime p dividing (q − 1)(q + 1).
- Uses a "Signalizer functor theorem for punctured groups".

## Application to the topology of classifying spaces

An application: punctured groups and the subgroup decomposition

- ► The centric orbit category O(F<sup>c</sup>) has objects the F-centric subgroups, and morphisms Inn(Q)\Hom<sub>F</sub>(P, Q).
- Subgroup decomposition: the functor  $B: \mathcal{O}(\mathcal{F}^c) \to \text{hoTop}$  given by  $P \mapsto BP$  is liftable to a unique functor  $\tilde{B}: \mathcal{O}(\mathcal{F}^c) \to \text{Top}$  (up to htpy equivalence), and

$$|\mathcal{L}| \simeq \operatorname{hocolim}_{\mathcal{O}(\mathcal{F}^c)} \tilde{B},$$

where  ${\cal L}$  is the centric linking system of  ${\cal F}.$ 

▶ Bousfield-Kan spectral sequence for  $H^i(|\mathcal{L}|, \mathbf{F}_p)$ :  $E_2 = \lim_{\substack{\leftarrow \\ \mathcal{O}(\mathcal{F}^c)}} H^j(-, \mathbf{F}_p)$ .

#### Theorem (HLL)

If  $\mathcal{F}$  has a punctured group, then the cohomology functors  $H^{j}(-, \mathbf{F}_{p})$  over  $\mathcal{O}(\mathcal{F}^{c})$  have vanishing higher limits:

$$\lim_{\mathcal{O}(\mathcal{F}^c)} H^j(-, \mathbf{F}_p) = 0$$

for all  $i \geq 1$ .

- ▶ Dwyer for  $\mathcal{F}_{\mathcal{S}}(G)$ , additional work by Díaz-Park for certain exotic  $\mathcal{F}$ .
- With Theorem, more direct proof that H<sup>i</sup>(|L|, F<sub>p</sub>) is computable by stable elements (Broto-Levi-Oliver).

Thank you