Chapter 1

Algebra Review

If you have not yet read “Dear Student™ at the beginning of the text, please do so. Now would
be a good time:

Good. We're all set. Pick a number between 1 and 10. Write it down. This is vour first test to
see if you arc really going to follow the directions in this book. Have you got your number written
down? Don’t erase it. We'll come back to it later.

1.1 Terms, Definitions, Notation

1.1.1 The Real Number System

This course will be dealing only with real numbers. Most of your experience with mathematics
so far has likely been within the framework of the Real Number system. Perhaps you have sometime
in the past touched on‘the set of complex numbers, which is built around having a value, called “4,”
for v/=1. We will not be working with this. In the real number system v/~1 is undefined and so
that is how we will regard it.in this course.

Real numbers are those that you would encounter and find meaningful in evervday life. A very
basic definition for a real number is:

Definition 1.1.1.
A real pumber is a number that can be expressed as a decimal.

Notice that the definition says that a real number can be written as a decimal, not that it must
be. For example, /2 is a real number and li is a real number even though they are expressed here
in non-decimal form. R,

We will use the syrnbol@o represent the Set of Real Numbers.

There are some important subsets of  with which you need to be familiar.

Definition 1.1.2.
An integer is a whole number, positive, negative or zero. The set of integers, then is

{0 —8,-2,-1,0,1,2,3,...}. We will use the symbol Z to represent the Set of Integers.
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Definition 1.1.3.
A rational number is a number thal can be expressed as o quotient of integers. We will use the
symbol J to represent the Set of Rational Numbers.

Again, notice the use of the word can. Examples of rational numbers are: ;3 anc -—i-f. Other

examples are .3 (which can be written as $) and .75 (which can be written as ), and 5 (which can
be written as 5’1-) indeed from the last example, it is easy to see that the set of integers is a subset
of the set of rational numbers. Z < Q.

‘Definition 1.1.4.
_ An irrational number is a real number that is not rational. It cannot be written in the form ¥
| where a and b are integers. Ezamples of irrational numbers are: /2, /3 and «.

From the way we defined irrational numbers it is clear that feati be divided into two istinet
subsets, the rational numbers and the irrational numbers. Given any decimal representatioi-ofa
real number, how can we tell if the number is rational or irrational?

s We have already said that all integers arc rational.

e If a decimal expression terminates at some point then the number is rational. This can be

71
seen by a simple conversion of the decimal into its fractional equivalent. L= 160
239,721
23.9721 = i,
o721 10,000

e If a decimal expression does not terminate but at some point has a pattern that is repeated

- = 97
from thence on, then the number is rational. 4= -, BT w 107 = —. You

probably learned at some time how to convert these numbers, but it wouldn’t be unreascnable
if you were rusty. This technique is reviewed in the exercises.

* A decimal that does not terminale and that never reaches the point of having a repeating
pattern is irrational.

This last item isn’t always entirely helpful if we have a non-decimal representation of a number.
How do we know that /2 does not have a repeating pattern in its decimal expansion? How do we
know that = does not? This is not a simple question to answer in general. There are proofs that
verify that these two numbers are in fact irrational. The proof for the irrationality of v/2 can be
generalized to say that if p is a prime nuriber! then /P is irrational: We will not go into these
proofs here. Just accept that these are examples of irrational numbers. '

Comprehension Check 1.1,
Circle the integers. Put a box around the irrational numbers.

3 . 10

e 0 NG 7 6.24 —18 i

5 5

_ - 3 T 34 17
3 - ST 4.58 / — _ el
(3+VT7) 1.58 V16 i 5 (81 | 11)

In the Comprehension Check you should have found four integers and four irrational numbers.
How many rational numbers are there?

A prime number is an integer greater than 1 whose only positive integer factors are itself and 1.
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One important property of the set of real numbers, R, is that the numbers are_ordered. If we
were to line them up, each one would have a specific place rolative to all of the Gthers. 1n fact we
~ do often find it convenient to think of them collectively as making up the Real Number Line. At
some place on this line we indicate the position of the number zero. To the right of zero we put
the positive numbers, increasing in size from zero. To the left of the zero point we put the negative
numbers, decreasing from zero. The number line below is marked with integers but any real numbers
“can be used to label points on a number line.

{ - ! ; l | 1 L

-3 =2 -1 0 1 2 3 4 5
We say that the real numbers “go to” infinity {oc) or minus-infinity (—oc). This language can

cause some isconceptions. VLU’/L U‘J{ PN

Important Idea 1.1.1. ,.._
Infinity is NOT a real number. In the context of the real numbcz:.asy‘:}éef@ﬁmty is stmply

a concept that indicotes ; 88, o’ or “+oo” indicate ;";,nbounded;wss in the positive
. . s . e R S I . . . N
direction and “—oo” indicates unboundedness in the negative direction—
4

mportant Idea 1.1.2.
{ .
Between any two real numbers is another real number.

This last idea can be expanded to conclude that there are no gaps in the real number line. (Can
you justify this conclusion?) The set of points representing the ordered set of real numbers is so
dense that the points form a line. Indeed there are infinitely many points between any two real
numbers. So, how many numbers are there between 1 and 107 This leads us to a little math humor:

Mathematician to Student: Pick a number between 1 and 10.
Student: (fill in the number you chose at the beginning of the chapter).
Mathematician ponders: Hmmmm, an integer,...how unlikely!

Of course this “joke” falls apart if the student actually picks a non-integer value, but it is suc-
cessful a very large percentage of the time.?

We will often want to express intervals of numbers, such as “the numbers between 1 and 10.”
There are three ways that we will do this: graphically (on a number line}; algebraically; and with
interval notation. In all instances we need to be clear whether or not we are including the endpoints,
in this case 1 and 10.

L. If we DO NOT include the endpoints our notation indicates this by using:

s open circles at 1 and at 10 on the nunber line:

e strict inequalities: 1 <z < 10
¢ parentheses next to the 1 and 10: {1, 10).

This is called an open interval.

2When our son was about eight years old and he first learned about the number 7 he was very excited. For a while
after that whenever he was asked 1o “pick a number between...” and the interval requested included =, then “x” was
his response. However, he soon learned that this was not helping him socially and he abandaned that tactic.
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2. If we DO include the endpoints our notation indicates this by using:

e closed circles at 1 and at 10 on the number line:

o brackets next to the 1 and 10: [1, 10].
This is called a closed interval.
3. If we wish to include one end but not the other we use the appropriate notation on each end.
So, for example to include the 1 but not the 10 we would have:
e closed circle at 1 but open circle at 10 on the number line:

e inclusive inequality at 1 and strict inequality at 10: 1 <z <10
e bracket next to the 1 and parenthesis next to the 10: [1, 10).

This is called a half-open_ interval.

Sometimes we will wish to express an unbounded interval such as “all of the numbers greater than
3.7 On the number line we would put an open circle on 3 and then shade everything to the right.
In algebraic notation we would write: z > 3. (Be careful...this is not the same as & > 4, Why not?)
In interval notation we would write: (3, co). Always use parentheses rather than brackets for oo or
—o0. This emphasizes that these are not numbers that we are including, but that these are symbols
indicating unboundedness. The interval is considered open on any end where it is unbounded.

Sometimes we will want to indicate a subset of R that is not an interval but a set of isolated
points. We can do this by listing the numbers or by showing a pattern for the numbers. These
sets are enclosed in braces. For example, {2,3,6,12} is a subset of R which contains just the four
numbers listed. If we wanted to write the set of eve(naixit‘egers we could write: {...,~2,0,2,4,.. 3

o l |

Sometimes we will want to indicate a subset of ®-that is a combination of intervals or isolated
points. We use the “union” symbol U to indicate that our subset of R is to include all of the num-
bers in all of the sets combined. For example if we want to write the set that includes all negative

numbers and all even positive integers we would write: (—oo, 0) U {2,4,6,8,.. g
Interval notation for Jis (—oo, o).
Many times in the course you will be asked to express things on a number line. It is not usually

essential that the placement of points be to scale. However, you do need to put them in the correct
order. To this end it is useful to remember that 7 ~ 3.14 and V2 = 1.41 and /3 =~ 1.73.

1.1.2. Algebraic Expressions

It is assumed that you have some experience with algebra. In this section we wish to briefly
review some vocabulary. We do it non-rigorously:
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e A variable is an entity which can take on more than one value in an expression or equation.
When an independent variable takes on a particular value it affects the value of a dependent
variable. Variables are usually represented by alphabetic characters. They may be letters that
are associated with the meaning of the variable, such as ¢ for time or A for height. Non-specific
variables usually use letters from the end of the alphabet, often » for an independent variable
and y for a dependent variable.

o A constant is an entity which does not change in an expression or equation. It can be rep-
resented by a number, such as “3”, which is obviously fixed. Sometimes it is represented by
an alphabetic character. This is an arbitrary constant. We may not know the exact value of
an arbitrary constant, but it is fixed. It does not vary within the context of the expression or
eguation.

