Problem 6. Let $f(x)$ be a polynomial with real coefficients such that $f(x)-2 f^{\prime}(x)+f^{\prime \prime}(x)>0$ for all x. Prove that $f(x)>0$ for all x .

Solution. We will prove first the following result:
Proposition. Let $g(x)$ be a polynomial with real coefficients such that $g(x)-g^{\prime}(x)>0$ for all x. Then $g(x)>0$ for all x .

Proof: Let g be of degree n with leading coefficient a, so $g(x)=a x^{n}+$ terms of lower degree. If $n=0$ (i.e. g is constant) the result is clear. We assume now that $n>0$. Then $h(x)=g(x)-g^{\prime}(x)$ is also a polynomial of degree n with leading cooefficient a. Since h is always positive, we must have n even and $a>0$. This means that $\lim _{x \rightarrow-\infty} g(x)=+\infty=\lim _{x \rightarrow+\infty} g(x)$. Thus g assumes its smallest value at some $a \in \mathbb{R}$. It follows that $g^{\prime}(a)=0$ and $g(a)=g(a)-g^{\prime}(a)>0$. Since the smallest value of g is positive, the proposition follows.

Second method. We give a different proof of the proposition, based on the following nice observation: if $G(x)=g(x) e^{-x}$ then $G^{\prime}(x)=\left(g^{\prime}(x)-g(x)\right) e^{-x}$. When g is a polynomial is in the proposition then we see that $G^{\prime}(x)<0$ for all x. This means that the function G is decreasing. Since g is a polynomial, we have $\lim _{x \rightarrow+\infty} G(x)=0$. These two facts together tell us that $G(x)>0$ for all x, which is equivalent to $g(x)>0$ for all x.
Remark. Note that this method allows to replace the assumption that g is a polynomial by a much weaker assumption that $\lim _{x \rightarrow+\infty} g(x) e^{-x}=0$.

We can now solve the problem. Let $g(x)=f(x)-f^{\prime}(x)$. Then $g(x)-g^{\prime}(x)=f(x)-2 f^{\prime}(x)+f^{\prime \prime}(x)>0$ for all x. By the proposition we conclude that $g(x)=f(x)-f^{\prime}(x)>0$ for all x. Using the proposition again, we see that $f(x)>0$ for all x.

Exercise. Solve the problem with the assumption that f is a polynomial replaced by the assumption that f is twice differentiable and $\lim _{x \rightarrow+\infty} f^{\prime}(x) e^{-x}=0$.

Exercise. Let $f(x)$ be a polynomial with real coefficients such that $f(x)+3 f^{\prime}(x)+3 f^{\prime \prime}(x)+f^{\prime \prime \prime}(x)>0$ for all x. Prove that $f(x)>0$ for all x .

