
Problem 6. Non-negative integers di, i ∈ Z, satisfy the following condition:

dk = |{i < k : di + i ≥ k}|

for every integer k. Prove that there is a positive integer n such that

dk ∈ {n− 1, n} and dk+n = dk

for every integer k.

Solution. Let Dk = {i < k : di + i ≥ k}. According to the definition of dk, for every integer k the set
Dk is finite with exactly dk elements.

Suppose that dk = 0 for some k. Then the set Dk is empty, hence di + i < k for all i < k. In particular,
dk−1 + (k − 1) < k, i.e. dk−1 < 1. Thus dk−1 = 0. Note that dk + k = k < k + 1. It follows that
di + i < k + 1 for every i < k + 1. In other words, the set Dk+1 is empty and dk+1 = 0. By obvious
induction we see that di = 0 for all integers i. We see that if dk = 0 for some k then all terms di are 0
and the conclusion of the problem is true with n = 1.

From now on we assume that dk > 0 for all k. Let Bk = {i : di + i = k}. Clearly Bk ⊆ Dk. Note that for
i < k we have i+di ≥ k+1 if and only if i+di ≥ k and i+di 6= k. In other words, Dk+1−{k} = Dk−Bk.
Since dk + k ≥ 1 + k, we have k ∈ Dk+1 and therefore

Dk+1 = {k} ∪Dk −Bk (1)

and consequently
dk+1 = 1 + dk − |Bk| ≤ 1 + dk. (2)

From (2) and obvious induction, we see that

Lemma 1. If k ≥ l then dk ≤ dl + k − l.

Let m be the smallest among the positive integrs di, i ∈ Z. Note that dk−i + (k − i) ≥ m + k − i ≥ k
for i = 1, . . . ,m and any integer k. Thus {k − 1, . . . , k − m} ⊆ Dk. Suppose now that dk = m for
some k. Then we must have {k − 1, . . . , k −m} = Dk. It follows that k −m − 1 6∈ Dk and therefore
dk−(m+1) + k − (m + 1) < k, i.e. dk−(m+1) < m + 1. We conclude that dk−(m+1) = m. By obvious
induction we get

Lemma 2. If dk = m then dk−t(m+1) = m for all non-negative integers t.

For any integer k define Nk =
∑
i∈Dk

(di + i + 1− k). By (1) we have

Nk+1 = (dk + k + 1− (k + 1)) +
∑
i∈Dk

(di + i + 1− (k + 1))−
∑
i∈Bk

(di + i + 1− (k + 1))

= dk +
∑
i∈Dk

(di + i + 1− k)−
∑
i∈Dk

1 = dk + Nk − dk = Nk.

It follows that the sequence Nk is constant, i.e.

Lemma 3.
∑

i∈Dk
(di + i + 1− k) = N for some N and all integers k.

Note that for i ∈ Dk we have i + di + 1− k ≥ k + 1− k = 1, so N ≥
∑

i∈Dk
1 = dk. Thus the sequence

dk, k ∈ Z is bounded above. Let M be the largest among the positive integers di, i ∈ Z. If i < k −M
then di + i < M + k −M = k. It follows that Dk ⊆ {k − 1, . . . , k −M}. In particular, dk = M if and
only if Dk = {k− 1, . . . , k−M}. We see that if dk = M then dk−M +k−M ≥ k, i.e. dk−M ≥M . Thus
dk−M = M and an obvious induction yields

Lemma 4. If dk = M then dk−tM = M for all non-negative integers t.

Now we can prove the key observation:

Lemma 5. M ≤ m + 1.
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Proof. Suppose that M > m + 1. There exist a, b such that da = m and Db = M . Among all non-
negative integers s, t choose a pair s, t such that the number (b− sM)− (a− t(m + 1)) is non-negative
and smallest possible. If (b − sM) − (a − t(m + 1)) ≥ M − (m + 1) then (b − sM) − (a − t(m + 1)) >
(b − (s + 1)M) − (a − (t + 1)(m + 1)) = (b − sM) − (a − t(m + 1)) − (M − (m + 1)) ≥ 0, contrary to
our choice of s, t. Thus we have M − (m + 1) > (b− sM)− (a− t(m + 1)) ≥> 0. Set k = b− sM and
l = a− t(m + 1). Then M −m > k − l ≥ 0. By Lemma 2 and Lemma 4 we have dk = M and dl = m.
Lemma 1 tells us that M −m = dk − dl ≤ k − l, which contradicts the fact that M −m > k − l. This
contradiction shows that we must have M ≤ m + 1.

From lemma 5 we see that either M = m or M = m + 1. If M = m then the sequence dk is constant
that the conclusion of our problem holds with n = m + 1. If M = m + 1 then dk ∈ {m,m + 1} for all
k. Take n = m + 1. If dk = m then dk−n = m by Lemma 2. If dk = M = m + 1 then dk−n = M by
Lemma 4. We see that dk−n = dk for all k. Thus we showed that dk ∈ {n− 1, n} and dk+n = dk for all
k, as required.

Second solution (after Slava Kargin): We start with Lemma 1 and Lemma 2 as in the first solution.
We will show that dk ≤ m + 1 for all k. Suppose that there is a such that da > m + 1. There is b such
that db = m. By Lemma 2, we may assume that b < a. Let k < a be largest such that dk = m. Then,
using (2), we see that there is t > 0 such that dk+1 = . . . = dk+t = m + 1 and dk+t+1 = m + 2. We
may assume that t is smallest possible. This means that if dp = m and dq > m + 1 for some p < q then
q− p ≥ t+ 1. From dk = m we conclude Dk = {k− 1, . . . , k−m}. Recall now that Dj+1 ⊆ Dj ∪{j} for
all j. It follows that Dk+i ⊆ {k−m, k−m+1, . . . , k+ i−1} for i ≥ 0. Since Dk+t+1 has m+2 elements,
k+ t−a ∈ Dk+t+1 for some a ≥ m+ 1. Thus dk+t−a +k+ t−a ≥ k+ t+ 1, i.e. dk+t−a ≥ a+ 1 ≥ m+ 2.
We have k + t − a ≥ k − m and dk−m−1 = m (Lemma 2) and dk+t−a ≥ m + 2. Our choice of t
implies that k + t − a − (k −m − 1) ≥ t + 1. This however means that m ≥ a, which contradicts the
inequality a ≥ m+ 1. The contradiction shows that we must have dk ≤ m+ 1 for all k. In other words,
dk ∈ {m,m + 1} for all k. The fact that dk+m+1 = dk can be now established as in the first solution.
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