Example 1.1.1.

Suppose you have o cell phone and coch month you have to pay o fized service charge plus 10
cents per minute for usage. We could write an equation to calculate your bill which looks like this:
B = (.10)m + S where B represents the bill (amount you have to pay, in dollars), m represents
the number of minutes you used and S represents the fized service charge. In this equation S is an
arbitrary constant. It is constant because it does not change to vary the bill. We don't know what
the amount is, it could be anything (hence “arbitrary”), but it does not change within the context
of the example. On the other hand, the amount of minutes used does change from month to month
50 m is a variable. The change n m affects the outcome of the bill, B. Since B changes, it is a
variable. Since the value of B is determined by the value of m, we know that m 15 the independent
variable and B is the dependent variable. The number .10 is, of course, a constant.

o A term is a piece of an algebraic expression that is separated from other pieces by “47. In
the cell phone example we consider two algebraic expressions: “B” and “(.10ym+ S Bisa
term, (.10)m is a term and S is a term.

e A coefficient is a constant (arbitrary or known) multiplier for a variable. In the example we
have 1 as the coefficient for B and (.10) as the coeflicient for m.

o Like terms are terms in an algebraic expression or equation which are identical except possibly
for their corresponding coefficients. Constant terms are always considered like terms. The
example above has no like terms.

o A factor is any algebraic expression that is multiplied times another. (.10) and m are factors
within the same term.

Example 1.1.2. .

Sonsider the equation y = (22° +4) (2 + 6c — 2z — 1).  We assume that « is the independent
variable and y is the dependent variable. The constants are all numbers. The coefficients are 2, 1,
6, and —v2. The terms are y, 2x°, 4, 2%, 6z, /22 and —1. The like terms are 61 and —\2u
and also 4 and —1. The factors are (22% +4) and (2 + 6z ~ V2 —1). Within terms, 2 and 2% are
factors, 6 and x are factors, —+/2 and z are factors. Usually we don't bother going to the term level
to identify factors. Factors will be discussed more later in the chapter.

a

Notation Tips

The following expressions are all equal: % :5(1 '9_1;

— Why is this true? To help you see this, evaluate each of the three expressions using ¢ = 6 and b= 3.
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We usnally use alphabetic characters to represent variables. What would we do if we had an
equation with more than 26 variables in it? We could use Greek letters, or upper case letters or many
‘other'symbols. But this would be quite cumbersome. Indeed using more than four or five letters in
an equation can make it difficult to follow. One way to get around this is the use of subscripts. If
we have four variables we could call them 1, za, z3 and z4. This can work just as easily as using
a,b,c,d. Sometimes subscripted variables can help us keep better track of what we are doing. If
we want to talk about points on a graph we could talk about (z,%), (u,v) and (¢, s) but it would
be much more descriptive to talk about (21, y1), (z2,y2) and (x3,y3). With the subscript notation
we have all of our first coordinates identified as z’s (instead of z,u and t) and all of our second
~coordinates identified as y's. Further, the subscript tells us which point we are talking about so that
if we later have an equation involving y2, we know that that is the y-coordinate that goes with the
specific z-coordinate . Do not let the subscripts confuse you. They do not have any arithmetic
meaning: zs + T3 5% Ts.

There will be many times in reading this book when you come across the written expressions
z > 0orz < 0. This is concise mathematical language. Sometimes it will be helpful to your
understanding of the topic if you mentally translate these into “z is positive” or “z is negative.”
Certainly those English statements are exactly the same as the mathematical ones but sometimes
the English gives more insight into what is going on.

1.2 Working with Exponents

In this section we wish to fairly thoroughly review working with exponents. We will begin with
integer exponents. ,

1.2.1 Integer Exponents

Our understanding of the meaning of positive integer exponents is that the exponent tells
how many times we are to multiply the base times itself. This gives us: 32 = 3-3 =9 and
25=92.2.2.2-2=232. In general we have a® =g -a-... a.

DRl S
7 dmnes
To multiply terms with like bases it makes sense to add the exponents: 32 . 3% = 32+ = 30
because (3-3)(3-3-3-8)=3.3-3-3-3-3=35.
A general rule then is: a"a™ = g"*™,
28 ,
To divide terms with like bases it makes sense to subtract the exponents: 55 = 98-8 — 92
2% 9.2.2.2.2 2.9
TGO e = e W hich reduc 22 =92
hecause 3 555 which reduces to 3 24,
a'n
A general rule then is: — = """, for a # 0. /
P . [1v -

Why do we have to say that a 7 0 for the division rule, but not for the multiplication?

NN
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s

Important Idea 1.2.1. o

Division by zero is never allowed.

A fraction is a division problem where the denominator is the divisor. So you can never allow o
zero to be in the denominator of a fraction. When making o rule that contains o fraction we should
explicitly exclude from the rule any values that would moke the denominator zero.

a”

Suppose we had —. By our general division rule that would be equal to ¢ = a®. But we
know that any fraction where the numerator and the denominator are the same must have the value /
1. So, we can conclude from this-that o = 1. Again, we must be very careful to exclude from this

rule the value a = 0 hideed, 0° is undeﬁ}.

o ’ o 9 <xs
Suppose we had prd w?e?@n:—#'ﬁ./ l?y our general division rule that would be equal to a™2. We

3
) . a a-a-a 1 .
would want the expression — to be equal to ————— = —~. So, we can conclude from this
1 a a-a-a-a-a a“
that a2 = — a
This suggests a definition for negative exponents: _ N
Definition 1.2.1. 1 v
" = et where a # (). /
g1 . .. . 1 n
Often this is useful when the negative exponent is in the denominator: [ —— -+ = a™
ry

Essentially we discover that when a variable has a negative exponent it can be changed to a positive
exponent if we change the base to its reciprocal. A more pedestrian way to describe this is that we
can change the sign of the exponent if we move the base to the opposite side of the fraction line.

Example 1.2.1.

1. a"at = gl! pb—9 = p—5
o? = q~* bt _ pl3
1'2. -C—L-l—-l— == b._g — b
1 1 i . 1 1 1
3 8 e . =g 3 — 2 ~2 o 2 b 16
“ a® a a2 a 4 =16 yE

We can use the idea above that 4™ means a-a-...-a to show that the following rules are true
Ry a—

n times
when n is a positive integer. The first is done for you. You should verify the other two.

(ab)’n o a’l’lb"ﬂ.
(ab)™ = (ab) - (ab)-...- (@b) =g-a-...-a b -b-...-b=a™h"

N -~ -~

n Li\;ne s n times n times
(a™)™ = g™™
a\* a" . . .
(-5) = This last expression can be written as a™b™"
)" .
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. . . 1\"
A special case of the last rule, where the numerator is 1, can be written: (;— EE e e
" y

which can be written as ¢ ™™,

We now list all of the rules together as one Important Idea._ It turns out that all of the rules
for positive integer exponents will hold for any real number exponents. If later you get confused
‘When dealing with negative, fractional or irrational exponents you can try to remember the rules by

“\~ creating simple positive integer examples and then working accordingly. ;Ef

£

Important Idea 1.2.2. \ Rules for Erponents

1
9 0" = where a 5 ()

4. (ab)™ = a"b™ '
5' (an‘)*m — anm :

n n
6 (%) = .Zi; = a™b™™, where b £ 0

1 n 1
7. (») = -— =a"", where a #0

We have not so far put any restrictions on the values for the bases @ or b in these rules except
when one appears in the denominator of a fraction. In fact these bases can be any real number.
Be careful not to make a common notational error when dealing with negative bases. Consider the
( x’following Important Idea.
(\7 ,

Important Idea 1.2.3. /

The expressions —a™ and {—a)" are not the same.

Of course there are some values of a and n where these expressions are the same, but in general
they are not. In the expression —a® only the a is raised to the nt® power. In the expression (—a)™,
the base is (—a).

Example 1.2.2. )
~32=—-(3-83)=-9 (~3)% = (~3)(~3) =9

It is important to know what the base of your exponent, is.

Example 1.2.3.
Rewrite so that all exponents are positive. Simplify.

1. (32)% = (32)(3z) = 9z
¥ 2 (—2)°(y") = (-85%)(3y*) = —24y7
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In the last example, notice that the base is (z + 2). We cannot split that sum. It is a matter of
the order of operation. Consider the following example:

Example 1.2.4.
Rewrite so that all exponents are positive. Simplify.

