
Problem 1. A continuous function f : R −→ R has the following property:

f(x) · f(f(x)) = 1 for every x ∈ R.

Knowing that the largest value of f is e, prove that

3 + e−2 <

∫ 2e

0

f(t)dt < 3 + e2.

Show that these bounds are best possible. Here e = 2.7128... is the base of natural logarithms.

Solution. The condition
f(x) · f(f(x)) = 1 for every x ∈ R (1)

means that f(u) = 1/u for every u in the range of f . In particular, 0 is not in the range of f . Our first
step is to determine the range of f . We are given that e is in the range of f and f(x) ≤ e for all x. It
follows that f(e) = 1/e, so 1/e is in the range of f and f(1/e) = e. Thus both 1/e and e belong to the
range of f . Since f is continuous, the intermediate value theorem tells us that any number between 1/e
and e is also in the range of f . In other words, the closed interval [1/e, e] is contained in the range of f .

Suppose now that u is in the range of f . If u ≤ 0 then 0 would be in the range of f by the intermediate
value theorem. Since we know that 0 is not in the range of f , we conclude that u > 0. We have
f(u) = 1/u, so 0 < 1/u ≤ e. Thus u ≥ 1/e. This proves that any number in the range of f is in the
interval [1/e, e].

Putting the above observations together, we see that the range of f is exactly the interval [1/e, e]. Thus
f is a continuous function such that 1/e ≤ f(x) ≤ e for all x and f(x) = 1/x for all x ∈ [1/e, e].
Conversely, it is straightforward to see that any continuous function f such that 1/e ≤ f(x) ≤ e for all
x and f(x) = 1/x for all x ∈ [1/e, e] satisfies condition (1).

Note now that

∫ 2e

0

f(t)dt =

∫ 1/e

0

f(t)dt+

∫ e

1/e

f(t)dt+

∫ 2e

e

f(t)dt =

∫ 1/e

0

f(t)dt+

∫ e

1/e

dt

t
+

∫ 2e

e

f(t)dt =

∫ 1/e

0

f(t)dt+ (ln e− ln(1/e) +

∫ 2e

e

f(t)dt = 2 +

∫ 1/e

0

f(t)dt+

∫ 2e

e

f(t)dt.

For the upper bound, note that
∫ 1/e

0

f(t)dt ≤

∫ 1/e

0

edt = 1.

Since f is continuous and f(e) = 1/e < 1, there is ǫ > 0 such that f(x) ≤ 1 for all x ∈ [e, e + ǫ]. We
may assume that ǫ < e. Thus

∫ 2e

e

f(t)dt =

∫ e+ǫ

e

f(t)dt+

∫ 2e

e+ǫ

f(t)dt ≤

∫ e+ǫ

e

dt+

∫ 2e

e+ǫ

edt = ǫ+ e(e− ǫ) < e2.

Putting these inequalities together, we see that

∫ 2e

0

f(t)dt < 2 + 1 + e2 = 3 + e2.

The argument for the lower bound is similar. First we have

∫ 2e

e

f(t)dt ≥

∫ 2e

2

dt

e
= 1.

Since f is continuous and f(1/e) = e > 1, there is ǫ > 0 such that f(x) ≥ 1 for all x ∈ [1/e − ǫ, 1/e].
We may assume that ǫ < 1/e. Thus

∫ 1/e

0

f(t)dt =

∫ 1/e−ǫ

0

f(t)dt+

∫ 1/e

1/e−ǫ

f(t)dt ≥

∫ 1/e−ǫ

0

dt

e
+

∫ 1/e

1/e−ǫ

dt =

(

1

e
− ǫ

)

1

e
+ ǫ >

1

e2
.
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It follows that
∫ 2e

0

f(t)dt > 2 + 1 + e−2 = 3 + e−2.

It remains to show that the bounds are best possible. For every 1 > ǫ > 0 consider the following
function:

fǫ(x) =



















e for x < 1/e

1/x for x ∈ [1/e, e]
1

e + x−e
ǫ

(

e2 − 1
)

for x ∈ [e, e+ ǫ/e]

e for x > e+ ǫ/e.

It is easy to see that fǫ satisfies the assumptions of the problem, i.e. it is continuous, satisfies (1), and
its largest value is e. We have

∫ 2e

0

fǫ(t)dt ≥

∫ 1/e

0

fǫ(t)dt+

∫ e

1/e

fǫ(t)dt+

∫ 2e

e+ǫ/e

fǫ(t)dt =

∫ 1/e

0

edt+

∫ e

1/e

dt

t
+

∫ 2e

e+ǫ/e

edt =

1 + (ln e− ln(1/e) + (e− ǫ/e)e = 3 + e2 − ǫ.

It follows that for every a < 3 + e2 there is a function f which satisfies the conditions of the problem
and such that

∫ 2e

0

f(t)dt ≥ a.

This proves that the upper bound 3+ e2 can not be improved. We leave it as a straightforward exercise
to write a similar argument that the lower bound 3 + e−2 can not be improved.
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