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Today’s plan:

I Section 4.4.2: Capture-Recapture
method revisited and Section
4.4.3: Public Opinion Polls
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Section 4.4.2: Capture-Recapture
method revisited
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Let’s use statistical inference to get a
better estimate of a population size.
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Example

I Estimate the population of fish in
a lake.

I Catch a sample of 150 fish. Tag
and release them.

I A week later, catch a new sample
of 100 fish. The number of tagged
fish is 12.

I Get a 95% confidence level
estimate of the fish population.
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The second sample is a repeated
two-outcome experiment, done 100
times:

I Take a fish and check for a tag
I The two outcomes are: tagged and
not tagged
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The number k of successes is the
number of tagged fish in the sample.

The statistic p̂ is

p̂ =
k

n
=

12

100
= 0.12



6

The number k of successes is the
number of tagged fish in the sample.
The statistic p̂ is

p̂ =
k

n
=

12

100
= 0.12



7

With p̂ = 0.12 and n = 100 in hand,
we compute:

st.err. ≈
√

0.12 × (1 − 0.12)

100
≈ 0.0325

So what’s p, with 95% confidence?
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p̂ − (2 × σ

n
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We can say with 95% confidence that
the population is somewhere between
811 and 2,727.
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I This interval is very wide

I We can narrow the interval at the
cost of reducing the confidence
level.

I or increasing the sample size
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I With 68% confidence, we conclude
the population is between 984 and
1,714.

I The original estimate 1250 (when
st.err. = 0) is not the middle of
the interval [811,2,727]

I This is an artifact of estimating
1/N to get N .
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Section 4.4.3: Public opinion polls
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Example

The results of a poll (of 1350 people)
for a mayoral election are

I 648 in favor of Candidate A

I 702 in favor of Candidate B
What predictions can we make about
the election?
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Let’s begin with Candidate A.
I Sample size n = 1350

I Favorable voters k = 648

I Therefore p̂ =
648

1350
= 0.48 or

48%
I σ ≈√

1350 × 0.48 × (1 − 0.48) ≈
18.3565
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I so the standard error is

st.err. ≈ 18.3565

1350
≈ 0.0136

or 1.36%

I Thus, the 95% confidence interval
is

[48 − 2 × 1.36, 48 + 2 × 1.36]

or
[45.28%, 50.72%]
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Similarly, for Candidate B:
I Sample size n = 1350

I favorable voters k = 702

I Therefore p̂ =
702

1350
= 0.52 or

52%
I σ ≈√

1350 × 0.52 × (1 − 0.52) ≈
18.3565
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When we draw these two intervals we
clearly see they overlap.

A
45.28 48 50.72

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

B
49.28 52 54.72

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Overlap
49.28 50.72

∗∗∗∗∗∗∗∗
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I So with 95% confidence, we can’t
say who will win.

I We call this a statistical tie, or
we say the difference is not
statistically significant.
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Remarks:

I For both candidates the standard
error was exactly the same.

I That is always the case when there
are only two options.

σ ≈
√

1350 × 0.48 × (1 − 0.48)

=
√

1350 × 0.52 × (1 − 0.52)
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I Even with three options, say, A, B
and No preference, if not many
people pick the third option then
the standard error for both
candidates will be almost the
same.

I In such cases we can get away with
only computing one standard error.
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Example

Now a new poll is taken, and the
numbers are:

I 581 in favor of Candidate A
I 769 in favor of Candidate B

Is the difference statistically
significant now?
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The sample size is n = 1350, and the
poll has only two options, so there is
a common standard error.
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For Candidate A, we have
I k = 581

I so p̂ =
581

1350
≈ 0.4303 or 43.03%.
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For Candidate B, we have
I k = 769

I so p̂ =
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1350
≈ 0.5696 or 56.96%.
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For Candidate B, we have
I k = 769

I so p̂ =
769

1350
≈ 0.5696 or 56.96%.
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The standard error is

st.err. ≈
√

0.4304 × (1 − 0.4304)

1350

≈ 0.0135 or 1.35%
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The 95% confidence interval for
Candidate A is

[43.03− 2× 1.35, 43.03 + 2× 1.35]

or
[40.33%, 45.73%]
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The 95% confidence interval for
Candidate B

[56.96− 2× 1.35, 56.96 + 2× 1.35]

or
[54.26%, 59.66%]
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A
40.33 43.03 45.73

∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗

B
54.26 56.96 59.66

∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗
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Remarks:

I Now they don’t overlap at all.

I Candidate B now has a statistically
significant advantage over
Candidate A.
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Another way to see whether the
difference between the candidates is
statistically significant is whether
their levels of support in the poll
differ by more than 4 standard
errors.

p̂B − p̂A ≈ 57% − 43% = 14%

whereas

4 × st.err. = 4 × 1.35% = 5.4%
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Next time: Section 4.4.4: Clinical
Studies