1 (3+4)2=72=49, whereas 32 +42=9+16=25

2. (%)—1"”(%)%1:3—{-4':7, whereas (%+l)w1_—.( 4

gl
~
~

il
-

Example 1.2.5.
Rewrile so that all exponents are positive. Simplify.

25y% 5.5 54

0y ~ 2557 2 7

! i 2 prt2e pos2g W ) b o £
2. = - = B T 2
é}% @)~ 5% 5712

Example 1.2.6.
Rewrite so that all exponents are positive. Simplify.

32z 1yb 3z _ 3mf

2xzy—3 2zz 232

. (B2 ly -2 6\~ zy?\° 22y
Lan 3 = 5 = — =
y Ty 6 36

(‘a-—<2b~«-1c3)—~2 _ a_4b2¢'~»6
(a%6)3c=5 a%8¢-5 T b
Example 1.2.7.
Use f@gg\?nlqs for Exponents to simplify the numbers below without using a calculator:
jf:z 518 ] 912 . 513 912,513 .
(7102 /" (2 pyiz T alEgE Y

I

120 5-3-28

48 — 3.94

&

o] o

1.2.2 Non-integer Exponents

We don’t have meaning for a¥ like we have for a® = a-a-a] We can’s talk about “a multiplied times
itself é times.” However, as we used the Rules for Expohents to give some meaning to negative
¢ exponents we can use these same rules to get some meaning for rational exponents.

\ Not all exponents are integers. Some are other rationat numbers; some are irrational numbers.

¢ We know from our Rules of Exponents that (a®)™ = o™, Suppose m is an integer and n is
W its reciprocal, 1. Then (a™)™ = a™™ would look like {am)™ = a% ™. But this last exponent is

el
\ \(7 just 1, 50 we are getting (am )™ = a! = a. What does that tell us about the number ¢ %7 For help
answering this let’s look at the specific example where m = 3.

Example 1.2.8.
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What does this tell us about the number a3? It says that il we cube that number we get a.
What number must it then be'7 The only number which when you cube it you get a is the number
¢/a. So, we conclude that a3 = ¥a.

We generalize this result into the following definition:

- Definition 1.2.2.
. For n a positive integer, am = Ya. Ifn is even then a > 0.

T

We must make the stipulation that “if n is even then a > 07 because cven roots {square roots,
(fourth roots, etc.) are not defined for negative numbers. v/—~9 is undefined in R.

N‘(]a {Z/{ We also need to make another careful distinction when dealing with roots {radicals). By conven-
© tion, when we write /25 = z our solution is z = 5. We are only interested in the positive number
whose square is 25. However, if the original equation is given as z2 = 25, then we have two solutions,

2 =5 and z = ~5. The distinction is that in the first case we were given a square roouaioblem to

_solve; 1%“ case we ook a square root to solve a different problem. This is an issue [or a
“even roots. It is not an issue for odd roots because odd roots only have oné solution anyway.

Important Idea 1.2.4.
When given a problem in the form x = {/a we only accept one solution {one x such that 2" = a),
and t_he/sz@ii) of x is always the same as the sign of the radicand® a

wELL 84(D

u ‘ :
ExampielZQ 2 <0”5/0/€f L\//Zst com V4 E M /\/\a’f‘ W

i
L.z = V16 has one sot-u;lﬂ,o: x =2, but x4 = 16 has two solutions, z = +2.
D«) 2. = Y8 has one solution, x = 2, and 2% == 8 has one solution, x = 2.
A 25 ‘ 8. x = /—8 has one solution, T = ~2, and x® = ~8 has one solulion, z = —2.
U)% 4.z = /<16 has no solution; il is undefined, 2% = —16 has no solution.

Fractional exponents essentially follow the same Rules for Exponents (Linportant Idea 1.2.2) that
we developed for integer exponents, but we have to be alert. We need to be extra careful that at no
step do we do something illegal. Specifically, we cannot have a negative value as the radicand for

wt. Consider the following situation:

According to the Rules for Exponents, a# = (am)” and a% = (™). When we rewrite these

@"B in radical form we see that a% = (/&) and % = /g®. This tells us fhat we have two ways to

W é think about a=. It also tells us that ( %/@)™ = %a®. But, look closely at v/2%. Here, z can take on

Jues because we raise the x value to the fourth power (making it uosn‘we) before we tEke

(| the square root. However, when you look at (1/z)* you see that = cannot take on ncgwmzz}mweb
mmtloxl ol taking ¢

uare root _occurs before the raxsmg to the fourth _power. So, we
4= Vol if we sti uIaLc that = > 0. In general then, we mfegg/et aw as valid
'\/\/_—\_/;-’v"' S N

e

See Proﬁé’m A2, //(;?) ('Z'l>v4 fs vald onh/

N . . £ 1
Similarly, if we try to apply Rule for Exponents 4 to ratlonal powers we get (ab) w = qmbw. For
even values of m, this rule only makes sense when both = and b= make sense. When m is even,
g‘k @ and b cannot be negative even if their product (ab) is positive. —
e A

only when a#= is valid.
B e Mo Vo N W Y

7
Y
iIF =z

s el

3The radicand is the expression under the radical sign
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We rewrite the rules for exponents (carefully,...did you get that?) into equivalent statements for
radicals.
Important Idea 1.2.5.

For all of the following rules, n and m are integers, m > 0, and a and b are real numbers.
Further, it is required that o > 0 and b > 0 when m is even.
MWW

aw =(%a)" and o= = Ya* andso ()" = Var. Whed &% o b oy e

2. (ab)% =awbw, andso Vab= %/ab. ;oAb ro e o e
am w m

3. (%)m =bT, s0 we get 7] = = where b # 0. 4/é>0 e YN o e

Ha
Example 1.2.10.
Rewrite each of the following into expressions using radicals. Simplify.

— =

1. 97 =9=3
2. (~64)% = Y61 = —4
8 83 = YL = YL =1 or 8%:(\3@)2=29:4
4. 231 = 9% = R %
VD h=(h i =ri= L
Vi

Example 1,2.11.

Rewrite each of the following into expressions using rational exponents. Simplify.

—
ons s ) o
L tyEmabagt  Ae Lo Yo, so ey i = Uy o (i

—_—

T = sy R X = X x
- ’ >
2 'e/l—-;:r-: \:i//;%—::(ré)ﬁzq;& ‘W ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N
/’/.»-’ 2 .
Vigs _ ot (ahb) ey X250 e 405 eren
5V s LY SR TR 5 YT ‘ ) 7
A = — 2 e S - . . -
-y 7z VA ( z3 ) 270 z €I ARl TS, L

= Yo awst be pos Rve, SO
- . . - —— . . e
Because rational exponents arc radicals, the Rules for Exponents give us Tilés fof working with «/* &
radicals . We don’t want to always have to rewrite radical expressions into exponentizhexpressions

Y=
before working. We can use the radical forms of the rules in Important Idea 1.2.5 to simplify radical \/;_
expressions. resues EXO

TThis goes back g b g
Example 1.2.12. pe /3/ lesF Fuwo 7.
L V6T~ 42
2. V12= VL 3=v1-V3=2/3
o YH _VI6_VIVE_ 26 _2 VB _ 2 6_2 -
VIB VB2 VB2 32 3 va2 3VaT 3V
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4@; :_2_4___~. /’l—_—z_\@.z_g_
v VTVIT AT

In Example 1.2.12 we saw two ways of handling ‘/—%—. The answers that we got do not look identi-
cal. However, they are equal. We can use the Rules for Exponents to rewrite fractions where there is
a radical expression in the numerator or in the denominator or in both. There are situations where
we will not want to have a radical expression in a numerator or not want to have a radical expression
in a denominator. The process of eliminating a radical from the numerator or the denominator is
called rationalizing the numerator or denominator., We rationalize the fraction by multiplying the
fraction by an appropriate form of the number 1.

Example 1.2.13.
2 2 V3 2.3 92y/3 2 .
. e = el o 3 Here we chose 1 =
3B BT V3 g

3 3
2 2v3 23 V3 2.3 2
We could go the other way: =3 = 2X2 = 2V2 VO 29 _ 4
% ould g her way 3 3 T BT AC A

Sl

When rationalizing a numerator or denominator, the choice of “1” depends on the root that you
are trying to eliminate. You choose & “1” so that you create a radicand that is a “perfect root.”

% Example 1.2.14.
V4 64 eva - V4
6 8. \/— > 6v4 =34 Here we chose 1 = -\;—-\/Z

V2OV Vi I/ T2
L\ G
The Rules for Exponents tell us how to handle multiplying and dividing radicals. They don’t
say much about adding or subtracting them.

