Problem 2. Recall that the smallest integer greater or equal than a given real number x is denoted by $\lceil x\rceil$ and called the ceiling of x. Let p be a prime number and $1 \leq a<p$ an integer. Prove that the number

$$
\left\lceil\left(a^{p-1}-1\right)^{\frac{p}{p-1}}\right\rceil
$$

is divisible by p. What can you say when $a=p$?
Solution. Despite its number-theoretical apperance, this problem is mainly about estimates (inequalities).

We will prove the following more general result.
Theorem. If $a \geq 1, k>1$ are integers then

$$
\left\lceil\left(a^{k-1}-1\right)^{\frac{k}{k-1}}\right\rceil=a^{k}-a-\left\lceil\frac{a}{k-1}\right\rceil+1
$$

Let us first see that this result gives us a solution to the problem. Indeed, if $1 \leq$ $a \leq p-1$ then $\left\lceil\frac{a}{p-1}\right\rceil=1$ and therefore the number in question is equal to $a^{p}-a$, which is divisible by p by Fermat's Little Theorem. If $a=p$ then the number in question is $p^{p}-p-1$ which is never divisible by p.

It remains to prove the Theorem. When $a=1$ the result is clear. In what follows, we will assume that $a \geq 2$. We will use the simple remark that in order to find $\lceil x\rceil$ it is sufficient to write x in the form $k-r$ with k an integer and $0 \leq r<1$. Then $\lceil x\rceil=k$.

The main tool of our proof is the following general and incredibly useful theorem from caclulus:

Taylor's Theorem with Lagrange reminder. Let f be a function ($n+1$)differentiable on an open interval (a, b). Then, for any $x, u \in(a, b)$ there exists ζ strictly between x and u such that
$f(x)=f(u)+f^{\prime}(u)(x-u)+\frac{f^{\prime \prime}(u)}{2!}(x-u)^{2}+\cdots+\frac{f^{(n)}(u)}{n!}(x-u)^{n}+\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-u)^{n+1}$.

Here $f^{(k)}(x)$ denotes the k-th derivative of f. Note that when $n=0$ this is just the Mean Value theorem.
We will apply this theorem to the function $f(x)=(1-x)^{\frac{k}{k-1}}$ with $n=1$ and $u=0$:
$(1-x)^{\frac{k}{k-1}}=1-\frac{k}{k-1} x+\frac{\frac{k}{k-1} \frac{1}{k-1}(1-\zeta)^{\frac{k}{k-1}-2}}{2} x^{2}=1-\frac{k}{k-1} x+\frac{k}{2(k-1)^{2}(1-\zeta)^{\frac{k-2}{k-1}}} x^{2}$,
where ζ is some number between 0 and x. Substituting $x=1 / a^{k-1}$ and multiplying by a^{k} we get

$$
\left(a^{k-1}-1\right)^{\frac{k}{k-1}}=a^{k}\left(1-\frac{1}{a^{k-1}}\right)^{\frac{k}{k-1}}=a^{k}-\frac{k}{k-1} a+\frac{k}{2(k-1)^{2}(1-\zeta)^{\frac{k-2}{k-1}} a^{k-2}},
$$

where ζ is some number in the interval $\left(0,1 / a^{k-1}\right)$. Let us denote the quantity $\frac{k}{2(k-1)^{2}(1-\zeta)^{\frac{k-2}{k-1}} a^{k-2}}$ by s. Since

$$
(1-\zeta)^{\frac{k-2}{k-1}} a^{k-2}=\left(a^{k-1}-a^{k-1} \zeta\right)^{\frac{k-2}{k-1}} \geq\left(a^{k-1}-1\right)^{\frac{k-2}{k-1}} \geq 1
$$

we have

$$
0<s \leq \frac{k}{2(k-1)^{2}} \leq \frac{1}{k-1}
$$

Note that

$$
\frac{k}{k-1} a=a+\frac{a}{k-1}=a+\left\lceil\frac{a}{k-1}\right\rceil-t
$$

where t is of the form $i /(k-1)$ for some integer $0 \leq i \leq k-2(i$ is the smallest non-negative integer such that $a+i$ is divisible by $k-1$). In particular, $0 \leq t \leq$ $(k-2) /(k-1)$. Thus we have the following equality:

$$
\left(a^{k-1}-1\right)^{\frac{k}{k-1}}=a^{k}-a-\left\lceil\frac{a}{k-1}\right\rceil+t+s=a^{k}-a-\left\lceil\frac{a}{k-1}\right\rceil+1-r,
$$

where $r=1-(s+t)$. Clearly $0<s+t \leq \frac{1}{k-1}+\frac{k-2}{k-1}=1$ and therefore $0 \leq r<1$. This proves that

$$
\left\lceil\left(a^{k-1}-1\right)^{\frac{k}{k-1}}\right\rceil=a^{k}-a-\left\lceil\frac{a}{k-1}\right\rceil+1
$$

Remark. We used in our solution the following simple observation, which is good to keep in mind for potential applications to other problems: if $q=m / n$ is a rational number with denominator $n>0$ then $\lceil q\rceil-q \leq \frac{n-1}{n}$ and $q-\lfloor q\rfloor \leq \frac{n-1}{n}$.

Exercise. Prove that if $a \geq 2, k>2$ are integers then

$$
\left\lfloor\left(a^{k-1}+1\right)^{\frac{k}{k-1}}\right\rfloor=a^{k}+a+\left\lfloor\frac{a}{k-1}\right\rfloor,
$$

where $\lfloor x\rfloor$ is the largest integer smaller or equal than x, called the floor of x.

