Today's plan:

1

Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls

Section 4.4.2: Capture-Recapture method revisited

Let's use statistical inference to get a better estimate of a population size.

Estimate the population of fish in a lake.

- Estimate the population of fish in a lake.
- Catch a sample of 150 fish. Tag and release them.

- Estimate the population of fish in a lake.
- Catch a sample of 150 fish. Tag and release them.
- A week later, catch a new sample of 100 fish. The number of tagged fish is 12.

- Estimate the population of fish in a lake.
- Catch a sample of 150 fish. Tag and release them.
- A week later, catch a new sample of 100 fish. The number of tagged fish is 12.
- Get a 95% confidence level estimate of the fish population.

The second sample is a repeated two-outcome experiment, done 100 times:

The second sample is a repeated two-outcome experiment, done 100 times:

▶ Take a fish and check for a tag

The second sample is a repeated two-outcome experiment, done 100 times:

- Take a fish and check for a tag
- The two outcomes are: tagged and not tagged

The number k of successes is the number of tagged fish in the sample.

The number k of successes is the number of tagged fish in the sample. The statistic \hat{p} is

$$\hat{p} = \frac{k}{n} = \frac{12}{100} = 0.12$$

With $\hat{p} = 0.12$ and n = 100 in hand, we compute:

st.err.
$$\approx \sqrt{rac{0.12 \times (1 - 0.12)}{100}} \approx 0.0325$$

With $\hat{p} = 0.12$ and n = 100 in hand, we compute:

st.err.
$$pprox \sqrt{rac{0.12 imes (1 - 0.12)}{100}} pprox 0.0325$$

So what's *p*, with 95% confidence?

$$\hat{p} - (2 \times \frac{\sigma}{n}) \leq p \leq \hat{p} + (2 \times \frac{\sigma}{n})$$

$$\hat{p} - (2 imes rac{\sigma}{n}) \leq p \leq \hat{p} + (2 imes rac{\sigma}{n})$$

 $0.12 - (2 imes 0.0325) \leq p \leq 0.12 + (2 imes 0.0325)$

$$\hat{p} - (2 imes rac{\sigma}{n}) \le p \le \hat{p} + (2 imes rac{\sigma}{n})$$

 $0.12 - (2 imes 0.0325) \le p \le 0.12 + (2 imes 0.0325)$
 $0.055 \le rac{150}{N} \le 0.185$

$$\hat{p} - (2 imes rac{\sigma}{n}) \le p \le \hat{p} + (2 imes rac{\sigma}{n})$$

 $0.12 - (2 imes 0.0325) \le p \le 0.12 + (2 imes 0.03)$
 $0.055 \le rac{150}{N} \le 0.185$
 $rac{0.055}{150} \le rac{1}{N} \le rac{0.185}{150}$

$$\begin{array}{rcl} \hat{p} - (2 \times \frac{\sigma}{n}) \leq & p & \leq \hat{p} + (2 \times \frac{\sigma}{n}) \\ 0.12 - (2 \times 0.0325) \leq & p & \leq 0.12 + (2 \times 0.03) \\ & 0.055 \leq & \frac{150}{N} & \leq 0.185 \\ & \frac{0.055}{150} \leq & \frac{1}{N} & \leq \frac{0.185}{150} \\ & \frac{150}{0.055} \geq & N & \geq \frac{150}{0.185} \end{array}$$

$$\hat{p} - (2 \times \frac{\sigma}{n}) \leq p \leq \hat{p} + (2 \times \frac{\sigma}{n})$$

$$0.12 - (2 \times 0.0325) \leq p \leq 0.12 + (2 \times 0.03)$$

$$0.055 \leq \frac{150}{N} \leq 0.185$$

$$\frac{0.055}{150} \leq \frac{1}{N} \leq \frac{0.185}{150}$$

$$\frac{150}{0.055} \geq N \geq \frac{150}{0.185}$$

$$2727.27 \geq N \geq 810.81$$

We can say with 95% confidence that the population is somewhere between **811** and **2,727**.

)

This interval is very wide

This interval is very wide

 We can narrow the interval at the cost of reducing the confidence level.

► This interval is very wide

- We can narrow the interval at the cost of reducing the confidence level.
- ▶ or increasing the sample size

With 68% confidence, we conclude the population is between 984 and 1,714.

- With 68% confidence, we conclude the population is between 984 and 1,714.
- The original estimate 1250 (when st.err. = 0) is not the middle of the interval [811,2,727]

- With 68% confidence, we conclude the population is between 984 and 1,714.
- The original estimate 1250 (when st.err. = 0) is not the middle of the interval [811,2,727]
 This is an artifact of estimating
- 1/N to get N.

Section 4.4.3: Public opinion polls

The results of a poll (of 1350 people) for a mayoral election are

- ▶ 648 in favor of Candidate A
- ▶ 702 in favor of Candidate B

The results of a poll (of 1350 people) for a mayoral election are

▶ 648 in favor of Candidate A

▶ 702 in favor of Candidate B What predictions can we make about the election?

