Problem 6. Non-negative integers $d_{i}, i \in \mathbb{Z}$, satisfy the following condition:

$$
d_{k}=\left|\left\{i<k: d_{i}+i \geq k\right\}\right|
$$

for every integer k. Prove that there is a positive integer n such that

$$
d_{k} \in\{n-1, n\} \text { and } d_{k+n}=d_{k}
$$

for every integer k.
Solution. Let $D_{k}=\left\{i<k: d_{i}+i \geq k\right\}$. According to the definition of d_{k}, for every integer k the set D_{k} is finite with exactly d_{k} elements.

Suppose that $d_{k}=0$ for some k. Then the set D_{k} is empty, hence $d_{i}+i<k$ for all $i<k$. In particular, $d_{k-1}+(k-1)<k$, i.e. $d_{k-1}<1$. Thus $d_{k-1}=0$. Note that $d_{k}+k=k<k+1$. It follows that $d_{i}+i<k+1$ for every $i<k+1$. In other words, the set D_{k+1} is empty and $d_{k+1}=0$. By obvious induction we see that $d_{i}=0$ for all integers i. We see that if $d_{k}=0$ for some k then all terms d_{i} are 0 and the conclusion of the problem is true with $n=1$.

From now on we assume that $d_{k}>0$ for all k. Let $B_{k}=\left\{i: d_{i}+i=k\right\}$. Clearly $B_{k} \subseteq D_{k}$. Note that for $i<k$ we have $i+d_{i} \geq k+1$ if and only if $i+d_{i} \geq k$ and $i+d_{i} \neq k$. In other words, $D_{k+1}-\{k\}=D_{k}-B_{k}$. Since $d_{k}+k \geq 1+k$, we have $k \in D_{k+1}$ and therefore

$$
\begin{equation*}
D_{k+1}=\{k\} \cup D_{k}-B_{k} \tag{1}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
d_{k+1}=1+d_{k}-\left|B_{k}\right| \leq 1+d_{k} . \tag{2}
\end{equation*}
$$

From (2) and obvious induction, we see that
Lemma 1. If $k \geq l$ then $d_{k} \leq d_{l}+k-l$.
Let m be the smallest among the positive integrs $d_{i}, i \in \mathbb{Z}$. Note that $d_{k-i}+(k-i) \geq m+k-i \geq k$ for $i=1, \ldots, m$ and any integer k. Thus $\{k-1, \ldots, k-m\} \subseteq D_{k}$. Suppose now that $d_{k}=m$ for some k. Then we must have $\{k-1, \ldots, k-m\}=D_{k}$. It follows that $k-m-1 \notin D_{k}$ and therefore $d_{k-(m+1)}+k-(m+1)<k$, i.e. $d_{k-(m+1)}<m+1$. We conclude that $d_{k-(m+1)}=m$. By obvious induction we get

Lemma 2. If $d_{k}=m$ then $d_{k-t(m+1)}=m$ for all non-negative integers t.
For any integer k define $N_{k}=\sum_{i \in D_{k}}\left(d_{i}+i+1-k\right)$. By (1) we have

$$
\begin{gathered}
N_{k+1}=\left(d_{k}+k+1-(k+1)\right)+\sum_{i \in D_{k}}\left(d_{i}+i+1-(k+1)\right)-\sum_{i \in B_{k}}\left(d_{i}+i+1-(k+1)\right) \\
=d_{k}+\sum_{i \in D_{k}}\left(d_{i}+i+1-k\right)-\sum_{i \in D_{k}} 1=d_{k}+N_{k}-d_{k}=N_{k} .
\end{gathered}
$$

It follows that the sequence N_{k} is constant, i.e.
Lemma 3. $\sum_{i \in D_{k}}\left(d_{i}+i+1-k\right)=N$ for some N and all integers k.
Note that for $i \in D_{k}$ we have $i+d_{i}+1-k \geq k+1-k=1$, so $N \geq \sum_{i \in D_{k}} 1=d_{k}$. Thus the sequence $d_{k}, k \in \mathbb{Z}$ is bounded above. Let M be the largest among the positive integers $d_{i}, i \in \mathbb{Z}$. If $i<k-M$ then $d_{i}+i<M+k-M=k$. It follows that $D_{k} \subseteq\{k-1, \ldots, k-M\}$. In particular, $d_{k}=M$ if and only if $D_{k}=\{k-1, \ldots, k-M\}$. We see that if $d_{k}=M$ then $d_{k-M}+k-M \geq k$, i.e. $d_{k-M} \geq M$. Thus $d_{k-M}=M$ and an obvious induction yields

