§2.6 Functions Defined Implicitly and their Derivatives

Draw a graph of $x=\sin (y)$ and find the slope of the line tangent to the graph at the point $(0, \pi)$.

Find $d x / d y$ and $d y / d x$ if $y \sec (x)=6 x \tan (y)$.
Explain the difference between these expressions.
$1 / 11$

Find $d y / d x$ using an implicitly defined function ("implicit differentiation").
a) $x^{4}+y^{3}=1$
b) $7 x^{2}+5 x y-y^{2}=6$
c) $x^{7}(x+y)=y^{2}(4 x / y)$
d) $4 \cos (x) \sin (y)=2$
e) $5 y \sin \left(x^{2}\right)=9 x \sin \left(y^{2}\right)$
f) $\sqrt{7 x+y}=6+x^{2} y^{2}$

Explain (without calculating) why the two following equations will yield the same formula for $d y / d x$. Does this mean that the two graphs will have exactly the same tangent lines?

$$
\begin{gathered}
x^{3} y+y^{2}+y=1 \\
x^{3} y+y^{2}+y=-1
\end{gathered}
$$

Contourplot $\left[x^{\wedge} 3 y+y^{\wedge} 2+y=-1,\{x,-5,5\},\{y,-5,5\}\right]$

Find an equation of the tangent line to the ellipse

$$
9 x^{2}+x y+9 y^{2}=19
$$

at the point $(1,1)$.

Find an equation of the tangent line to the astroid

$$
x^{2 / 3}+y^{2 / 3}=4
$$

at $(-3 \sqrt{3}, 1)$.

$$
8\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)
$$

where the tangent is horizontal.

$5 / 11$

If $f(x)+x^{2}[f(x)]^{3}=10$ and $f(1)=2$, find $f^{\prime}(1)$.

Find $d x / d y$ and $d y / d x$ and $d z / d x$ if

$$
y \sec (z)=6 x \tan (y)
$$

Find $y^{\prime \prime}$ by using an implicitly defined function ("implicit differentiation").

$$
4 x^{2}+y^{2}=9
$$

$7 / 11$

When we introduced the Power Rule, we explained it for $y=x^{n}$ when n is a nonnegative integer, and we promised that later we'd explain it when n is a rational and/or negative number. The moment has come. In the following, you should use the Power Rule only for n a nonnegative integer to prove it the Power Rule for all rational numbers.
a) Warm-up: write $y=x^{\frac{2}{3}}$ as $y^{3}=x^{2}$. Then use Implicit Differentiation to show $y^{\prime}=\frac{2}{3} x^{-\frac{1}{3}}$.
b) Let $y=x^{\frac{p}{q}}$, where p and q are positive integers. Use the same method as the previous problem to show $y^{\prime}=\frac{p}{q} x^{\frac{p}{q}-1}$.
c) Warm-up: write $y=x^{-1}$ as $x y=1$. Then use Implicit Differentiation to show $y^{\prime}=-x^{-2}$.
d) Let $y=x^{-a}$, where a is a positive rational number. Use the same method as the previous problem to show $y^{\prime}=-a x^{-a-1}$.

When you solve for $y^{\prime}\left(\right.$ or $\left.f^{\prime}(x)\right)$ in an implicit differentiation problem, you have to solve a quadratic equation
a) Always
b) Sometimes
c) Never

Find equations of both the tangent lines to the ellipse

$$
x^{2}+9 y^{2}=81
$$

that pass through the point $(27,3)$.
$10 / 11$

The Thin Lens Equation in optics relates the focal length f of a lens, the distance a from an object to the lens, and the distance b from the object's image to the lens. The equation is

$$
\frac{1}{a}+\frac{1}{b}=\frac{1}{f} .
$$

Let's say you have a lens with focal length 10 cm .
a) Which of the following derivatives describes the rate at which the position of the image changes as you move the object?

$$
\frac{d a}{d b} \quad \frac{d b}{d a} \quad \frac{d a}{d f} \quad \frac{d f}{d a}
$$

b) If the object is 20 centimeters from the lens and moving away from the lens, where is the object's image and in what direction is it moving?

