Today's plan:

 Section 4.1.4: Dispersion: Five-Number summary and Standard Deviation. Once we know the central location of a data set, we want to know how close things are to the center.

Once we know the central location of a data set, we want to know how close things are to the center.

We'll see two ways to measure **dispersion** of a data set.

• five-number summary (goes with the median)

- five-number summary (goes with the median)
- standard deviation (goes with the mean)

Five-Number Summary

Five-number Summary:

- 1. Min
- 2. Lower Quartile
- 3. Median
- 4. Upper Quartile
- 5. Max

► The **Min** is the smallest value in the whole data set.

- The Min is the smallest value in the whole data set.
- ► The **Max** is the largest value in the whole data set.

- The Min is the smallest value in the whole data set.
- ► The **Max** is the largest value in the whole data set.
- The Lower Quartile is the median of the lower half.

- The Min is the smallest value in the whole data set.
- ► The **Max** is the largest value in the whole data set.
- ► The **Lower Quartile** is the median of the lower half.
- ► The Upper Quartile is the median of the upper half.

Example

The appraisals of the 10 houses are:

```
[$75K, $96K, $107K, $110K, $110K, $118K, $130K, $135K, $150K, $520K]
```

Example

The appraisals of the 10 houses are:

[\$75K, \$96K, \$107K, \$110K, \$110K, \$118K, \$130K, \$135K, \$150K, \$520K]

Find the five-number summary.

We already found:

• the median, Med = \$114K

We already found:

- the median, Med = \$114K
- ► the lower half, [\$75K, \$96K, \$107K, \$110K, \$110K]

We already found:

- the median, Med = \$114K
- ► the lower half, [\$75K, \$96K, \$107K, \$110K, \$110K]
- ► the upper half [\$118K, \$130K, \$135K, \$150K, \$520K]

We already found:

- the median, Med = \$114K
- ► the lower half, [\$75K, \$96K, \$107K, \$110K, \$110K]
- ► the upper half [\$118K, \$130K, \$135K, \$150K, \$520K]

Since each half has size 5, their respective medians will be in the 3rd location.

Thus

• the lower quartile is Q1 = \$107K

Thus

- the lower quartile is Q1 = \$107K
- the upper quartile is Q3 = \$135K

Thus

- the lower quartile is Q1 = \$107K
- the upper quartile is Q3 = \$135K
- the lowest value is Min = \$75K

Thus

- the lower quartile is Q1 = \$107K
- the upper quartile is Q3 = \$135K
- the lowest value is Min = \$75K
- the highest value is Max = \$520K

Thus

- the lower quartile is Q1 = \$107K
- the upper quartile is Q3 = \$135K
- the lowest value is Min = \$75K
- the highest value is Max = \$520K

So the five-number summary is:

[Min = \$75K, Q1 = \$107K, Med = \$114K, Q3 = \$135K, Max = \$520K].

The five-number summary can be visualized with a **boxplot** diagram, or *box-and-whiskers* diagram.

The box goes from the lower quartile to the upper quartile, with a mark at the median.

- The box goes from the lower quartile to the upper quartile, with a mark at the median.
- Two whiskers extend from the box to the Min and Max.

the left whisker spans the bottom 25%

- the left whisker spans the bottom 25%
- ▶ the box spans the middle 50%

- the left whisker spans the bottom 25%
- ▶ the box spans the middle 50%
- the right whisker spans the top 25%

- the left whisker spans the bottom 25%
- ▶ the box spans the middle 50%
- the right whisker spans the top 25%
- each half of the box spans 25%

Example

The ages of the police officers in the Clearview Police Department are

Age	22	25	26	27	28	29	30	32	35	39
Freq.	3	4	3	5	4	6	5	4	5	2

Example

The ages of the police officers in the Clearview Police Department are

Age	22	25	26	27	28	29	30	32	35	39
Freq.	3	4	3	5	4	6	5	4	5	2

Find the five-number summary and draw the boxplot.

Age	22	25	26	27	28	29	30	32	35	39
Freq.	3	4	3	5	4	6	5	4	5	2
Cum. Freq	3	7	10	15	19	25	30	34	39	41

The size is n = 41, so the median is in location

The size is n = 41, so the median is in location $\frac{41+1}{2} = 21$.

- The size is n = 41, so the median is in location $\frac{41+1}{2} = 21$.
- ► The lower half has size 20, so the lower quartile is the average of the values at locations 10 and 11:

$$Q1 = \frac{26 + 27}{2} = 26.5$$

The upper half also has size 20, so the upper quartile is the average of the values at locations 10 and 11 of the upper half.