Important Idea 1.2.6. ' be of
):’(;%de or subtract radicals only when they are like terms, i.c., they must kewe the same ) ’
root an/_\'z.e same radicand. You add or sublract by appropriately combining their coefficients. ;

Example 1.2.15.
1. V3+5V3 =63
2, \/5—6—7\/'_7:\/‘_25_-'5—7\/‘5:5\/‘5—7\/‘22 ~2/2

3 AV2T— T8 =403~ 25 3=4-3V3 - 53 = 123 - 53 == 7/3 B
4. T3 453 +8Y5 cannot be simplified. There are no Like terms. - é”[ [z
-1
Comprehension Check 1.2. \ 5
p 1 ] 3 o= 27 7= —’3—
1. Evaluate the following: 1614 2773 252 J =
zlz _ 5
V12 2 S = 1 2.

2. Simplify: V18 N V75 — 50

. Rationalize the denominators: — == 3 Q/Z s >Z

= (&

‘5)

T F \o?

? > O svace. &
4. What is wrong with ihis statement: Va2 = a for all a m‘M Lo

R \N\a,_\qe,y S L. o k7

/V_;’&g?n & whew R 70 2 \KF;XIB
F Ot~ When /& €O €. - ng) = >

|

ti~oy 8
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We have not yet addressed the issue of irrational exponents. What does 27 mean? We defer that
discussion until the chapter on Exponential and Logarithmic Functions. However, it turns out that
rational exponents follow the same rules for exponents that we established for integers, so we will
Jjust accept that for now.

Examplia 1.2.186.

2v5 . g7 2v8. 37

= VE-2VE gm--2

(25 3)-2 T 92V5 .32 _ ovE

1.3 Simplifying Expressions

In this section we deal mostly with polynomial expressions. Polynomials are sufficiently impor-
tant that they get their own chapter later in the text. So, we will not spend time here with formal
definition or terminology. However, they are the chosen source for examples of basic algebra rules
because they are likely the most familiar to you. The algebra rules also apply to trigonometric expres-
sions, exponential expressions and logarithmic expressions, as we will see in their respective chapters.

1.3.1 Simple Operations

Important Idea 1.3.1.
When, adding (or subtracting) algebraic expressions you combine only kike terms. You do so by
adding (or subtracting) their coefficients.

Example 1.3.1. Adding expressions

1. 325 4 725 = 1025

1)
~~
&

- 3)+ (227 + ) =222+ 22 - 3
3 (20° ~32® + 20+ 3) + (32 + 2 — 6) = 22° + 3z — 3

4o (=52t +20% —~ T) b (A~ + 822 4 2% — 2%) = 2% —da? + 223+ 322 - 1 -3

]

- (32 +6)+ (52% — 4) + (2® + 8z) = 622 + 11z + 2

When subtracting expressions be sure that vou subtract each term in the subtracted expression,
not just the leading term.

Example 1.3.2. Subtracting expressions

1. 32% — 74® = — 4y

1
o~
®
|
o
pa—_
|
™
8§
fvg
+
K
I
|
3
L}
[V
!
w

3 (22° ~3e% 4+ 224+ 3) ~ (32° + 2 — 6) =25 — 62" 4 2 4.9
4o (=52  +22% —7) — (4~ 5 4 322 4 24 — )=z —62* + 2% -~ 327 4 £~ 11

5 (32 +6) — (52% — 4) — (22 + 8x) =62 -5¢+10
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In Section 1.2 we discussed in detail how to multiply two terms. In brief, the terms do not
need to be like terms. You multiply the terms by multiplying the constant coefficients and then
multiplying the variable terms by adding the exponents of the common bases. For example:
(8259%)(227y) = 16x'%y°
Dividing terms was similar to multiplication except that you divide the coefficients and subtract the
exponents of variables with common bases. ( 8x0y?) + (227y) = 4z "%y = =3

The fun begins when we mix addition and multiplication. For this we use a rule called the
Distributive Property.

1.3.2 The Distributive Property

Important Idea 1.3.2.
The Distributive Property: a(b+ ¢) = ab+ ac

The Distributive Property tells us how to handle a multiplication problem when one or more of
the multipliers contains more than one term. Using the expression in Important Idea 1.3.2 we see
that each term in (b+ ¢) gets multiplied by the a. For example, 5(2x — 3) = 10z — 15

This is not a magic formula. It is consistent with what we know about order of operation.
5(247) = 10+35 =451s consistent with 5(2 +7) = 5-9 = 45. The Distributive Property is
also consistent with our ideas about addition and multiplication. Suppose your DVD collection con-
sists of four Star-Trek movies, two Monty-Python movies, and a John Wayne thriller. If you were
to “triple” your collection (multiply by three) you would then have twelve Star Treks, six Monty-
Pythons and three John Wayne movies. You wouldn’t just multiply the three times the Star-Trek
quantity. 3(48 +2M + J) = 128 + 6M + 3J. Notice that we cannot further simplify our movie
equation (Captain Kirk, Brave Sir Robin and John Wayne arc not like terms).

The expression of the Distributive Property given in Important Idea 1.3.2 is eloquently simple.

But the o can represent an expression containing more than one term, and the (b+c¢) is not restricted
to a two-term expression.

Example 1.3.3.
Here we let a. = 23+ 3) and (b+¢) = (4a° ~z = 7)

(22 +3) (4:113 —x—T) =2+ 3)(4:1;3) + (204 3)(~2) + (9 + 3)(=7)
= (8:1:4 + 12503) + (—‘Zar"2 — 3z) + (— 1z -~ 21)
= 8% 4+ 122°% — 22% — 17z - 21

Notice that the distributive property actually gets applied four times in this example. First
(2z + 3) is multiplied by each term in (4% — o — 7). This sets up three more occasions for using
the distributive property: we multiply (4z%) times each term in (2 + 3), then we multiply (—z)
times each term in (2z + 3) and finally we multiply (=7) times each term in (27 + 3). After all of
the multiplying we had six terms. Each of the two terms in (2z + 3) was multiplied times each of
the three terms in (4z® — z — 7). In practice we don’t usually write out all of the steps as done in
Example 1.3.3. We simply make sure that each term in the first multiplier gets multiplied times
each term in the second multiplier. It does not matter the order in which you do the individual
multiplications but you should develop some orderly system s0 that when dealing with many-term
multipliers you don’t miss any of the multiplication pairs.
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“«FOIL”

Some of you may have been taught the “ROIL” method of multiplying expressions containing
two terms each. (If you have never heard of “FOIL" just skip this paragraph). “POIL” is simply
a way of helping you to remember the distributive property requirement that you need to multiply
each of the two terms in the first expression by each of the two terms in the second expression. To
multiply (a + b)(c + d) using “FOIL” you multiply the First terms (ac), then the Qutside terms
(ad), then the Inside terms (bc) and then the Last terms {bd). Of course then you would combine
any like terms to finish the problem. This method seems to be effective in getting beginning algebra
students to correctly multiply the frequently occurring products of the form (a+ b)(c+d). However,
students often do not then really understand the distributive property. They then have difficulty
performing multiplications when there are more than two terms in one of the expressions. “FOIL” is
simply a mnemonic-device (a trick) for remembering all of the multiplication pairs needed to satisty

" _the distributive property for multiplications of the form (a + b)(c + d). It is only one application of

the all-encompassing distributive property. If you are comfortable with “FOIL” by all means use it,
but vou are now at a level of mathematical sophistication where you need to understand that you
are really dealing with the distributive property. (And when called on in class you will sound so
much more savvy if you say “apply the distributive property” instead of “FQIIL that.”)

Example 1.3.4.
1. 2z +5)(3z 1) =62% -2z + 152 -5 = 622 + 13z — 5
2 (a+b+c)atb—rc)=a’+ab-ac+ba+b’ —be+ cach—c?

= a? + b* — ¢* + 2ab

5. (V4 VB = (VE+yDWE+VE) = (VB +VEV+VEVE+(VI) = 85 VI Y=
x4+ 2Ty +y

b (VE+ VIVE = VI = (VB + VEVT ~ VT~ (V) =T

A Quick Look Back at Rationalizing Radical Expressions

Look carefully at Example 1.3.4, parts 3 and 4. In part 3 we took the expression (v + /%) and
squared it. The result still contained a radical term. In part 4 we started with the same expression
(VT + +/¥), multiplied it by (V& — /7) and got a result that did not contain any radicals. This
leads us to a way to rationalize fractions that contain sums of square roots.

