§1.8 Continuity

Where are the following functions continuous?
a) $f(x)=\frac{\sqrt{x}}{1+\sin (x)}$
b) $g(x)=(\sec (x))^{2}+x$
c) $\quad a(x)=\frac{x}{|x|}$
d) $b(x)=\frac{1}{|x-2|}$
e) $c(x)=\frac{1}{|x-2|+1}$
f) $e(x)=\frac{1}{1+\sqrt{x}}$

Let $P(t)$ be the cost of parking in New York City's parking garages for t hours. So,

$$
P(t)=\$ 20 \text { per hour or fraction thereof }
$$

For example, if you are in the garage for two hours and one minute, you pay $\$ 60$. Graph the function P and discuss the continuity.

True or False

If t_{0} closely approximates some time, T, then $P\left(t_{0}\right)$ closely approximates $P(T)$. Be prepared to justify your answer.

You decide to estimate π^{2} by squaring longer decimal approximations of $\pi=3.14159 \ldots$. Choose which of the following can be justified with what you've learned so far:
a) This is a good idea because π is a rational number.
b) This is a good idea because $f(x)=x^{2}$ is a continuous function.
c) This is a bad idea because π is irrational.
d) This is a good idea because $f(x)=\pi^{x}$ is a continuous function.

Define the function

$$
f(x)= \begin{cases}1+x^{2} & \text { if } x \leq 0 \\ 4-x & \text { if } 0<x \leq 4 \\ (x-4)^{2} & \text { if } x>4\end{cases}
$$

- Where is f continuous?
- At the points where it's not continuous, state whether it's continuous from the left, from the right, or neither.
- AFTER you've done this, sketch the graph of f.

Find all values a such that the function

$$
g(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\ x+a & \text { if } x>1\end{cases}
$$

is continuous.

Use the Intermediate Value Theorem to show that the equation

$$
x^{4}+x-4=0
$$

has a root in the interval $(1,2)$.

Argue using the Intermediate Value Theorem that my hair was 6 inches long at some point in the past. If I boast that my beard was once over a foot long, would I be able to use the Intermediate Value Theorem and my present beard length as proof of my claim?

