Problem 6. Find the limit

$$
\lim _{n \rightarrow \infty} \sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{n+4+n^{n}}}}}}}
$$

Solution. Let

$$
b_{n}=\sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{n+4+n^{n}}}}}} .}
$$

Note that $n+4+n^{n} \geq n^{2}+2 n+4=(n+2)^{2}$ for $n \geq 3$. Define

$$
a_{n}=\sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{(n+2)^{2}}}}}} .}
$$

Then $b_{n} \geq a_{n}$ for all $n \geq 3$. Note that $a_{2}=\sqrt{5+\sqrt{4^{2}}}=3, a_{3}=\sqrt{5+\sqrt{6+2 \sqrt{5^{2}}}}=3$. We claim that $a_{n}=3$ for all $n \geq 2$. Indeed,

$$
\begin{gathered}
a_{n+1}= \\
\sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{(n+4)+n \sqrt{(n+3)^{2}}}}}}}=} \\
\sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{(n+4)+n(n+3)}}}}}=} \\
\\
\\
\\
\sqrt{5+1 \sqrt{6+2 \sqrt{7+3 \sqrt{\ldots \sqrt{(n+3)+(n-1) \sqrt{(n+2)^{2}}}}}=a_{n} .}}
\end{gathered}
$$

Thus $a_{n}=3$ for all $n \geq 2$ by a straightforward induction. It follows that $b_{n}>3$ for all $n \geq 3$.
On the other hand let $c_{n}=\frac{b_{n}}{n^{n / 2^{n}}}$. Then

$$
c_{n}=\sqrt{\frac{5}{n^{n / 2^{n-1}}}+1 \sqrt{\frac{6}{n^{n / 2^{n-2}}}+2 \sqrt{\frac{7}{n^{n / 2^{n-3}}}+3 \sqrt{\ldots \sqrt{\frac{n+3}{n^{n / 2}}+(n-1) \sqrt{\frac{n+4+n^{n}}{n^{n}}}}}}} .}
$$

Since $n^{n / 2^{k}}>1$ for every positive integers n, k and $\left(n+4+n^{n}\right) / n^{n}<(n+2)^{2}$ for every positive integer n, we easily see that

Thus $b_{n}<3 n^{n / 2^{n}}$ for all $n \geq 2$.
To summarize, we showed that

$$
3<b_{n}<3 n^{n / 2^{n}}
$$

for every $n \geq 3$. Note that $\lim _{n \rightarrow \infty} n^{n / 2^{n}}=1$. By the squeeze theorem, we conclude that $\lim _{n \rightarrow \infty} b_{n}=3$.
Remark. To see that $\lim _{n \rightarrow \infty} n^{n / 2^{n}}=1$ note that $n<2^{n}$ for all n so

$$
1<n^{n / 2^{n}}<2^{n^{2} / 2^{n}}
$$

for all n. Since $\lim _{n \rightarrow \infty} n^{2} / 2^{n}=0$, we see that $\lim _{n \rightarrow \infty} 2^{n^{2} / 2^{n}}=1$ and therefore $\lim _{n \rightarrow \infty} n^{n / 2^{n}}=1$ by the squeeze theorem.