_Expressions in the form a -+ b and a — b are called congugates of each other. So (V7 -+ 3) and
(V7 — 8) are conjugates. When trying to rationalize a numerator or denominator that contains a

sum of square roots we use a form of “17 that involves the conjugate. Dealing with sums of more

mare_complicated and are not

than two terms, or dealing with roots other than squares are a bi

addressed here
Example 1.3.5.

55 Y13 5(/T-3) _5/7-15 5715
CVits Vi4s Vi-s (VIR-® o T-9 2
, V5 _2/3-VE 2/B4VE 4825 7

V2 73 Bt vh a2+ VEV2 2B+ V10
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A Very Quick Look Back at Subtraction
When doing subtraction problerns you were warned to be sure to subtract each of the terms in
the expression that is being subtracted. Consider the following subtraction problem:
(42° — 222 + 52 ~ 7) — (a° + 2 = 2).
Another way of thinking of this problem is:
(423 ~ 22 + 5 — 7) + —1(® + 2’ — 2).

Certainly these say the same thing...as long as you properly apply the distributive property and
multiply each term in the second expression by —1.

Legal Squaring and the “Freshman Mistake”

Suppose we wish to square a simple sum, say {a+b). We need to apply the distributive property:

(a+b)?=(a+b)a+b) = a? + ab+ ba + b = o + 2ab+b?
So, it is not true that {a +b)® = a® + b?

1f we wish to cube the sum (a -+ b) we also use the distributive property:

(a+b)? = {a+b)(a+D)*=(a+ b)(a® + 2ab + b%)
— a3+ 202 + ab? + a%b + 20 + 1% = a® + 3a®b + 3ab® + b°
So, it is not true that (a +b)* = a® + b

Important Idea 1.3.3.
a -+ b)Y F ™+ b There is no such thing as a“Distributive Property of Exponents”

While the two examples above are fairly straightforward, students so frequently try to apply the
false statement (a -+ b)™ = a™ + b that it is sometimes referred to as the “Freshman Mistake.”

In fairness, it is an easy mistake to fall vietim to because it can appear in subtle forms. .
Posseiasesinmiuiniet e A8 Al sy b e e S

1. We showed in Example 1.3.4, part 3, that (Vz + \/ej)"’ — z + 2./77 + v, but it is frequently
miscaleulated as (VI + 7)2 =& + Y.

9. An even more hidden case of the “Froshman Mistake” occurs when the n value is non-integer.
A common sight is: 1/z2 +y? =z +¥. “This is not true (square both sides and see that they

o . 1 s ooy L

don't match). We caunot take (x* + y?)% and say that it is equal to (@)% + (g*)=.

Finally, the need to square an expression containing two terms occurs so frequently that it is
very helpful to simply learn the pattern of the product and not have to multiply it out each time.
(a + b)? = a? + 2ab + b”. Look at the pattern in the answer. Tt is the sum of the squares of each of
the terms plus twice the product of the terms. So, {3z + 5)2 = (3z)2+2-32-54+5 = 922 + 302 +25.
Practice so that vou can do this quickly.
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)Comprehension Check 1.3.

\/— 1. Add: (322 +7z) + (227 -~z — 5)

i \ 2 N

‘\ 2. Subtract: (32 + 73) — (22° ~ 2 - 5)

“ 8. Multiply: (3z° + 72)(22% ~ % ~ 5)

1

{ 1 ., N ‘SF(Y"

i ' Rationalize the denominator: e Q \; < VO3

L i T %

‘s‘ 5. How many multiplications must you do to multiply a siz-term expression by a four-term ex-

‘;\ pression? 5 o f

1.4 Factoring

In the previous section we took expressions and multiplied them using the distributive property.
In.this section we are going the other way. We will start with a multiplied expression and try to find
two {or more) multipliers that compose if..

The multipliers are called factors. Finding the multipliers
is called factoring. The factoring process

contains a certain amount of strial and error,” but this
can be minimized by learning a few things to look fo

r and by practicing.
/

that are factors (multi-
h to factor. We generally write that factor in front
and then figure out, term by term, what the remaining express

ion (now also a factor) wotld have to
be in order that their product is the original expression.
Example 1.4.1.

First Strategy — Look for Factors Common to all Terms

Look first to see if there are any

expressions (numbers, variables, sums)
pliers) in every

term of the expression you wis

42® — 622 + 122 = 2u(2¢% — 3z + 6)
In Example 1.4.1 we saw that 2z was a common factor in every term of the original expression.
So we “pulled out” the 2z and then had to figure out, term by term, what was necessary to include
in the remaining expression in order that their product was equal to the original 473 — 6z + 127,
Verify that we indeed found the correct second factor.

Sometimes the factor that is present in each term of the original expression is a sumn.
Example 1.4.2.

3(z+2)+z(z+2) =@+ N3+ )

Sometimes there is further factoring or simplifying to do after the first factorization. In Example
1.4.3 this is true. Also, there is more than one factor common to each term. One of the common
factors is a sum.

Example 1.4.8.

Hlet+l) -2t x+1)’ = 2Bz + Dz~ (z+1)]
=+ (-1 =~z +1)
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There is another way to do this problem. We can multiply out the original ezpression and then “start
from scratch” to factor the ezpression. Almost always this is more work, but the final factorization
should be the same. ‘

le+) -2}z +1)? =2+ - P2+ 22+ 1)

3 4 3

bt o I <
=z 4+t -2 220 — 2P et 2P e (2 4 1)

in Example 1.4.4 we have three problems that involve more “interesting” exponents. Do not let
this bother you. The technique is the same. Previously when we found a common base in each term
we identified a common factor by choosing that base along with the lowest exponent. We do the
same here. Then we use the rules for exponents to decide, term by term, what the remaining factor
should be. Look carefully at these examples and verify that they work. Expressions like the last one
occur fairly commonly in calculus (something to look forward to).

Exarple 1.4.4.

I 25 — 238 :c""s(:cs —9)
2.
2z(x - 5)7% - 42%(z — 5)*
= 2z(z — 5)"*[(z — 5) — 2z
= 9z(z - 5) " (~z ~ 5)
3.
42%(2z —1)"% — 22(25 — 1)2
= 22(2z — 1) " [22% — (2 - 1)?]
= 22(2z — 1)"%[22% — (42 — 4z + D]
= 2z(2c — 1)~ 3 (~222 + 4z — 1)
Second Strategy — Look for Some Familiar Patterns /

There are a few factorings that come up sufficiently frequently that it is beneficial to simply
know them.

e Perfect Square-sum:  a® + 2ab + b% = (a + b)(a + b) = (a + b)?

e Perfect Square—difference: a2 — 2ab+b% = (a — b)(a - b) = (a — b)?
o Difference of Squares:  a? — b2 = (a + b)(a — b)

Sum of Cubes:  a® +b* = (a + b)(a® — ab + b?)

e Difference of Cubes:  a® - 8% = (a — b)(a® + ab + b?)

Notice that in the real number system there is no factoring for the “Sum of Squares.” a2 - b

*

You will generally want to factor your original expression completely. Sometimes this requires
further factoring after making an initial factoring. You can certainly stop factoring if further fac-
toring causes any coeflicients to be non-integers.

Of course, in the factorings above a and b can represent any algebraic expression. In each of the
examples below, identify the factoring being used and specify the a and b.
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Example 1.4.5.
122 — Qe (g4 3)(z - 3)
2. 2% 16 = (22 + 4)(22 — 4) = (2% +4)(z + 2)(z — 2)
8. 8% ~ 27 = (2 - 3)(42” + 65 1 9)
4 52° + 102+ 5 = 5(2% 4 22+ 1) = 5(z + 1)2

Factoring Expressions of the Form a2 + bz + ¢

We begin with expressions where the coefficiont of the 2 term is 1. Let's look at some specific
factors snd their corresponding products: :

(@+3) (e +2) =22+ 22 43z 4 6 = 22 + 5z + 6
(z+3)(z—-2) n:x2—23:+3.7:—6=9:2+m—6
(:r—3)(:r+2)=;’c3~f-2;c-3x—6=a:2——a;-—6
(:z:—S)(z-—Q}2:1:2—2.7:—-3:c+6=;1:2—5:c+6

Look at the patterns. The z? term in the answers comes from the product of the two 2 terms in
the factors. Thus our factors will each begin with a simple 2.

"The constant term in the answer comes from the product of the two constant terms in the factors.
Thus, if the constant term in the answer is positive then the signs of the constants in the factors
must be the same, By the same token if the constant term in the answer is negative then the signs
of the constants in the factors must be different.

The z term (the middle term) in the answer comes from adding the constant terms of the factors.
So if the signs of the constants have been determined to be the same, the sum of those constants is
gotten by just finding the sum of the absolute values of the numbers and attaching the appropriate
sign. However, if the signs of the factor constants have been determined to be different then the
sum of these numbers is found by finding the difference of the absolute values of these numbers and

attaching the sign that corresponds to the number with the larger absolute value.

