
Problem 4. Let f(x) = ax2+ bx+ c be a quadratic polynomial with integral coefficients. Suppose that
there are n ≥ 5 consecutive integers at which the value of f is a perfect square. Prove that b2 − 4ac is
divisible by every prime number smaller or equal than n.

Solution. Before we start let us make the following simple observation: for any integer m the function
g(x) = f(x −m) is of the form g(x) = ax2 + b1x + c1 and b2 − 4ac = b21 − 4ac1. This allows us, when
convenient, to assume that f(0), . . . , f(n− 1) are squares (by choosing suitable m).

Let us start by showing that b2 − 4ac is divisible by 2 if the value of f at three consecutive integers
is a square. Showing that b2 − 4ac is divisible by 2 is equivalent to showing that b is even. Suppose
that f(m − 1) = l2, f(m), and f(m + 1) = k2 are squares for some integer m. Note that k2 − l2 =
f(m + 1) − f(m − 1) = 4am + 2b is even. It follows that k, l have the same parity and therefore
k2 − l2 = (k − l)(k + l) is divisible by 4 (as a product of two even integers). Thus 4am+ 2b is divisible
by 4, and therefore b is even (note that we did not use the fact that f(m) is a square).

Remark. The essence of the above argument is the simple but important observation that the square
of an integer is congruent to 0 or 1 modulo 4.

Let now p be an odd prime number. We will be working with residues modulo p (i.e. congruences
modulo p). We say that an integer m is (is not) a square modulo p if m is (is not) congruent to a
square of an integer modulo p. For example, −1 is a square modulo 5 but 2 is not a square modulo 5.
It is clear that being a square modulo p depends only on the residue class modulo p, i.e. two numbers
congruent modulo p are either both squares modulo p or both are non-squares modulo p.

The key observation needed for our solution is the following result.

Proposition 1 Among the numbers 0, 1, ..., p− 1 exactly (p+ 1)/2 are squares modulo p.

Indeed, it is easy to see that no two among the numbers 02, 12, . . . , [(p− 1)/2]2 are congruent modulo p,
so their residues modulo p form a set (p+ 1)/2 elements among 0, 1, ..., p− 1 which are squares modulo
p. On the other hand, any integer m is congruent modulo p to ±j for some j ∈ {0, 1, . . . , (p− 1)/2} and
therefore m2 ≡ j2 (mod p).

As a simple corollary we get the following result.

Proposition 2 If p divides a and p does not divide b then f(x) can be a square for at most (p + 1)/2
consecutive integers x.

Indeed, note that when p divides a then f(m) ≡ bm+ c (mod p) for every m. If bk+ c ≡ bl+ c (mod p)
then p divides b(k − l), hence p divides k − l (recall that p does not divide b). It follows that for any
integer k, no two of the 1+ (p+1)/2 numbers bk+ c, b(k+1)+ c, . . . , b(k+(p+1/2))+ c are congruent
modulo p, so at least one of them is not a square modulo p by Proposition 1.

Returning to the assumptions of the problem, we conclude immediately from Proposition 2 that if p is a
prime which divides a and such that p < 2n−1, then p also divides b, and consequently p|(b2−4ac). This
establishes the conclusion of the problem for primes which divide a. As a matter of fact it establishes
more, that any prime p < 2n− 1 which divides a must divide b2 − 4ac. We will use this in our second
solution.

From now on we assume that p does not divide a and that f(0), . . . , f(n− 1) are squares. Note that if
k, l are integers then f(k)− f(l) = (k− l)(a(k+ l) + b). It follows that f(k) ≡ f(l) (mod p) if and only
if either l ≡ k (mod p) or l ≡ r − k (mod p), where

r is the unique integer in {0, 1, . . . , p− 1} such that ar ≡ −b (mod p).

In particular, we see that among the numbers f(0), f(1), . . . , f(p − 1) no three are congruent to each
other modulo p.

Suppose now that p ≤ n. Thus each of the p numbers f(0), f(1), . . . , f(p − 1) is a square modulo
p, and therefore f(m) is a square modulo p for every integer m (see the observations in the previous
paragraph). Recall now that from Proposition 1 we have exactly (p + 1)/2 non-congruent squares
modulo p. Our observations so far can be formulated as follows: we are distributing p pigeons (the
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squares f(0), f(1), . . . , f(p − 1)) into (p + 1)/2 drawers (the congruence classes of squares modulo p)
in such a way that each drawer has at most two pigeons. It follows that no drawer can be empty. In
particular, we must have f(i) ≡ 02 = 0 (mod p) for some i ∈ {0, 1, . . . , p − 1}. Choose smallest such
i. Let j be an integer in {0, 1, . . . , p − 1} such that j ≡ r − i (mod p) (r was defined in the previous
paragraph). Then f(i) ≡ f(j) (mod p), so p divides f(j) and therefore j ≥ i.

