Problem 2. Let Γ be the set of all points (a, b) on the cartesian plane such that a, b are positive integers not exceeding 100. A subset H of Γ is called rounded if for any two points (a, b) and (A, B) in H, either $a>A-10$ and $b>B-10$ or $A>a-10$ and $B>b-10$. What is the largest possible size of a rounded subset of Γ.

Solution. Let H be a rounded subset of Γ. Let Γ_{m} consists of those points (a, b) in Γ such that $a+b=m$. Suppose $\left(a_{1}, b_{1}\right), \ldots,\left(a_{t}, b_{t}\right)$ be points in $H \cap \Gamma_{m}$ for some m, where $a_{1}<\ldots<a_{t}$. It follows that $b_{1}>\ldots>b_{t}$. Since the numbers a_{i}, b_{i} are integers, we have $a_{1} \leq a_{t}-t+1$ and $b_{t} \leq b_{1}-t+1$. On the other hand, since H is rounded, we have either $a_{1}>a_{t}-10$ or $b_{t}>b_{1}-10$. This tells us that $t \leq 10$. In other words, for every m the set $H \cap \Gamma_{m}$ has at most 10 points, i.e. $\left|H \cap \Gamma_{m}\right| \leq \min \left(10,\left|\Gamma_{m}\right|\right)$. Note that

1. Γ_{m} is non-empty iff $2 \leq m \leq 200$;
2. $\left|\Gamma_{m}\right|=m-1$ for $1 \leq m \leq 10$;
3. $\left|\Gamma_{m}\right|=201-m$ for $192 \leq m \leq 200$;
4. $\left|\Gamma_{m}\right| \geq 10$ for $11 \leq m \leq 191$.

Thus

$$
\begin{equation*}
|H|=\sum_{m=2}^{200}\left|H \cap \Gamma_{m}\right| \leq \sum_{m=2}^{200} \min \left(10,\left|\Gamma_{m}\right|\right)=2(1+2+\ldots+9)+181 \cdot 10=1900 \tag{1}
\end{equation*}
$$

This proves that any rounded subset of Γ has no more than 1900 elements.
The above discussion also suggests how to construct a rounded set with 1900 elements: we just need a rounded set H such that $\left|H \cap \Gamma_{m}\right|=\min \left(10,\left|\Gamma_{m}\right|\right)$ for every m. Consider the subset H of Γ which consists of all points $(a, b) \in \Gamma$ such that either $a \leq 10$ or $b \geq 91$. We claim that H is rounded. Indeed, suppose that (a, b) and (A, B) are in $H, a \leq A$.

- If $A \leq 10$ then $a>A-10$ and $A>a-10$. Clearly, either $b>B-10$ or $B>b-10$.
- If $A>10$ then $B \geq 91$, so $A>a-10$ and $B>b-10$.

This shows that H is rounded.
Note that Γ has 100^{2} elements. The complement of H in Γ consists of points (a, b) such that $10<a \leq 100$ and $1 \leq b<91$. There are 90^{2} such points. Thus $|H|=100^{2}-90^{2}=1900$. (Alternatively, one can easily check that $\left|H \cap \Gamma_{m}\right|=\min \left(10,\left|\Gamma_{m}\right|\right)$ for every m and use (1)).