Example 1.4.6.
Factor: z% + 6z + 5
The sign of the constant lerm is positive, so the signs in the foctors are the same.
The sign of the middic term is positive, so the matching signs in the factors are both positive.
So far we have, (z+ Ha+ ). Now we just need two numbers whose product is 5 and whose sum is
6. Those numbers are 1 and 5, 80 our factoring is (¢+ D)z +5). Check iz,

Example 1.4.7,
Factor: 22 4 57 — 14
The sign. of the constant term is negative, so the signs in the factors are different.

The sign of the middie term is positive, so the absolute value of the positive factor constant will be
larger than the absolute value of the negative factor constant.
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5o far we have, (T + larger)(z - smaller). Now we just need two numbers whose product is 14 and
whose difference is 5. Those numbers are 7 and 2 so our Jectoring is (z +7)(z — 2). Check it. What
would the factoring be if the original CIPTEssion were: 2 — Sz - 14¢

Example 1.4.8,

 Factor: 22 — 75 4 19

The sign of the constant term is positive, so the signs in the factors are the same,

The sign of the middle term is negative, so the matching signs in the factors are both negative.
So far we have, (— Yz- }. Now we Just need two numbers whose product is 12 and whose sum
is 7. Those numbers are 3 and 4, so oyr factoring is (z — 3)(z ~ 4). Check it. What would the
factoring be if the original ezpression were: 22 4 7o + 129

Now we look at expressions where the coefficient of the 22 term is not 1. If it is simply -1, or

any negative number for that master, it is a good idea to first factor —1 from the expression and
then work from there.

Example 1.4.9.
Factor: ~z2 + 52 4. 94

—2* 5+ 2 = ~(z? — By — M) = —(z - 8)(x + 3)

When we are dealing with a positive coefficient of the z2 term that is not 1 we can still look at
the constant term to determine whether the signs in the factors will be alike or different. Also, it
is still true that that product of the constant terms in the factors will be the constant term of the
original expression. It is true that the product of the z terms in the factors will be the 7% term of
the original expression. However, after that the factoring can hecome complicated. It can involve a
certain amount of trial and error ag we try to find the right factors in the right combinations to get
us the desired middle term.

Example 1.4.10.

Foctor: 222 - 4 . 1
The sign of the constant term is negative so the signs of the factors will be different,
The only factors of the constant term are 1 and 1. So Jar we have ( +1)( ~1). The only factors
of 2z2% are z and 2z, s0 our choices become (z+1)(22 - 1) and 2z + 1)z~ 1), We mulliply them
out and find that the second one s correct.

Example 1.4.11.

Factor: 522 4 13z — 6.
The sign of the constant term is negative so the signs of the factors will be different.
The only factors of 5 are 5 and 1, but the possible factors of 6 are (1 and 8) or (2 and 3 ). This
leaves us with eight possible factorings (and no guarantee that any of them will work). We can just
try the eight possibilities until we find the solution, or we can attempt to increase our odds of success
by looking at the middie term: We need a +13 for a coefficient and to get that we will be sublracting.
So we will want our 5 to pe multiplied by a positive number of at least three. This leaves us only two
choices to check, and (62 = 2)(z+3) in Joct works.
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Pactoring by “Grouping”

'This method of factoring is probably best explained by example. Essentially you think of dividing
the terms of your expression into groups, factor each group separately, and then hope to find a factor
common to each group. That common factor then becomes a factor of the original.

Example 1.4.19.

z3 + 522 — 5z — 95 original expression
(2% + 522) 4+ (~5z ~ 25)  select o grouping
2 (z + 5) + ~5(z + 5) factor each group
identify common factor (z+5)
(z +5)(z? - 5) “pull out” common factor and finish
Another way of grouping that will work is:

23+ 522 — 5y — 95 original expression,
(z% - 5z) + (522 ~ 25)  select a grouping (need to rearrange terms first)
z(2? = 5) + 5(z2 5)  factor each group
tdentify common factor (- 5)
(z* —5)(z +5) “pull out” common factor and Jfinish
Example 1.4.13.

52% — 1022 + 32 — 6 original expression
(5z% — 102%) + 3z — 6} select a grouping
52%(x — 2) + 3(z — 2)  factor each group
tdentify common factor (x—2)
(z —2)(5z2 + 3) pull out” common factor and JSinish e

Example 1.4.14.

825 4+ 1223 — 622 .. g Can you find an
(8% + 1223) + (—622 — 9)  alternate grouping
42°(22% + 3) — 3(222 + 3)  and arrive at the
(22% + 3)(42% - 3) same factorization?

1.5 Algebra of Rational Expressions _. %'\W\P V%\\,K @Ef

In this section we review some of the special rules to keep in mind when dealing with rational
(fraction) algebraic expressions. We will do this by comparing these to the arithmetic of fractions,
with which you are likely much more practiced. So, what do you know about fractions?

The Denominator of a Fraction is NEVER, zero.

Fractions are really a statement of division. Division by zero makes no senge. (Just how many
times does zero go into six? -.and don’t say “infinity”, unless you are prepared to state that 0-00 = 6).

It is clear that g is undefined. Some mathematicians don’t even like to see it in print, even-when
followed by “is not defined.” It is the “He who must not be named” of the math world. It should
be said that 2 is similarly heinous.
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So, we must be careful when dealing with fractions that have variables in the denominator. If
given the expression 1—‘—2 it must be recognized that this is only meaningful when & # 2,
Reducing Fractions

¥

... 36 . . . .
The fraction — can be reduced. We do it by finding common factors in the numerator and

denominator and “canceling” them. Actually, “cancel” is not & mathematical operation. What we
are E%ally doing is multiplying the fraction by a convenient form of 1.
YA 3. 12 . . R Q

R-1 1 =T }'f_ — 2. We normally don't bother to write the multiplication step and
E R N N 14 2
we call our manipulation “canceling.” '
S22y’ z , ,
~————1,l—- to —— using our Rules for exponents but it can casily be thought of as
6ayPz? 2wt
canceling the factors that are common in the numerator and denominator.

Notice that we reduce the fraction only when it is factored. We would not think of doing some-

36 20+15 21 . ; Itz :

= = 22 Unfortunately sometimes students will reduce to —.
o 33415 33 yt+z Y
This is quite incorrect. We can only reduce a fraction where both the numerator and denominator

are factored and we find a common factor.

P

We can reduce

thing like this: T

So, how do we know when an expression is factored”? Simply, the expression is written as a
multiplication of two or more expressions, called factors. The factors themselves may be sums but
the original expression must ultimately be expressed only as a multiplication problem. Another way
to think of this is that the only “+" or “~7" signs in a factored expression must be included within
a factor. There are no “+" or “_" gigns between factors.

2zy?

Consider . The numerator is all multiplication; it is factored. The denominator is & sum;

it is not factored. We cannot cancel 2's or y's because the ones in the denominator are not factors.

We can only cancel common factors. If we want to reduce this fraction we must first factor the

2y? 2xy* L
Bt A __(___;l}__ﬁ Now we can cancel the corunon ¥ factor, resulting in the reduced
—y oyl

denominator.

¢
Gds
:

fraction T

. . . 2y? ...
There is one other point that must be made. When we look at ﬁ it is clear that y # 0.

this is not so obvious. When we reduced the original fraction we
1

were really multiplying the numerator and denominator by 1 in the form ¥ so we could only do
/—‘QN:'”_/Q———”\/“W" g i .

22y

¢
However. when we look at T
T —

P P PR

\17—-——- ..... T e
this operation il y £ 0. So, when we reduce a fraction we must also recognize the stipulation under

2xy
= Y » We must
oy -~y T 1

B T : . . . . 2zy?
which we are performing the operation. It is not correct to simply say

T

. 2wy 2 2x . . . . R s
say « Y »——y-—, when y # 0.” This is not optional, it 18 essential to the meaning of “equal.”
Ty—y L I

Example 1.5.1.

922+ 92 9x{z+1) 9z )
e T e D - :7"._'___1
206+ 2 2z +1) 5 when & 3
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Example 1.5.2.

22482 -20  (z+10)(z—2) z=2
2 +1lz+10  (z+10)z+1)  z+1

when z # —10

Notice in Example 1.5.2 that o # —1 also. However, we don’t need to smte this explicitly in the

\ . . —2
final equality statement because # —1 is still clear in the oxprossmn e This condition for

existance did not become invisible like # —10 did.

Example 1.5.3.

