Problem 6. Non-negative integers d;, i € Z, satisfy the following condition:
d ={i<k:d;+1i>k}|
for every integer k. Prove that there is a positive integer n such that
dip € {n—1,n} and dgy, =dg
for every integer k.

Solution. Let Dy = {i < k: d; +i > k}. According to the definition of dj, for every integer k the set
Dy, is finite with exactly di elements.

Suppose that di = 0 for some k. Then the set Dy, is empty, hence d; +¢ < k for all ¢ < k. In particular,
di—1+ (k—1) < k, ie. dg—1 < 1. Thus dy—; = 0. Note that d, + k = k < k+ 1. It follows that
d; +1i < k+1 for every i < k+ 1. In other words, the set Dy is empty and dx41 = 0. By obvious
induction we see that d; = 0 for all integers i. We see that if dy = 0 for some k then all terms d; are 0
and the conclusion of the problem is true with n = 1.

From now on we assume that dj > 0 for all k. Let By = {i : d;+i = k}. Clearly By C Dj. Note that for
i < kwehave i+d; > k+1if and only if i+d; > k and i+d; # k. In other words, Dyy1—{k} = Dy — By.
Since di, + k > 1+ k, we have k € Dy and therefore

D}c+1 = {k} U Dy, — By, (1)

and consequently
di+1 =1+dg — |Bg| <1+ dk. (2)

From (2) and obvious induction, we see that
Lemma 1. If k > [ then d, <d; + k — (.

Let m be the smallest among the positive integrs d;, i € Z. Note that dj—; + (k—i) >m+k—1 >k
for i = 1,...,m and any integer k. Thus {k — 1,...,k — m} C Dj. Suppose now that d, = m for
some k. Then we must have {k —1,...,k — m} = Dj. It follows that k —m — 1 & Dy, and therefore
dp—(m+1) + k= (m+1) <k, ie di_(my1) < m+1. We conclude that dj_(n,41) = m. By obvious
induction we get

Lemma 2. If dj, = m then dj_;(p41) = m for all non-negative integers t.

For any integer k define Ny, = Z (di+i+1—kE). By (1) we have
1€ Dy

Nepr=(dp+k+1=(k+1)+ > (dit+i+1—(k+1)—= > (di+i+1-(k+1))
1€Dy i€By

=dp+ Y (di+i+1—k)— Y 1=dy+Ny—d=Ny
i€Dy, i€Dy,

It follows that the sequence N is constant, i.e.
Lemma 3. >, ., (di +i+1—k) =N for some N and all integers k.

Note that for i € Dy, we have i +d; +1 -k >k+1—k=1,s0 N > ZieDk 1 = dj. Thus the sequence
dy, k € Z is bounded above. Let M be the largest among the positive integers d;, i € Z. If i < k — M
then d; +i < M + k — M = k. Tt follows that D, C {k—1,...,k — M}. In particular, d;, = M if and
only if D ={k—1,...,k—M}. We see that if d, = M then dy_p +k—M >k, ie. dy_p > M. Thus
dr_pm = M and an obvious induction yields

Lemma 4. If dy = M then di_;p; = M for all non-negative integers t¢.
Now we can prove the key observation:

Lemma 5. M <m+ 1.



Proof. Suppose that M > m + 1. There exist a,b such that d, = m and D, = M. Among all non-
negative integers s,t choose a pair s,t such that the number (b — sM) — (a — ¢t(m + 1)) is non-negative
and smallest possible. If (b — sM) — (a —t(m + 1)) > M — (m + 1) then (b —sM) — (a —t(m + 1)) >
b—(s+1)M)—(a—(t+1)(m+1)=0b—-—sM)—(a—tim+1)) — (M — (m+1)) >0, contrary to
our choice of s,¢. Thus we have M — (m +1) > (b —sM) — (a —t(m+ 1)) >> 0. Set k = b — sM and
l=a—t(m+1). Then M —m >k —1>0. By Lemma 2 and Lemma 4 we have d;, = M and d; = m.
Lemma, 1 tells us that M — m = d, — d; < k — [, which contradicts the fact that M —m > k —[. This
contradiction shows that we must have M < m + 1.

From lemma 5 we see that either M = m or M = m + 1. If M = m then the sequence dj is constant
that the conclusion of our problem holds with n = m + 1. If M = m + 1 then di € {m,m + 1} for all
k. Take n = m + 1. If dy = m then dy_,, = m by Lemma 2. If d, = M = m + 1 then dy_, = M by
Lemma 4. We see that di_,, = dj, for all k. Thus we showed that d € {n — 1,n} and dy,, = dj for all
k, as required.

Second solution (after Slava Kargin): We start with Lemma 1 and Lemma 2 as in the first solution.
We will show that dp < m + 1 for all k. Suppose that there is a such that d, > m + 1. There is b such
that d, = m. By Lemma 2, we may assume that b < a. Let k < a be largest such that dy, = m. Then,
using (2), we see that there is ¢ > 0 such that dy11 = ... = dgar = m+ 1 and dgypy1 = m + 2. We
may assume that ¢ is smallest possible. This means that if d, = m and d; > m + 1 for some p < ¢ then
g—p>t+1. From dy = m we conclude Dy, = {k—1,...,k—m}. Recall now that D;;1 C D; U{j} for
all j. It follows that Dy4; C{k—m,k—m+1,...,k+i—1} for ¢ > 0. Since Dj1¢+1 has m+2 elements,
k+t—a € Dyyiqq for some a > m+1. Thus dyqt—q +k+t—a>k+t+1,ie dpytg >a+1>m+2.
We have k +t —a > k —m and dg_,—1 = m (Lemma 2) and dgii—q > m + 2. Our choice of ¢
implies that k+¢t—a — (k—m — 1) > ¢t + 1. This however means that m > a, which contradicts the
inequality a > m + 1. The contradiction shows that we must have di, < m+ 1 for all k. In other words,
di, € {m,m + 1} for all k. The fact that djym,+1 = di can be now established as in the first solution.