Lemma 4. If $d_{k}=M$ then $d_{k-t M}=M$ for all non-negative integers t.
Now we can prove the key observation:
Lemma 5. $M \leq m+1$.

Proof. Suppose that $M>m+1$. There exist a, b such that $d_{a}=m$ and $D_{b}=M$. Among all nonnegative integers s, t choose a pair s, t such that the number $(b-s M)-(a-t(m+1))$ is non-negative and smallest possible. If $(b-s M)-(a-t(m+1)) \geq M-(m+1)$ then $(b-s M)-(a-t(m+1))>$ $(b-(s+1) M)-(a-(t+1)(m+1))=(b-s M)-(a-t(m+1))-(M-(m+1)) \geq 0$, contrary to our choice of s, t. Thus we have $M-(m+1)>(b-s M)-(a-t(m+1)) \geq>0$. Set $k=b-s M$ and $l=a-t(m+1)$. Then $M-m>k-l \geq 0$. By Lemma 2 and Lemma 4 we have $d_{k}=M$ and $d_{l}=m$. Lemma 1 tells us that $M-m=d_{k}-d_{l} \leq k-l$, which contradicts the fact that $M-m>k-l$. This contradiction shows that we must have $M \leq m+1$.

From lemma 5 we see that either $M=m$ or $M=m+1$. If $M=m$ then the sequence d_{k} is constant that the conclusion of our problem holds with $n=m+1$. If $M=m+1$ then $d_{k} \in\{m, m+1\}$ for all k. Take $n=m+1$. If $d_{k}=m$ then $d_{k-n}=m$ by Lemma 2. If $d_{k}=M=m+1$ then $d_{k-n}=M$ by Lemma 4. We see that $d_{k-n}=d_{k}$ for all k. Thus we showed that $d_{k} \in\{n-1, n\}$ and $d_{k+n}=d_{k}$ for all k, as required.

Second solution (after Slava Kargin): We start with Lemma 1 and Lemma 2 as in the first solution. We will show that $d_{k} \leq m+1$ for all k. Suppose that there is a such that $d_{a}>m+1$. There is b such that $d_{b}=m$. By Lemma 2, we may assume that $b<a$. Let $k<a$ be largest such that $d_{k}=m$. Then, using (2), we see that there is $t>0$ such that $d_{k+1}=\ldots=d_{k+t}=m+1$ and $d_{k+t+1}=m+2$. We may assume that t is smallest possible. This means that if $d_{p}=m$ and $d_{q}>m+1$ for some $p<q$ then $q-p \geq t+1$. From $d_{k}=m$ we conclude $D_{k}=\{k-1, \ldots, k-m\}$. Recall now that $D_{j+1} \subseteq D_{j} \cup\{j\}$ for all j. It follows that $D_{k+i} \subseteq\{k-m, k-m+1, \ldots, k+i-1\}$ for $i \geq 0$. Since D_{k+t+1} has $m+2$ elements, $k+t-a \in D_{k+t+1}$ for some $a \geq m+1$. Thus $d_{k+t-a}+k+t-a \geq k+t+1$, i.e. $d_{k+t-a} \geq a+1 \geq m+2$. We have $k+t-a \geq k-m$ and $d_{k-m-1}=m$ (Lemma 2) and $d_{k+t-a} \geq m+2$. Our choice of t implies that $k+t-a-(k-m-1) \geq t+1$. This however means that $m \geq a$, which contradicts the inequality $a \geq m+1$. The contradiction shows that we must have $d_{k} \leq m+1$ for all k. In other words, $d_{k} \in\{m, m+1\}$ for all k. The fact that $d_{k+m+1}=d_{k}$ can be now established as in the first solution.