- The upper half also has size 20, so the upper quartile is the average of the values at locations 10 and 11 of the upper half.
- Since the median is at location 21, the third quartile is the average of the values at locations 31 and 32 of the whole data set:

$$Q3 = \frac{32 + 32}{2} = 32$$

Five-number summary:

$$[Min = 22, Q1 = 26.5, Med = 29, Q3 = 32, Max = 39]$$

Remark: Outliers can be drawn separated from the rest of the data set.

Example

The appraisals of the 10 houses are:

```
[$75K, $96K, $107K, $110K, $110K, $118K, $130K, $135K, $150K, $520K]
```

Example

The appraisals of the 10 houses are:

```
[$75K,$96K,$107K,$110K,$110K,
$118K,$130K,$135K,$150K,$520K]
```

Find the five-number summary with outliers separated.

Boxplots and five-number summaries are useful when comparing two data sets.

Example

Waiting times at two car washes: Acme Car Wash:

[Min = 1, Q1 = 5, Med = 8, Q3 = 9, Max = 12]

Kleen Car Wash:

[Min = 3, Q1 = 4, Med = 5, Q3 = 8, Max = 20]

(Times are in minutes.)

Example

Draw the boxplots together, and compare them.

Solution Here are the boxplots: Acme Kleen 6 8 10 12 14 16 18 20

The Min and Max tell us:

The Min and Max tell us:

 everyone at Kleen has to wait at least 3 minutes, and some people have a very long wait.

The Min and Max tell us:

- everyone at Kleen has to wait at least 3 minutes, and some people have a very long wait.
- ▶ at Acme, some have a tiny wait and everyone gets started in \leq 12 minutes.

The Min and Max tell us:

- everyone at Kleen has to wait at least 3 minutes, and some people have a very long wait.
- ▶ at Acme, some have a tiny wait and everyone gets started in \leq 12 minutes.

Acme seems better.

But, the Median tells us:

half of the customers of Acme wait8 minutes for service

But, the Median tells us:

- half of the customers of Acme wait ≥8 minutes for service
- ▶ at Kleen half of them start in ≤ 5 minutes

But, the Median tells us:

- ▶ half of the customers of Acme wait ≥8 minutes for service
- ▶ at Kleen half of them start in ≤ 5 minutes

Now Kleen seems better.

Which is better? There's no simple answer

- Which is better? There's no simple answer
- If you don't mind waiting a little, Acme is better, since there are no long waits.

- Which is better? There's no simple answer
- If you don't mind waiting a little, Acme is better, since there are no long waits.
- If you're willing to risk a long wait, in hope of a really short wait, Kleen is better.

Standard Deviation

When using the mean to measure the center, we use the standard deviation to measure dispersion.

- When using the mean to measure the center, we use the standard deviation to measure dispersion.
- Think of standard deviation as measuring how far from the average the data points tend to be.

1. take the deviation of each data point from the average

- 1. take the deviation of each data point from the average
- 2. average those deviations

- 1. take the deviation of each data point from the average
- 2. average those deviations

The deviation of a point x_i from the average \bar{x} is just

$$x_i - \bar{x}$$

```
Weekly Sales of Home Town Pharmacy:

S
M
T
W
R
F
S
$2,548, $1,225, $1,732, $1,871, $975, $2,218, $1,339. Find the average of x_i - \bar{x}.
```

```
Example
Weekly Sales of Home Town
Pharmacy:
        T W R F
```

\$2,548, \$1,225, \$1,732, \$1,871, \$975, \$2,218, \$1,339.

Find the average of $x_i - \bar{x}$.

We have already found the average: $\bar{x} = 1701.14$

(Wrong way:) Here are deviations $x_i - \bar{x}$:

Day	x_i (sales)	$x_i - \bar{x}$ (deviation)
Sunday	2,548.00	846.86
Monday	1,225.00	-476.14
Tuesday	1,732.00	30.86
Wednesday	1,871.00	169.86
Thursday	975.00	-726.14
Friday	2,218.00	516.86
Saturday	1,339.00	-362.14
Total	11,908.00	0.02
Average	1,701.14	0.00

 Deviations are like distances, but with a sign

- Deviations are like distances, but with a sign
- Positive deviation $\Rightarrow x_i$ is to the right of \bar{x}

- Deviations are like distances, but with a sign
- Positive deviation $\Rightarrow x_i$ is to the right of \bar{x}
- Negative deviation $\Rightarrow x_i$ is to the left of \bar{x}

(Wrong way:) The average of those deviations:

```
\frac{846.86 - 476.14 + 30.86 + 169.86 - 726.14 + 516.86 - 362.14}{7} = 0.00
```

(Wrong way:) The average of those deviations:

$$\frac{846.86 - 476.14 + 30.86 + 169.86 - 726.14 + 516.86 - 362.14}{7} = 0.00$$

This is going to happen with any data set! Average deviation from the mean is a **useless measure of dispersion**.