3 V2
z l_m(? 1)(z Tm+1)=x2+:1:+1 when z # 1
r—1 (z—-1)-1

In Example 1.5.3 the dcnomm&tor does not look fa( tored. Explain why we are allowed to cancel

21
here. An analogous arithmetic example is: - = —,;- =
Comprehension Check 1.4,

2
What is the difference between - m
€T

1

and x— 192
1
Multipiying and Dividing Fractions

When we multiply fractions, we multiply the numerators together and multiply the denominators
0

together to get our resulting fraction. g . g = z—g 27 =1y We can reduce the fraction after
mulitplying or we could do some reducing before multi iplying. We «tﬂl cancel only factors from the
numerators with like factors in the denominators. —32— % =z E ------- 1 5 Usually there is less work if
you reduce before multiplying. We handle multiplying rational expressions in exactly the same way

that we multiply fractions.
Example 1.5.4.

z+13 .‘ 2@~z) (z+13) =x{z—3)  (z-+18)(-1)
— 32 5 23z~ 3) 5 TR

_—z-13

53 when z #3 ; 0

Example 1.5.5.
4y — 16 2y+6 4y —4) 2(y +3) _ 4.2 §

' shen 1y o 4 d oy —3
51/+15 y—4 5(y+3) (?/—-4) 5 5 when ys4 and y#

The operatlon of division is really just multiplication by the reciprocal of the divisor. 5 + 4 is

1
really 5 - i~ 4 Indeed fractional notation ig simply another way of writing a division problem.

2 1 2 L .
3 + £ is the same as T)' So, to simplify this complex fraction, this division problem, we simply
2 i 2.1 25 10
_multiply 3 by the reciprocal of its divisor. The whole problem looks like: 37 =+ F=3 7= T We

Summarize this with the following Important Idea.
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Important Idea 1.5.1.

R 4 d
The following expressions are equivalent: - PR b2 —=.
b d 2 b ¢

We use the same rule for dividing rational expressions. We simply turn them into multiplication
problems by using the reciprocal of the divisor.

Example 1.5.8.

2?14z +49 3z-9 22— 14z +49 747 (x—-7)2 (@ +7)

e - _ e ML AL N 0

z? — 49 T+7 x? — 49 3¢~2 (z+7)(z—7) 3z 2
=7

== /, o Xeleh -7
3z_3 When 247 and g #

Adding and Subtracting Fractions

When we add or subtract fractions we need to have a common denominator. This is because we
can only add or subtract terms that are alike, and fractions with the same denominator represeut
entities with the same unit of measure. As you look at the next two arithmetic examples, think
about the thought process You use to find the common denominator and perform the addition and
subtraction.

Example 1.5.7.

In Example 1.5.7 we decide on a common denominator by finding some number that is a multiple
of both of the denominators involved. 20 is a multiple of both 10 and 20. 60 is a multiple of both 12
and 15. It is helpful if we can find the smallest multiple when looking for a common denominator,
but it isn’s necessary. After deciding on a common denominator we rewrite each of the fractions into
an equivalent fraction that has the common denominator as itg denominator. This is the opposite
of reducing a fraction. Once both fractions are rewritten to bave the same denominator we can add
or subtract them by adding or subtracting their numerators. Sometimes we will be able to reduce
the final answer. In Example 1.5.7 the answers could not be further simplified.

We use this same process for adding and subtracting rational expressions.
Example 1.5.8.

2r -1 1-2 Pr-1)-(1-g) _2e-1-142 3p-2

*+3 z+8 x+ 3 z + 3 T 43

Example 1.5.9.

2 ) 10 2z 10

22z 2+ -8 (z=2)(z+1) + (x4+4d)(z~2)
22(x + 4) 10(z+ 1)

- (z—2)(z+ Dz +4) + (& + )z~ 2z +1)
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_ 2048 +10c+10 227 +182+10
T @+ -DE+)  (+d)E-2)=+1)

Example 1.5.10.

2 42 L 2 L2 1
z+1 -1 22-1 (z+1) (z-1) (z+1){z-1)
__ 2z-1) 2z + 1) 1
T+ Dz-1) " @+DE-1 (z+-1)
_20-2+422+2~-1 4z —1
T e+ (-1 (z+D(=-1)

1.6 Solving Equations

The ability to factor an expression can be quite useful in solving equations. If we can take an
equation and rewrite it so that one side of the equation is zero and the other side of the equation is
completely factored, then we can use the following fact to help us solve the equation.

Important Idea 1.6.1. A Property of Zero
Ifa-b=0thena=0o0orb=0.

This idea might seem obvious, but don’t overlook its power and helpfulness. It says that if you
have two numbers, or two algebraic expressions, @ and & whose product is zero, then at least one of
them must be zero. 1t could be that both @ and & are zero. This property does not work for any
other number but zero. There is no corresponding “Property of Sixes.” Indeed, can you think of
two numbers, o and b where a - b = 6 but neither a nor b is 67 (If not then you should probably
take a quick break, maybe get a snack or legal beverage, and come back shortly). Let’s see how this
Property of Zero helps us to solve equations.

Suppose we want to solve the equation 22 4 22 — 8 = 7 for z.

22+ 2 —8=7 original equation

2242 —15=0 subract 7 from both sides so that one side equals zero
(z+5)(z-3)=0 rewrite the non-zero side into factored form
c+0=0o0rz—3=0 apply the Property of Zeros

z=-—borax=3 solve for o

Comprehension Check 1.5.
What is wrong with the following work?
224+ 22 —-8=7
(z+Dx-2)=7
r+d=Torz~2=7
x=3orz=9

Example 1.6.1.
Solve for x. ,
(22 +22)(z —5) =0
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2z +D(z-5)=0
z=0o0r 2+2=0o0r z-5=0
=) or te=—2 or =5

Example 1.6.2.
Solve for z.
204+ a2% = -22% -2

22?4224 2=0
(2% + 223 + (22 +2) = 0
2P (2? +2) + (2° +2) =0
(22 +2)(z*+ 1) =0
242=00r #* +1=0
x = —1 is lhe only solution
y Imp.grtant Idea 1.6.2. , ‘ '
%{ If a fraction is equal to zero, then its numerator is equal to zero. In other words:
If % = (), then a=70.

Example 1.6.3.
Solve for x.

2 .2 _ 1
z+1 z—1 zf-1
2 3 1

=0

{z+1) + (z—1) a (z2 - 1)
Using the result from Example 1.5.10 this becomes:

4z —1

GriG=D 0

1

dz—~1=0 $0, r=

In solving some eguations it can be useful to square both sides of the equation. This is valid but

we must be careful to check our solutions in the original problem. The equation = = v/25 does not

have the same solution set as the equation 22 = 25. So, squaring both sides of an equation will get

you all of the solutions to the original problem, but as a bonus could give you some solutions that
are not valid in the original.

Important Idea 1.6.3.
When squaring both sides of an equation, make sure that you:
7& ® square the entire side on both sides. Do not fall victim to the “Freshman Mistake.”

e check each solution in the original equation so that you eliminate invalid solutions.
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Example 1.6.4.

Solve for x.
V2r+3 = 5
(V2r +3)% = 52
20+3 = 25
2w = 22
z = 11
Check: V2 11 4+3=v22 ¥ 3=V =5 Vv
Example 1.6.5.
Solve for x. .
c+ve—4 = 4
Vi—4 = 4-—g
(Ve—4? = (d-a)?
x—4 = 16— 8z + x>

0 = z2—0z+20

Check:

d/E—d =4 —0=4 v

So, x =4 is the only solution.

In the previous example it was useful to move the z term to the other side of the equation. Do
you see why? If not, try to solve the problem without moving the z first. Be sure to square the
entire left side.

What happens if you have two or more radicals in your original equation? Then you are stuck,
but you should still try to make the squaring as easy as possible by having as few complex radicals

as possiblé ointhe same side of the equation.

N

Example 1.6.6.
Solve for z.

V3z —24+/3z+1 = 3
V32 =2 = 3-Bx+1
(vV3z = 2)? (8 — Bz +1)°

32—-2 = 9-6y3z-+1+(8xr+1)
3229~ (3z+1) = ~6/3x+1
—12 = —6/3z+1
2 = 3z+1
4 = 3zr-+1
3 = 3z
r = 1

Check:

V3T-243 14+1=V3-2+3+1=vVI+Vi=1+2=8
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@xercises

Problem 1. If you still have not read “Dear Student” at the beginning of the text, do so.

Problems for Section 1.1

Problem 2. Write a decimal expression for each of the following rational numbers:

@7 ®: © @0 @! 0! @l

. . . . . a
Problem 3. Show that the following are rational numbers by expressing them in the form 7 You
do not have to reduce your fraction. An exarple is given below for changing repeating decimals mto
fractions. You will have to make appropriate modifications to the example to fit it to some more
“complex” problems.

