§3.9 Antiderivatives

In each sentence, find a function that fills in the blanks, if you can. (For some of them, you won't be able to.)
a) $\frac{d}{d}$ is an antiderivative of $\cos (x)$ because $\frac{d}{d x}\left(_\right)=\cos (x)$.
b) \quad is an antiderivative of $\tan (x)$ because

$$
\frac{d}{d x}\left(_\right)=\tan (x)
$$

c) \quad is an antiderivative of $x \cos (x)$ because

$$
\frac{d}{d x}\left(_\right)=x \cos (x) .
$$

d) i_ is an antiderivative of $x^{3}+2$ because

$$
\frac{d}{d x}(\square)=x^{3}+2 .
$$

e) $\frac{d}{d}$ is an antiderivative of $\sqrt{6 x+1}$ because $\frac{d}{d x}(\square)=\sqrt{6 x+1}$.

Which function from $\{a, b, c\}$ is an antiderivative of f ?

True or False

An antiderivative of a sum of functions, $f+g$, is an antiderivative of f plus an antiderivative of g.

An antiderivative of a product of functions, $f g$, is an antiderivative of f times an antiderivative of g.

Find the most general antiderivative of each function.
a) $f(x)=\frac{1}{2} x^{2}-2 x+6$
b) $g(x)=(x+5)(2 x-6)$
c) $h(x)=\frac{3+t+t^{2}}{\sqrt{t}}$

Let f be a function that satisfies $f^{\prime \prime}(x)=12 x+\sin (x)$.
a) If you know nothing else about f, give the best formula you can for f.
b) If you know $f^{\prime}(\pi)=1$, give the best formula you can for f.
c) If you know $f^{\prime}(\pi)=1$, and $f(\pi)=0$, give the best formula you can for f.

Suppose you are given the acceleration function $a(t)$ of an object. Let's say you are given that $v(0)=1$.

True or False

You can find the position of the object at any time t.

In each of the following, a particle is moving with the given data. Find the position function of the particle.
a) $v(t)=1.5 \sqrt{t}, s(16)=67$.
b) $a(t)=2 t+5, s(0)=2, v(0)=-5$.

Find f if $f^{\prime \prime}(\theta)=\sin (\theta)+\cos (\theta), f(0)=3$, and $f^{\prime}(0)=3$.

Find f if $f^{\prime \prime \prime}(x)=\cos (x), f(0)=5, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=8$.

Let $f(x)=\frac{1}{x^{2}}$.

True or False

If $F(x)$ is an antiderivative of f with the property $F(1)=1$, then $F(-1)=3$.

Find a function f such that $f^{\prime}(x)=2 x^{3}$ and the line $2 x+y=0$ is tangent to the graph of f.

A stone was dropped off a cliff and hit the ground with a speed of $112 \mathrm{ft} / \mathrm{s}$. What is the height of the cliff? (Use 32 $\mathrm{ft} / \mathrm{s}^{2}$ for the acceleration due to gravity.)

What constant acceleration is required to increase the speed of a car from $25 \mathrm{mi} / \mathrm{h}$ to $53 \mathrm{mi} / \mathrm{h}$ in 3 s ?

If a diver of mass m stands at the end of a diving board with length L and linear density ρ, then the board takes on the shape of a curve $y=f(x)$, where

$$
E k y^{\prime \prime}=m g(L-x)+\frac{1}{2} \rho g(L-x)^{2}
$$

E and k are positive constants that depend on the material of the board and $g(<0)$ is the acceleration due to gravity.
a) Find an expression for the shape of the curve.
b) Use $f(L)$ to estimate the distance below the horizontal at the end of the board.