(Right way:)

 However, if we square all deviations, they will turn all positive

(Right way:)

- However, if we square all deviations, they will turn all positive
- We can then average those squared deviations

(Right way:)

- However, if we square all deviations, they will turn all positive
- We can then average those squared deviations
- that is called the variance

Definition

The variance var(x) of a data set x is the average of the squared deviations from the mean \bar{x} :

$$var(x) = \frac{1}{n} \sum_{i} (x_i - \bar{x})^2$$

To compensate for the squaring, we take the square root of the variance.

To compensate for the squaring, we take the square root of the variance.

Definition

The standard deviation is

$$\sigma(x) = \sqrt{\operatorname{var}(x)}$$

Example

Find the variance and standard deviation for the Home Town Pharmacy daily sales data set.

Day	x (sales)	$x - \bar{x}$	$(x-\bar{x})^2$
Sunday	2,548.00	846.86	717171.8596
Monday	1,225.00	-476.14	226709.2996
Tuesday	1,732.00	30.86	952.3396
Wednesday	1,871.00	169.86	28852.4196
Thursday	975.00	-726.14	527279.2996
Friday	2,218.00	516.86	267144.2596
Saturday	1,339.00	-362.14	131145.3796
Total	11,908.00	0.02	1899254.8572
Average	1,701.14	0.00	271322.1224571

• the variance is var(x) = 271322.1224571

- the variance is var(x) = 271322.1224571
- the standard deviation is

$$\sigma(x) = \sqrt{271322.1224571} = 520.89$$

What if we start with a frequency table or a histogram?

Example

Find the standard deviation for the Math 109 quizzes

score	4	5	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	25
freq.	1	1	2	2	3	5	9	12	11	13	9	8	7	5	3	2	1	1
cum fr.	1	2	4	6	9	14	23	35	46	59	68	76	83	88	91	93	94	95

Solution

ullet We computed the average $\mu=14.64$

Solution

- $m{ ilde{W}e}$ We computed the average $\mu=1$ 4.64
- For convenience turn the frequency table into a vertical table

X	f	$x \cdot f$	$(x-\mu)$	$(x - \mu)^2$	$(x-\mu)^2 \cdot f$
4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25	1122359211398753211	4 5 16 18 30 55 108 156 154 195 144 136 422 225	-10.64 -9.64 -5.64 -3.64 -2.64 -1.64 -0.36 1.36 2.36 4.36 5.36 7.36 10.36	113.2096 92.9296 44.0896 31.8096 21.5296 13.2496 6.9696 2.6896 0.1296 1.8496 5.5696 11.2896 19.0096 28.7296 40.4496 54.1696 107.3296	113.2096 92.9296 88.1792 63.6192 64.5888 66.2480 62.7264 32.2752 4.5056 1.6848 16.6464 44.5568 79.0272 95.0480 86.1888 80.8992 54.1696 107.3296
Tot.	95	1391			1067.6432
Ave.		14.64			11.2383

So the standard deviation is $\sigma = \sqrt{11.2383} = 3.35$.

To find the **Standard Deviation** σ

- 1. Compute the deviations $x_i \mu$.
- 2. Square the deviations $(x_i \mu)^2$.
- 3. Average the squared deviations to the variance

$$var = \frac{\sum (x_i - \mu)^2}{n}.$$

4. Take the square root of the variance $\sigma = \sqrt{\text{var}}$.

Question

What does standard deviation mean in practice?

In the previous example:

- ullet The average is $\mu=$ 14.64
- the standard deviation is $\sigma = 3.35$

How many data points are within one standard deviation of the average?

How many data points are within one standard deviation of the average?

$$\mu - \sigma = 11.29 \text{ and } \mu + \sigma = 17.99$$

How many data points are within one standard deviation of the average?

$$\mu - \sigma = 11.29 \text{ and } \mu + \sigma = 17.99$$

Between these two values there are a total of

$$9 + 12 + 11 + 13 + 9 + 8 = 62$$
 data points (out of 95), i.e., about **two thirds**.

For "nice" data sets, about $\frac{2}{3}$ of the data set is located within one standard deviation of the average.

For "nice" data sets, about $\frac{2}{3}$ of the data set is located within one standard deviation of the average.

 ${\bf \cdot}$ if σ is small, the data points are crowded close to μ

For "nice" data sets, about $\frac{2}{3}$ of the data set is located within one standard deviation of the average.

- if σ is small, the data points are crowded close to μ
- if σ is large, the data points are scattered.