§2.2 The Derivative Function

Is the function

$$
f(x)= \begin{cases}2-x & \text { if } x \leq 2 \\ x^{2}-4 x+4 & \text { if } x>2\end{cases}
$$

differentiable at 2 ?

Find all a and b such that the function

$$
g(x)= \begin{cases}2-x & \text { if } x \leq 2 \\ x^{2}+a x+b & \text { if } x>2\end{cases}
$$

is differentiable for all x.

You are designing the first ascent and drop for a roller coaster. You want the slope of the ascent to be .8 and the slope of the drop to be -1.6 . You will connect these two straight stretches by part of a parabola

$$
y=a x^{2}+b x+c
$$

of width 100 units.
a) Certainly you don't want a sharp corner in your tracks at the points where the linear parts meet the parabola. This puts a condition on the tangent lines of the parabola - what's the condition?
b) Find a formula for the parabola.

If $f+g$ is differentiable at a, are f and g necessarily differentiable at a ?

If $f^{\prime}(a)$ exists, then $\lim _{x \rightarrow a} f(x)$
a) must exist, but there is not enough information to determine it exactly
b) equals $f(a)$
c) equals $f^{\prime}(a)$
d) may not exist

A slow freight train chugs along a straight track. The distance it has traveled after x hours is given by a function $f(x)$. An engineer is walking along the top of the box cars at the rate of 3 miles per hour in the same direction as the train is moving. The speed of the man relative to the ground is
a) $f(x)+3$
b) $f^{\prime}(x)+3$
c) $f(x)-3$
d) $f^{\prime}(x)-3$

Use the definition of the derivative and the properties of limits to compute the derivatives of the following functions:
a) $f(x)=\frac{1-x}{2+x}$
b) $g(x)=\frac{1}{\sqrt{x-2}}$

