Problem 6. Non-negative integers d_i , $i \in \mathbb{Z}$, satisfy the following condition:

$$d_k = |\{i < k : d_i + i \ge k\}|$$

for every integer k. Prove that there is a positive integer n such that

$$d_k \in \{n-1, n\}$$
 and $d_{k+n} = d_k$

for every integer k.

Solution. Let $D_k = \{i < k : d_i + i \ge k\}$. According to the definition of d_k , for every integer k the set D_k is finite with exactly d_k elements.

Suppose that $d_k = 0$ for some k. Then the set D_k is empty, hence $d_i + i < k$ for all i < k. In particular, $d_{k-1} + (k-1) < k$, i.e. $d_{k-1} < 1$. Thus $d_{k-1} = 0$. Note that $d_k + k = k < k+1$. It follows that $d_i + i < k+1$ for every i < k+1. In other words, the set D_{k+1} is empty and $d_{k+1} = 0$. By obvious induction we see that $d_i = 0$ for all integers i. We see that if $d_k = 0$ for some k then all terms d_i are 0 and the conclusion of the problem is true with n = 1.

From now on we assume that $d_k > 0$ for all k. Let $B_k = \{i : d_i + i = k\}$. Clearly $B_k \subseteq D_k$. Note that for i < k we have $i + d_i \ge k + 1$ if and only if $i + d_i \ge k$ and $i + d_i \ne k$. In other words, $D_{k+1} - \{k\} = D_k - B_k$. Since $d_k + k \ge 1 + k$, we have $k \in D_{k+1}$ and therefore

$$D_{k+1} = \{k\} \cup D_k - B_k \tag{1}$$

and consequently

$$d_{k+1} = 1 + d_k - |B_k| \le 1 + d_k. \tag{2}$$

From (2) and obvious induction, we see that

Lemma 1. If $k \geq l$ then $d_k \leq d_l + k - l$.

Let m be the smallest among the positive integrs d_i , $i \in \mathbb{Z}$. Note that $d_{k-i} + (k-i) \ge m+k-i \ge k$ for $i=1,\ldots,m$ and any integer k. Thus $\{k-1,\ldots,k-m\}\subseteq D_k$. Suppose now that $d_k=m$ for some k. Then we must have $\{k-1,\ldots,k-m\}=D_k$. It follows that $k-m-1 \not\in D_k$ and therefore $d_{k-(m+1)}+k-(m+1)< k$, i.e. $d_{k-(m+1)}< m+1$. We conclude that $d_{k-(m+1)}=m$. By obvious induction we get

Lemma 2. If $d_k = m$ then $d_{k-t(m+1)} = m$ for all non-negative integers t.

For any integer k define $N_k = \sum_{i \in D_k} (d_i + i + 1 - k)$. By (1) we have

$$N_{k+1} = (d_k + k + 1 - (k+1)) + \sum_{i \in D_k} (d_i + i + 1 - (k+1)) - \sum_{i \in B_k} (d_i + i + 1 - (k+1))$$

$$= d_k + \sum_{i \in D_k} (d_i + i + 1 - k) - \sum_{i \in D_k} 1 = d_k + N_k - d_k = N_k.$$

It follows that the sequence N_k is constant, i.e.

Lemma 3. $\sum_{i \in D_k} (d_i + i + 1 - k) = N$ for some N and all integers k.

Note that for $i \in D_k$ we have $i+d_i+1-k \geq k+1-k=1$, so $N \geq \sum_{i \in D_k} 1 = d_k$. Thus the sequence d_k , $k \in \mathbb{Z}$ is bounded above. Let M be the largest among the positive integers d_i , $i \in \mathbb{Z}$. If i < k-M then $d_i+i < M+k-M=k$. It follows that $D_k \subseteq \{k-1,\ldots,k-M\}$. In particular, $d_k = M$ if and only if $D_k = \{k-1,\ldots,k-M\}$. We see that if $d_k = M$ then $d_{k-M}+k-M \geq k$, i.e. $d_{k-M} \geq M$. Thus $d_{k-M} = M$ and an obvious induction yields

Lemma 4. If $d_k = M$ then $d_{k-tM} = M$ for all non-negative integers t.

Now we can prove the key observation:

Lemma 5. $M \le m + 1$.

Proof. Suppose that M>m+1. There exist a,b such that $d_a=m$ and $D_b=M$. Among all nonnegative integers s,t choose a pair s,t such that the number (b-sM)-(a-t(m+1)) is non-negative and smallest possible. If $(b-sM)-(a-t(m+1))\geq M-(m+1)$ then $(b-sM)-(a-t(m+1))>(b-(s+1)M)-(a-(t+1)(m+1))=(b-sM)-(a-t(m+1))-(M-(m+1))\geq 0$, contrary to our choice of s,t. Thus we have $M-(m+1)>(b-sM)-(a-t(m+1))\geq 0$. Set k=b-sM and l=a-t(m+1). Then $M-m>k-l\geq 0$. By Lemma 2 and Lemma 4 we have $d_k=M$ and $d_l=m$. Lemma 1 tells us that $M-m=d_k-d_l\leq k-l$, which contradicts the fact that M-m>k-l. This contradiction shows that we must have $M\leq m+1$.

From lemma 5 we see that either M=m or M=m+1. If M=m then the sequence d_k is constant that the conclusion of our problem holds with n=m+1. If M=m+1 then $d_k \in \{m,m+1\}$ for all k. Take n=m+1. If $d_k=m$ then $d_{k-n}=m$ by Lemma 2. If $d_k=M=m+1$ then $d_{k-n}=M$ by Lemma 4. We see that $d_{k-n}=d_k$ for all k. Thus we showed that $d_k \in \{n-1,n\}$ and $d_{k+n}=d_k$ for all k, as required.

Second solution (after Slava Kargin): We start with Lemma 1 and Lemma 2 as in the first solution. We will show that $d_k \leq m+1$ for all k. Suppose that there is a such that $d_a > m+1$. There is b such that $d_b = m$. By Lemma 2, we may assume that b < a. Let k < a be largest such that $d_k = m$. Then, using (2), we see that there is t > 0 such that $d_{k+1} = \ldots = d_{k+t} = m+1$ and $d_{k+t+1} = m+2$. We may assume that t is smallest possible. This means that if $d_p = m$ and $d_q > m+1$ for some p < q then $q - p \geq t+1$. From $d_k = m$ we conclude $D_k = \{k-1, \ldots, k-m\}$. Recall now that $D_{j+1} \subseteq D_j \cup \{j\}$ for all j. It follows that $D_{k+i} \subseteq \{k-m, k-m+1, \ldots, k+i-1\}$ for $i \geq 0$. Since D_{k+t+1} has m+2 elements, $k+t-a \in D_{k+t+1}$ for some $a \geq m+1$. Thus $d_{k+t-a}+k+t-a \geq k+t+1$, i.e. $d_{k+t-a} \geq a+1 \geq m+2$. We have $k+t-a \geq k-m$ and $d_{k-m-1} = m$ (Lemma 2) and $d_{k+t-a} \geq m+2$. Our choice of t implies that $k+t-a-(k-m-1) \geq t+1$. This however means that $m \geq a$, which contradicts the inequality $a \geq m+1$. The contradiction shows that we must have $d_k \leq m+1$ for all k. In other words, $d_k \in \{m, m+1\}$ for all k. The fact that $d_{k+m+1} = d_k$ can be now established as in the first solution.