Problem 2. Let $d(n)$ be the smallest number such that among any $d(n)$ points inside a regular n-gon with side of length 1 there are two points whose distance from each other is at most 1 . Prove that
(a) $d(n)=n$ for $4 \leq n \leq 6$.
(b) $\lim _{n \rightarrow \infty} \frac{d(n)}{n}=\infty$.

Solution. We start with some elementary observations from plane geometry. Let $P_{1} \ldots P_{n}$ be a regular n-gon with side of length 1 , let O be the center of the n-gon, and let $R_{n}=O P_{1}$ be the radius of the circle circumscribed on the n-gon. The triangle $P_{1} O P_{2}$ is isosceles and $\angle P_{1} O P_{2}=2 \pi / n$. It follows that

$$
O P_{1}=R_{n}=\frac{1}{2 \sin \left(\frac{\pi}{n}\right)}
$$

Note that $R_{n} \leq 1$ for $n \leq 6$ and $\lim _{n \rightarrow \infty} R_{n}=\infty$.
a) Suppose that $n \leq 6$ and Q_{1}, \ldots, Q_{n} are points inside the n-gon. We will show that there are two among the points which are at distance at most 1. If one of these points, say Q_{i}, is O, then $Q_{i} Q_{j}=O Q_{j} \leq R_{n} \leq 1$. So we may assume that none of our points is O. Furthermore, we may assume that the points are numbered so that when we rotate the ray $O Q_{1}$ counterclockwise we will encounter points Q_{2}, \ldots, Q_{n} in that order. We see that one of the angles $\angle Q_{1} O Q_{2}, \angle Q_{2} O Q_{3}, \ldots, \angle Q_{n} O Q_{1}$ does not exceed $2 \pi / n$. Suppose that $\alpha=\angle Q_{i} O Q_{j} \leq 2 \pi / n$. Since $O Q_{k} \leq R_{n}$ for every k, extending the sides $O Q_{i}$ and $O Q_{j}$ of the triangle $O Q_{i} Q_{j}$, we see that triangle $O Q_{i} Q_{j}$ is contained in a triangle $O A B$ such that $O A=O B=R_{n}$ and $\angle A O B=\alpha$. It follows that

$$
A B=2 A O \sin (\alpha / 2) \leq 2 R_{n} \sin (\pi / n)=1
$$

We see that all sides of the triangle $O A B$ have length smaller or equal than 1 . Thus the same is true for the sides of the triangle $Q_{i} O Q_{j}$ (which is contained in the triangle $O A B$). In particular, $Q_{i} Q_{j} \leq 1$. This proves that $d(n) \leq n$ for $n \leq 6$.

We leave it as a simple exercise to find 3 points in a square, 4 points in a regular pentagon, and 5 points in a regular hexagon, such that the distance between any two of them is bigger than 1 . It follows that $d(n)=n$ for $n=4,5,6$.
b) We will show that for any positive integer k we have $d(n)>k n$ for all n sufficiently large. Fix k and $t>1$. Since

$$
\lim _{n \rightarrow \infty}\left(\cos \left(\frac{\pi}{n}\right)-2 k t \sin \left(\frac{2 \pi}{n}\right)\right)=1
$$

the inequality

$$
\cos \left(\frac{\pi}{n}\right)-2 k t \sin \left(\frac{2 \pi}{n}\right)>\frac{1}{\sqrt{2}}
$$

holds for all sufficiently large n, say for all $n>N(k)$. Let $n>N(k)$. For each odd integer $i<n$ and $j=0,1, \ldots 2 k$ choose points $Q_{i, j}$ on the segment $O P_{i}$ such that $P_{i} Q_{i, j}=j t$. Then

$$
O Q_{i, j} \geq O Q_{i, 2 k}=R_{n}-P_{i} Q_{i, 2 k}=\frac{1}{2 \sin \left(\frac{\pi}{n}\right)}-2 k t=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}\left(\cos \left(\frac{\pi}{n}\right)-2 k t \sin \left(\frac{2 \pi}{n}\right)\right)>\frac{1}{\sqrt{2} \sin \left(\frac{2 \pi}{n}\right)}
$$

We constructed $(2 k+1)\left\lfloor\frac{n}{2}\right\rfloor$ points $Q_{i, j}$ inside the n-gon. Consider any two points $Q_{i_{1}, j_{1}}, Q_{i_{2}, j_{2}}$ among them. If $i_{1}=i_{2}$ then

$$
Q_{i_{1}, j_{1}} Q_{i_{2}, j_{2}}=\left|j_{1}-j_{2}\right| t>1
$$

If $i_{1} \neq i_{2}$ then the angle $\alpha=\angle Q_{i_{1}, j_{1}} O Q_{i_{2}, j_{2}}$ satisfies

$$
\frac{4 \pi}{n} \leq \alpha=\angle P_{i_{1}} O P_{i_{2}}
$$

The law of cosines for the triangle $Q_{i_{1}, j_{1}} O Q_{i_{2}, j_{2}}$ yields

$$
\left(Q_{i_{1}, j_{1}} Q_{i_{2}, j_{2}}\right)^{2}=\left(O Q_{i_{1}, j_{1}}\right)^{2}+\left(O Q_{i_{2}, j_{2}}\right)^{2}-2\left(O Q_{i_{1}, j_{1}}\right)\left(O Q_{i_{2}, j_{2}}\right) \cos \alpha=
$$

$$
\left(O Q_{i_{1}, j_{1}}-O Q_{i_{2}, j_{2}}\right)^{2}+2\left(O Q_{i_{1}, j_{1}}\right)\left(O Q_{i_{2}, j_{2}}\right) \sin ^{2}\left(\frac{\alpha}{2}\right)>2\left(\frac{1}{\sqrt{2} \sin \left(\frac{2 \pi}{n}\right)}\right)^{2} \sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{\sin ^{2}\left(\frac{\alpha}{2}\right)}{\sin \left(\frac{2 \pi}{n}\right)} \geq 1
$$

Thus the distance between any two of our points is larger than 1. It follows that

$$
d(n)>(2 k+1)\left\lfloor\frac{n}{2}\right\rfloor \geq(2 k+1)(n-1) / 2 \geq k n
$$

as long as $n>N(k)$ and $n>2 k+1$.

Problem. Prove that if $n>6$ then $d(n)>n$.

Problem. Prove that there exists positive numbers a, b such that

$$
a n^{2}<d(n)<b n^{2}
$$

for all n.

We do not know the answer to the following question.
Question. Does the sequence $\frac{d(n)}{n^{2}}$ converge?