(@) 12 (b) =36 () 217 (d) -3 () 2T () 137 (g) 127
Example: Change .4 to rational form.

Let n= 4. Thenn =.444..., and 10n = 4.444. . ..
If we subtract 10n — n we get On = (4.444...) — ((444...).

The repeated fours cancel and we are left with 9n =4, so n = 3

Problem 4. Given the expression 3z + 5a2y — 528— + 9% + 5% — 29° + 7+ 2% — yx?
1. Find all sets of like terms.

2. Identify the coefficient for each term.

Problem 5. Represent each of the following sets (1) algebraically, (2) in interval notation, and (3)
on a number line.

1. “z is a number less than 7 or greater than or equal to 107
2. “y is a number greater than 7 and less than or equal to 5°

3. “z is a negative number greater than —4.

Problem 6. Describe each of the sets in the previous problem as open or closed and as bounded or
unbounded.
Problem 7. Identify each of the numbers below as integer, rational, and/or irrational. Then draw
a single number line and place the numbers on it.
/5 ”
V2 L .

(8 5 (W (1-v2

(a) - B O (¢) —2r (@ V3 (1 6 5

PO} =

Problems for Section 1.2

Problem 1. Evaluate the following:

(a) ,32% (b) 17°  (¢) 878 (d) 43 (e) 1002 —643  (f) (100 - 64)%
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Problem 2. Rewrite the following expressions so that they only contain positive exponents. Sim-
plify.

.. 9 -1 - 5 3 A _;_ ’ 5 -2 '..A.Q ..... 2 B}
(@) 162%yz ) S5z %yz © (4x)zy (d) < xy ) ) (.‘Z__z; L)

2zy 3z (22)2(yz°)? 8z~ 3y 3z=3yz a~!

Problem 3. Change the following to exponential form (eliminate the radical sign):
a) vzb b) (V2z)? c ( —) d) —— e) /\/:r—":
(2 o E @ (f5) @5 @

Problem 4. Change the following to radical form:

(a) =

W=
o

(b) -zt () 2¥ () —3z%  (e) 2ey)H

(@) vz (b)) vz (o) V22 (d) (e) Vz—6  (f) V=

§1] =

. Which, if any, of the following are equal to /(—z)5?
Caf @ et @t @ )V (@ V=2

@ —af ()

v

Problem 7. Rationalize the denominators for the following fractions:

1 , 1 1 A 1

a) —= b) = I d) —=
@ b @ @
You might have figured out that this is a good one to know readily.
‘Problem 8. Rationalize the denominators for the following fractions:

3 1 c /7 6 V3 V2

@ 5= O © 3= @72 © s 0O
V5 Y9 49 VE+v2 V3 =T V62

Problem 9. Simplify the following expressions as much as possible.
4

(8) VB2 (b) V6. ¥ (©) w45

(d) VB++2 (e) VI8 — 14+ V32 (£) V75 + VA8 - V12 — V50
(o-)! (\/g”‘\/a)z '
° 2

2=Va=/(-2)- (-2)= V=2 v/=2=-2.
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Problems for Section 1.3

Problem 1. Add or subtract and simplify:
(a) (623 + 22— 5) + (3z® + 22) (b) (3z%y -+ 2y%x) + (Bxy? ~ Tyz?)
(¢} (32% + 2z) — (62% + 2z — 5) (d) 322 — [4z — z(22 + 1)]
Problem 2. Multiply and simplify:

(a) (x+2)° (b) (5~ 8xz)? (c) 2z(4x® —x—l)
(d) (%—%—d)(cu —~z-1) (e (z+2)2x~ )(x—-2) (f) (z®2-2z2+5)3x?+z—5)
(8) 2z3(3z% +2°)

Problem 3. Find numbers a and b, and ¢ and d that illustrate the following:

(a) (a+8)2#a?+H° (o) Va2 +d2#c+d

Problems for Section 1.4

Problem 1. Evaluate without a calculator:

(a) 4,444,444 — 4,444,443°  (b) (V5 ~ V3)(VE + V3)

Problem 2. Factor completely:

(8) 2?2 —xz—12 (b) 22 ~13z+22  (¢) 2 +22-35

(d) 3z% —18z + 15 (e) 4x®+40x +100 (f) 22% —z~ ' 42~

(&) =% —22% + 42 -8 (h) ’31(+\>r+2 (i) 32° +24

§) —2z%+6z+8 | (k) 1~ (1) a®+22% + 2242
{m) 6x(2x + 1)-% + 322(22 + 1% (n) 24+ 41 —§ (o) 22%— 162 + 32
(p} 1227 +« 162 ~ 3 (@) —27z*+1 (r) 4o3 - 122°% — 9z + 27

(s) (z+2)%~9

Problems for Section 1.5

Problem 1. Simplify (reduce) the following rational expressions. Be sure to indicate any restrictions
that must be made on the variables in order that your simplified answer is equivalent to the original.

3z3y + 122y T 222 4z 1 z-2x+3)+3
ol i i A o e o ) Rt el
6zy? (b) T2y (c) 222 4+ bz - 3 (@) z+3

(a)

Problem 2. For what values of z is it NOT true that (z +2)(z — 3:7 _ T 3
(:I Dz + Bz ol




CHAPTER 1. ALGEBRA REVIEW 34

Problem 3. Perform the indicated operation(s) and simplify. Be sure to indicate any restrictions
that must be made on  in order that your simplified answer is equivalent to the original.

3x+2 41 2 x% 1 1
@ T it B -4l ©) ErmTitmiat:
L 204+1 -2 T - 1+3
(@) z+2 z+3 (e)'1—1~ﬁ . @ a‘—§
&€ < Yy €T ()(.4. Q>[IX{'%W%‘) H -
) 9-a? gy z? - 16 z? + 13z + 36 22 + 7z +3
! /= x h - — - i +(x+3
®) e seve 75 ® 222 1+ 10z + 8 Fr1 . W Tyt @y
( 23 L2 (ee WYk )y '
o \222% + ‘31:) : o o i g0 .
6)) VZr e (k) (42 + 7z +3) + (x +5:;.+4)
122+ 18
Problems for Section 1.6
Problem 1. Solve the following equations for z.
{a) 2 —dx =0 (b) 2*+4r=0 (¢) —22%~152+27=0.
(i) -3 2 2_3,. PN f +.-)- = 09 (1 .’]?2 ---- 4.’1,7_ 5
d) z 2 = 3z (&) 2{x+2) =96 ) T¥3 C 713
(8) 2(3z—23) =8 ) L+1)=3 i 24,
g) z(3z—28) = )l +1) = W oz to=
() Ve+T=2-13 k) Voz+0-z=-1 () V3z=2=2+%

(m) V3z+6-vz+d=+2

1.8 Answers to Exercises

Answers for Section 1.1 Exercises

Answer to Problem 1.
- N/A

Answer to Problem 2.

(@3 ()15 ()1 ()75 (e 6 f) 5 (g) 428571

Answer to Problem 3.

12 ~36- 207 =5 gy 126 126
(a) - (b oo © T @ 35 @ 59 @ 7 (8 590
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Answer to Problem 4.
Like terms: 52y and —yz?;, 3z and —4z;  ® and —23

Coeflicients, in order: 3, 5, ~§, 1, 5, -2, 7, 1,~1

Answer to Problem 5.

(a) 2<Torz=10 {~c0, T) U {10, c0)

.................................... Ao
7 10
(by m<y<s (7, 8]
............................................. L —— e P PP PP SR Sl
7r 5
(¢) ~4<2<0 (~4,0)
............. Fes P,
—4 0

Answer to Problem 6.

{a) half-open, unbounded (b} half-open, bounded (c) open, bounded
Answer to Problem 7.

(a) rational (b) integer, rational (c) irrational {(d) irrational
{e) integer, rational (f) irrational (g) rational (h) irrational
Number line values from left to right: ~27, ~3, (1—v2), 0, —‘422 1, V3, L.
Answers for Section 1.2 Exercises
Answer to Problem 1.
. 1
{a) 16 (b) 1 {e) 3 (d) 8 (e} 2 f) 6
Answer to Problem 2.
8yt 20 z 922 a’b?
(a) — (b) = (c) 42 (d) 5 ©) i
Answer to Problem 3.
(a) ¥ () (2z)} () 2y ¥ (d) =% (e) zb
Answer to Problem 4.
(a) ¥= ) -5 (¢) ¥a® or (93"
(d) =~38VaZor = 3(¥7) e) (\"/%37)3“'07" 14/(.'2»,1/)'"‘




