Problem 1. A continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ has the following property:

$$
f(x) \cdot f(f(x))=1 \text { for every } x \in \mathbb{R}
$$

Knowing that the largest value of f is e, prove that

$$
3+e^{-2}<\int_{0}^{2 e} f(t) d t<3+e^{2}
$$

Show that these bounds are best possible. Here $e=2.7128 \ldots$ is the base of natural logarithms.
Solution. The condition

$$
\begin{equation*}
f(x) \cdot f(f(x))=1 \text { for every } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

means that $f(u)=1 / u$ for every u in the range of f. In particular, 0 is not in the range of f. Our first step is to determine the range of f. We are given that e is in the range of f and $f(x) \leq e$ for all x. It follows that $f(e)=1 / e$, so $1 / e$ is in the range of f and $f(1 / e)=e$. Thus both $1 / e$ and e belong to the range of f. Since f is continuous, the intermediate value theorem tells us that any number between $1 / e$ and e is also in the range of f. In other words, the closed interval $[1 / e, e]$ is contained in the range of f.

Suppose now that u is in the range of f. If $u \leq 0$ then 0 would be in the range of f by the intermediate value theorem. Since we know that 0 is not in the range of f, we conclude that $u>0$. We have $f(u)=1 / u$, so $0<1 / u \leq e$. Thus $u \geq 1 / e$. This proves that any number in the range of f is in the interval $[1 / e, e]$.

Putting the above observations together, we see that the range of f is exactly the interval $[1 / e, e]$. Thus f is a continuous function such that $1 / e \leq f(x) \leq e$ for all x and $f(x)=1 / x$ for all $x \in[1 / e, e]$. Conversely, it is straightforward to see that any continuous function f such that $1 / e \leq f(x) \leq e$ for all x and $f(x)=1 / x$ for all $x \in[1 / e, e]$ satisfies condition (1).

Note now that

$$
\begin{gathered}
\int_{0}^{2 e} f(t) d t=\int_{0}^{1 / e} f(t) d t+\int_{1 / e}^{e} f(t) d t+\int_{e}^{2 e} f(t) d t=\int_{0}^{1 / e} f(t) d t+\int_{1 / e}^{e} \frac{d t}{t}+\int_{e}^{2 e} f(t) d t= \\
\int_{0}^{1 / e} f(t) d t+\left(\ln e-\ln (1 / e)+\int_{e}^{2 e} f(t) d t=2+\int_{0}^{1 / e} f(t) d t+\int_{e}^{2 e} f(t) d t\right.
\end{gathered}
$$

For the upper bound, note that

$$
\int_{0}^{1 / e} f(t) d t \leq \int_{0}^{1 / e} e d t=1
$$

Since f is continuous and $f(e)=1 / e<1$, there is $\epsilon>0$ such that $f(x) \leq 1$ for all $x \in[e, e+\epsilon]$. We may assume that $\epsilon<e$. Thus

$$
\int_{e}^{2 e} f(t) d t=\int_{e}^{e+\epsilon} f(t) d t+\int_{e+\epsilon}^{2 e} f(t) d t \leq \int_{e}^{e+\epsilon} d t+\int_{e+\epsilon}^{2 e} e d t=\epsilon+e(e-\epsilon)<e^{2}
$$

Putting these inequalities together, we see that

$$
\int_{0}^{2 e} f(t) d t<2+1+e^{2}=3+e^{2}
$$

The argument for the lower bound is similar. First we have

$$
\int_{e}^{2 e} f(t) d t \geq \int_{2}^{2 e} \frac{d t}{e}=1
$$

Since f is continuous and $f(1 / e)=e>1$, there is $\epsilon>0$ such that $f(x) \geq 1$ for all $x \in[1 / e-\epsilon, 1 / e]$. We may assume that $\epsilon<1 / e$. Thus

$$
\int_{0}^{1 / e} f(t) d t=\int_{0}^{1 / e-\epsilon} f(t) d t+\int_{1 / e-\epsilon}^{1 / e} f(t) d t \geq \int_{0}^{1 / e-\epsilon} \frac{d t}{e}+\int_{1 / e-\epsilon}^{1 / e} d t=\left(\frac{1}{e}-\epsilon\right) \frac{1}{e}+\epsilon>\frac{1}{e^{2}}
$$

It follows that

$$
\int_{0}^{2 e} f(t) d t>2+1+e^{-2}=3+e^{-2}
$$

It remains to show that the bounds are best possible. For every $1>\epsilon>0$ consider the following function:

$$
f_{\epsilon}(x)= \begin{cases}e & \text { for } x<1 / e \\ 1 / x & \text { for } x \in[1 / e, e] \\ \frac{1}{e}+\frac{x-e}{\epsilon}\left(e^{2}-1\right) & \text { for } x \in[e, e+\epsilon / e] \\ e & \text { for } x>e+\epsilon / e\end{cases}
$$

It is easy to see that f_{ϵ} satisfies the assumptions of the problem, i.e. it is continuous, satisfies (1), and its largest value is e. We have

$$
\begin{gathered}
\int_{0}^{2 e} f_{\epsilon}(t) d t \geq \int_{0}^{1 / e} f_{\epsilon}(t) d t+\int_{1 / e}^{e} f_{\epsilon}(t) d t+\int_{e+\epsilon / e}^{2 e} f_{\epsilon}(t) d t=\int_{0}^{1 / e} e d t+\int_{1 / e}^{e} \frac{d t}{t}+\int_{e+\epsilon / e}^{2 e} e d t= \\
1+\left(\ln e-\ln (1 / e)+(e-\epsilon / e) e=3+e^{2}-\epsilon\right.
\end{gathered}
$$

It follows that for every $a<3+e^{2}$ there is a function f which satisfies the conditions of the problem and such that

$$
\int_{0}^{2 e} f(t) d t \geq a
$$

This proves that the upper bound $3+e^{2}$ can not be improved. We leave it as a straightforward exercise to write a similar argument that the lower bound $3+e^{-2}$ can not be improved.