If j = i then 2i ≡ r (mod p) and therefore 2ai + b is divisible by p (by the definition of r). Now
(2ai+ b)2 − 4af(i) = b2 − 4ac, so b2 − 4ac is divisible by p2 (note that since p divides f(i) and f(i) is a
square, p2 divides f(i)). Thus the conclusion of the problem holds in this case.

Suppose now that j > i. We will show that this is not possible unless p = 3. Set k = j − i and
g(x) = ax(x− k) (note that 0 < k < p). We claim than g(m) ≡ f(m+ i) (mod p) for every integer m.
In fact, on one hand we have

g(m) = am(m−k) = am(m+i−j) ≡ am(m+i−(r−i)) = m(a(m+2i)−ar) ≡ m(a(m+2i)+b) (mod p).

On the other hand,

f(m+ i) ≡ f(m+ i)− f(i) = m(a(m+ 2i) + b) (mod p).

Thus g(m) ≡ f(m+ i) (mod p). It follows that g(m) is a square modulo p for every integer m. Suppose
now that p does not divide w. There is an integer m such that mw ≡ 1 (mod p). Then

w2g(m) = amw(wm− kw) ≡ a(1− kw) (mod p).

Thus a(1 − kw) is a square modulo p for every w not divisible by p. Note that no two of the numbers
a(1−k), a(1−2k), . . . , a(1−(p−1)k) are congruent modulo p. Thus we have p−1 pairwise non-congruent
squares modulo p. This means that p− 1 ≤ (p+ 1)/2, i.e. p ≤ 3.

It remains to consider the case when p = 3, f(0), f(1), f(2), f(3), f(4) are squares and p divides f(i)
and f(j) for some 0 ≤ i < j < 3. Thus i ≤ 1 and both f(i) and f(i+3) are squares divisible by 3, hence
also divisible by 9. Now f(i + 3) − f(i) = 3(a(2i + 3) + b). Thus 3 divides a(2i + 3) + b, so 3 divides
2ai + b. Now b2 − 4ac = (2ai + b)2 − 4af(i) is divisible by 3 (in fact by 9), as required to prove. This
completes our argument.

Remark. Consider the polynomial f(x) = 8x2 − 8x+ 9. Then b2 − 4ac = −25 · 7 is not divisible by 3
and f(−1) = 25, f(0) = 9, f(1) = 9, f(2) = 25 are squares. Thus n ≥ 5 is necessary to get divisibility
by 3.

Remark. The above solution was intentionally written using just the basic properties of congruences.
While this makes the argument very ”elementary”, the price to pay is that some parts of the reasoning
may seem mysterious. Readers familiar with a bit more algebra should rewrite the proof using the fact
that the residues modulo p form a field and then using the basic properties of polynomials over a field
(like the fact that a polynomial of degree d assumes a given value in at most d different arguments, etc.).
In particular, the fact that p divides b2 − 4ac says that the polynomial f modulo p has discriminant 0
and therefore a double root.

Second solution. We will prove now a stronger result that when n ≥ 5 then b2 − 4ac is divisible by
every prime number p ≤ 2n− 5, using a bit more of elementary number theory (all we need is covered
in a basic number theory class like Math 407 at Binghamton University). For p ≤ 3 or when p divides
a our argument is as in the first solution. So we assume that p ≥ 5 and a is not divisible by p.

First we state some results and concepts we will need. For an odd prime p and any integers m we define

the Legendre symbol

(

m

p

)

as follows:

(

m

p

)

=











0 if p divides m

1 if m is a square modulo p not divisible by p

−1 if m is not a square modulo p.

Recall now the Fermat’s Little Theorem:
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If p does not divide m then mp−1 ≡ 1 (mod p).

It follows that m(p−1)/2 ≡ ±1 (mod p) for every integer m not divisible by p (since ±1 are the only
solutions of the congruence x2 ≡ 1 (mod p)). If m ≡ k2 (mod p) for some k and p does not divide m
then m(p−1)/2 ≡ kp−1 ≡ 1 (mod p). On the other hand, if m is not a square modulo p then m(p−1)/2 6≡ 1
(mod p) (this follows from the fact that the congruence x(p−1)/2 ≡ 1 (mod p) has at most (p − 1)/2
solutions). It follows that m(p−1)/2 ≡ −1 (mod p) when m is not a square modulo p. We can summarize
these observations as follows:

(

m

p

)

≡ m(p−1)/2 (mod p)

for every integer p. This observation is often called Euler’s criterion. It is a simple exercise to derive
from the Euler’s criterion that

(

mk

p

)

=

(

m

p

)(

k

p

)

for any integers m, k.

