§3.9 Antiderivatives

In each sentence, find a function that fills in the blanks, if you can. (For some of them, you won't be able to.)

a) _____ is an antiderivative of
$$cos(x)$$
 because $\frac{d}{dx}(___) = cos(x)$.

b) _____ is an antiderivative of tan(x) because $\frac{d}{dx}(___) = tan(x)$.

c) _____ is an antiderivative of
$$x \cos(x)$$
 because $\frac{d}{dx}$ (_____) = $x \cos(x)$.

d) _____ is an antiderivative of
$$x^3 + 2$$
 because $\frac{d}{dx}$ (_____) = $x^3 + 2$.

e) _____ is an antiderivative of
$$\sqrt{6x+1}$$
 because $\frac{d}{dx}$ (_____) = $\sqrt{6x+1}$.

Antiderivatives

Which function from $\{a, b, c\}$ is an antiderivative of f?

2/12

True or False

An antiderivative of a sum of functions, f + g, is an antiderivative of f plus an antiderivative of g.

An antiderivative of a product of functions, fg, is an antiderivative of f times an antiderivative of g.

Find the most general antiderivative of each function.

a)
$$f(x) = \frac{1}{2}x^2 - 2x + 6$$

b) $g(x) = (x+5)(2x-6)$
c) $h(x) = \frac{3+t+t^2}{\sqrt{t}}$

Let f be a function that satisfies $f''(x) = 12x + \sin(x)$.

- a) If you know nothing else about *f*, give the best formula you can for *f*.
- b) If you know $f'(\pi) = 1$, give the best formula you can for f.
- c) If you know $f'(\pi) = 1$, and $f(\pi) = 0$, give the best formula you can for f.

Suppose you are given the acceleration function a(t) of an object. Let's say you are given that v(0) = 1.

True or False

You can find the position of the object at any time t.

In each of the following, a particle is moving with the given data. Find the position function of the particle.

a)
$$v(t) = 1.5\sqrt{t}$$
, $s(16) = 67$.

b)
$$a(t) = 2t + 5$$
, $s(0) = 2$, $v(0) = -5$.

Find f if
$$f''(\theta) = \sin(\theta) + \cos(\theta)$$
, $f(0) = 3$, and $f'(0) = 3$.

Find f if
$$f'''(x) = \cos(x)$$
, $f(0) = 5$, $f'(0) = 1$, and $f''(0) = 8$.

Antiderivatives

Let
$$f(x) = \frac{1}{x^2}$$
.

True or False

If F(x) is an antiderivative of f with the property F(1) = 1, then F(-1) = 3.

Find a function f such that $f'(x) = 2x^3$ and the line 2x + y = 0 is tangent to the graph of f.

A stone was dropped off a cliff and hit the ground with a speed of 112 ft/s. What is the height of the cliff? (Use 32 ft/s^2 for the acceleration due to gravity.)

What constant acceleration is required to increase the speed of a car from 25 mi/h to 53 mi/h in 3 s?

If a diver of mass *m* stands at the end of a diving board with length *L* and linear density ρ , then the board takes on the shape of a curve y = f(x), where

$$Eky'' = mg(L-x) + \frac{1}{2}\rho g(L-x)^2.$$

E and *k* are positive constants that depend on the material of the board and g (< 0) is the acceleration due to gravity.

- a) Find an expression for the shape of the curve.
- b) Use f(L) to estimate the distance below the horizontal at the end of the board.