Let's begin with Candidate A. ► Sample size *n* = 1350

Let's begin with Candidate A.

- Sample size n = 1350
- Favorable voters k = 648

Let's begin with Candidate A.

- Sample size n = 1350
- Favorable voters k = 648
- Therefore $\hat{p} = \frac{648}{1350} = 0.48$ or 48%

Let's begin with Candidate A.

- Sample size n = 1350
- Favorable voters k = 648
- Therefore $\hat{p} = \frac{648}{1350} = 0.48$ or 48%
- $\sigma pprox \sqrt{1350 imes 0.48 imes (1-0.48)} pprox 18.3565$

• so the standard error is st.err. $\approx \frac{18.3565}{1350} \approx 0.0136$ or 1.36%

• so the standard error is $st.err. \approx \frac{18.3565}{1350} \approx 0.0136$ or 1.36%

Thus, the 95% confidence interval is

$$[48 - 2 \times 1.36, 48 + 2 \times 1.36]$$

or

[45.28%, 50.72%]

Similarly, for Candidate B: ► Sample size *n* = 1350

Similarly, for Candidate B:

- Sample size n = 1350
- Favorable voters k = 702

Similarly, for Candidate B:

- Sample size n = 1350
- favorable voters k = 702
- Therefore $\hat{p} = \frac{702}{1350} = 0.52$ or 52%

Similarly, for Candidate B:

- Sample size n = 1350
- favorable voters k = 702
- Therefore $\hat{p} = \frac{702}{1350} = 0.52$ or 52%

 $\sigma pprox \sqrt{1350 imes 0.52 imes (1-0.52)} pprox 18.3565$

• so the standard error is st.err. $\approx \frac{18.3565}{1350} \approx 0.0136$ or 1.36%

• so the standard error is $st.err. \approx \frac{18.3565}{1350} \approx 0.0136$ or 1.36%

Thus, the 95% confidence interval is

$$[52 - 2 \times 1.36, 52 + 2 \times 1.36]$$

or

[49.28%, 54.72%]

When we draw these two intervals we clearly see they overlap.

So with 95% confidence, we can't say who will win.

So with 95% confidence, we can't say who will win.

We call this a statistical tie, or we say the difference is not statistically significant.

For both candidates the standard error was exactly the same.

- For both candidates the standard error was exactly the same.
- That is always the case when there are only two options.

- For both candidates the standard error was exactly the same.
- That is always the case when there are only two options.

$$\sigma pprox \sqrt{1350 imes 0.48 imes (1-0.48)}$$

 $=\sqrt{1350 imes 0.52 imes (1-0.52)}$

Even with three options, say, A, B and No preference, if not many people pick the third option then the standard error for both candidates will be almost the same.

- Even with three options, say, A, B and No preference, if not many people pick the third option then the standard error for both candidates will be almost the same.
- In such cases we can get away with only computing one standard error.

Now a new poll is taken, and the numbers are:

- ▶ 581 in favor of Candidate A
- ▶ 769 in favor of Candidate B Is the difference statistically significant now?

The sample size is n = 1350, and the poll has only two options, so there is a **common standard error**.

For Candidate A, we have k = 581

For Candidate A, we have k = 581 $so \hat{p} = \frac{581}{1350} \approx 0.4303 \text{ or } 43.03\%.$

For Candidate B, we have k = 769

For Candidate B, we have k = 769 $so \hat{p} = \frac{769}{1350} \approx 0.5696 \text{ or } 56.96\%.$

The standard error is st.err. $\approx \sqrt{\frac{0.4304 \times (1 - 0.4304)}{1350}}$ ≈ 0.0135 or 1.35%

The 95% confidence interval for Candidate A is

 $[43.03 - 2 \times 1.35, \quad 43.03 + 2 \times 1.35]$

The 95% confidence interval for Candidate A is $[43.03 - 2 \times 1.35, 43.03 + 2 \times 1.35]$ or [40.33%, 45.73%]

The 95% confidence interval for Candidate B

 $[56.96 - 2 \times 1.35, 56.96 + 2 \times 1.35]$

The 95% confidence interval for Candidate B

$[56.96 - 2 \times 1.35, 56.96 + 2 \times 1.35]$

or

А	- E ++++++	- [************************************					
	40.33	43.03	45.73				
В							ioioioi
					54.26	56.96	59.66

Now they don't overlap at all.

- Now they don't overlap at all.
- Candidate B now has a statistically significant advantage over Candidate A.

Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors.

Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors.

$$\hat{p}_B - \hat{p}_A pprox 57\% - 43\% = 14\%$$

Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors.

$$\hat{p}_B - \hat{p}_A pprox 57\% - 43\% = 14\%$$

whereas

$$4 \times \text{st.err.} = 4 \times 1.35\% = 5.4\%$$

Next time: Section 4.4.4: Clinical Studies