Let Sk =

p−1
∑

i=0

ik. Then

Sk ≡

{

0 (mod p) if 0 ≤ k ≤ p− 2

−1 (mod p) if k = p− 1.
(1)

The case when k = p − 1 is a straightforward corollary from Fermat’s Little Theorem. To justify this
when 0 ≤ k ≤ p− 2 note that for any u not divisible by p we have

ukSk =

p−1
∑

i=0

(ui)k ≡

p−1
∑

i=0

ik = Sk (mod p).

In other words, p divides (uk − 1)Sk. Since the congruence xk ≡ 1 (mod p) has at most k solutions
modulo p,there is u such that p does not divide any of u and uk − 1 and using such u we conclude that
p divides Sk.

We are ready to prove our claim. Using Euler’s criterion we see that

p−1
∑

i=0

(

f(i)

p

)

≡

p−1
∑

i=0

f(i)(p−1)/2 (mod p).

Now f(x)(p−1)/2 = a(p−1)/2xp−1 + hp−2x
p−2 + . . .+ h1x+ h0 for some integers h0, h1, . . . , hp−2. By (1)

and the Euler’s criterion, we have

p−1
∑

i=0

f(i)(p−1)/2 ≡ a(p−1)/2Sp−1 +

p−2
∑

j=0

hjSj ≡ −

(

a

p

)

(mod p).

We see that
p−1
∑

i=0

(

f(i)

p

)

≡ −

(

a

p

)

= ±1 (mod p).

Each summand on the left hand side is −1, 0 or 1. If we have s summands equal to 1, t summands equal
to −1, and z summands equal to 0 then

z ≤ 2, s+ t+ z = p, and s− t ≡ ±1 (mod p).

Note that if t > 0 (i.e. s+ z < p) then n ≤ s+ z. To justify this recall from our first solution that we
may assume that f(0), . . . , f(n−1) are squares. If n > s+ z, then the s+ z+1 values f(0), . . . , f(s+ z)

would be squares modulo p. Thus for 0 ≤ i < p the Legendre symbol

(

f(i)

p

)

can be −1 only when

p > i > s + z. Since t is the number of i ∈ {0, 1, . . . , p − 1} such that

(

f(i)

p

)

= −1, we see that

t < p− (s+ z), which contradicts the equality s+ t+ z = p.
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Since −p ≤ s − t ≤ p, we have s − t = ±1 or s − t = ±(p − 1). Is s − t = ±(p − 1) then s and t have
the same parity, so s + t is even and z must be odd. It follows that z = 1. Thus there is exactly one
i ∈ {0, 1, . . . , p − 1} such that f(i) is divisible by p. As we have seen in our first solution, this means
that p|b2 − 4ac (the polynomial f(x) modulo p has a double root).

If s− t = 1 then 2s− 1 + z = p, so 2(s+ z) = p+ 1 + z ≤ p+ 3, i.e. s+ z ≤ (p+ 3)/2. It follows that
n ≤ s + z ≤ (p + 3)/2, i.e. p ≥ 2n − 3. If s − t = −1 then 2s + 1 + z = p and n ≤ s + z ≤ (p + 1)/2,
i.e. p ≥ 2n − 1. The last two cases contradict the assumption that p ≤ 2n − 5. This completes our
argument.

Exercise. Show that if a prime p does not divide a and p ≤ n then p2 divides b2 − 4ac.

Example. Let f(x) = 84x2 − 252x + 289. Then b2 − 4ac = −26 · 3 · 52 · 7 and f(x) is a square for
x = −1, 0, 1, 2, 3, 4 (so n = 6).

Example (Provided by Dr. Mathew Wolak). Let f(x) = −420x2 + 2940x+ 289. Then f(x) is a
square for x = 0, 1, 2, 3, 4, 5, 6, 7 (so n = 8). Note that b2 − 4ac = 25 · 3 · 5 · 7 · 11 · 13 · 19.

Exercise. Show that if p = 2n− 3 is a prime which does not divide a and a is a square modulo p then
p divides b2 − 4ac. How does this explain why 13 shows up in the above example?

As far as we know the following are open problems.

Problem. Prove that there is k such that no quadratic polynomial f(x) = ax2 + bx + c with integer
coefficients such that b2 − 4ac 6= 0 can assume square values at k consecutive integers. Find smallest
such k.

Problem. Is there a monic polynomial f(x) = x2+ bx+ c with integer coefficients such that b2−4c 6= 0
which assumes square values at 5 consecutive integers?

It is a result due to Fermat that there are no four distinct perfect squares which form an arithmetic
progression. This is equivalent to the fact that no linear polynomial bx+ c with integer coefficients and
b 6= 0 can assume square values at four consecutive integers.

To learn more about the concepts used in the above solutions one should consult any of the many books
on elementary number theory. For example,

Elementary Number Theory by James K. Strayer

or (for more advanced treatment)

A classical Introduction to Modern Number Theory by Kenneth Ireland, Michael Rosen

are good choices.
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