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Today’s plan:

I Section 4.1.4: Dispersion:
Five-Number summary and
Standard Deviation.
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Once we know the central location of
a data set, we want to know how
close things are to the center.

We’ll see two ways to measure
dispersion of a data set.
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I five-number summary (goes
with the median)

I standard deviation (goes with
the mean)
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Five-Number Summary
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Five-number Summary:
1. Min
2. Lower Quartile
3. Median
4. Upper Quartile
5. Max
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Definition

I The Min is the smallest value in
the whole data set.

I The Max is the largest value in
the whole data set.

I The Lower Quartile is the
median of the lower half.

I The Upper Quartile is the
median of the upper half.
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Example

The appraisals of the 10 houses are:

[$75K , $96K , $107K , $110K , $110K ,
$118K , $130K , $135K , $150K , $520K ]

Find the five-number summary.
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Solution

We already found:
I the median, Med = $114K

I the lower half,
[$75K , $96K , $107K , $110K , $110K ]

I the upper half
[$118K , $130K , $135K , $150K , $520K ]

Since each half has size 5, their
respective medians will be in the 3rd
location.
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Solution

Thus
I the lower quartile is Q1 = $107K

I the upper quartile is Q3 = $135K
I the lowest value is Min = $75K
I the highest value is Max = $520K

So the five-number summary is:
[Min = $75K , Q1 = $107K , Med = $114K ,

Q3 = $135K , Max = $520K ].
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The five-number summary can be
visualized with a boxplot diagram,
or box-and-whiskers diagram.
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50 75 100 125 150
\\

500 525

Min Q1Med Q3 Max

75 107 114 135 520
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I The box goes from the lower
quartile to the upper quartile, with
a mark at the median.

I Two whiskers extend from the box
to the Min and Max.
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Remarks:

I the left whisker spans the bottom
25%

I the box spans the middle 50%
I the right whisker spans the top

25%
I each half of the box spans 25%
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Example

The ages of the police officers in the
Clearview Police Department are

Age 22 25 26 27 28 29 30 32 35 39

Freq. 3 4 3 5 4 6 5 4 5 2

Find the five-number summary and
draw the boxplot.
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Age 22 25 26 27 28 29 30 32 35 39
Freq. 3 4 3 5 4 6 5 4 5 2
Cum. Freq 3 7 10 15 19 25 30 34 39 41
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I The size is n = 41, so the median

is in location

41 + 1

2
= 21.

I The lower half has size 20, so the
lower quartile is the average of the
values at locations 10 and 11:

Q1 =
26 + 27

2
= 26.5



16

I The size is n = 41, so the median

is in location
41 + 1

2
= 21.

I The lower half has size 20, so the
lower quartile is the average of the
values at locations 10 and 11:

Q1 =
26 + 27

2
= 26.5



16

I The size is n = 41, so the median

is in location
41 + 1

2
= 21.

I The lower half has size 20, so the
lower quartile is the average of the
values at locations 10 and 11:

Q1 =
26 + 27

2
= 26.5



17

I The upper half also has size 20, so
the upper quartile is the average of
the values at locations 10 and 11
of the upper half.

I Since the median is at location 21,
the third quartile is the average of
the values at locations 31 and 32
of the whole data set:

Q3 =
32 + 32

2
= 32
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the upper quartile is the average of
the values at locations 10 and 11
of the upper half.

I Since the median is at location 21,
the third quartile is the average of
the values at locations 31 and 32
of the whole data set:

Q3 =
32 + 32

2
= 32



18

Five-number summary:

[Min = 22, Q1 = 26.5, Med = 29, Q3 = 32, Max = 39]

20 25 30 35 40 45

Min Q1 Med Q3 Max

22 26.5 29 32 39
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Remark: Outliers can be drawn
separated from the rest of the data
set.
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Example

The appraisals of the 10 houses are:

[$75K , $96K , $107K , $110K , $110K ,
$118K , $130K , $135K , $150K , $520K ]

Find the five-number summary with
outliers separated.
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The appraisals of the 10 houses are:
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50 75 100 125 150
\\

500 525

×

Min Q1Med Q3 Max

75 107 114 135 150 520
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Boxplots and five-number summaries
are useful when comparing two data
sets.
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Example

Waiting times at two car washes:
Acme Car Wash:
[Min = 1, Q1 = 5, Med = 8, Q3 = 9, Max = 12]

Kleen Car Wash:
[Min = 3, Q1 = 4, Med = 5, Q3 = 8, Max = 20]

(Times are in minutes.)
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Example

Draw the boxplots together, and
compare them.
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Solution

Here are the boxplots:

0 2 4 6 8 10 12 14 16 18 20

Acme

Kleen
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Solution

The Min and Max tell us:

I everyone at Kleen has to wait at
least 3 minutes, and some people
have a very long wait.

I at Acme, some have a tiny wait
and everyone gets started in ≤12
minutes.

Acme seems better.
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Solution

But, the Median tells us:
I half of the customers of Acme wait
≥8 minutes for service

I at Kleen half of them start in ≤ 5
minutes

Now Kleen seems better.
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I Which is better? There’s no
simple answer

I If you don’t mind waiting a little,
Acme is better, since there are no
long waits.

I If you’re willing to risk a long wait,
in hope of a really short wait,
Kleen is better.
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Standard Deviation
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I When using the mean to measure
the center, we use the standard
deviation to measure dispersion.

I Think of standard deviation as
measuring how far from the
average the data points tend to be.
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(Wrong way:)

1. take the deviation of each data
point from the average

2. average those deviations
The deviation of a point xi from the
average x̄ is just

xi − x̄
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(Wrong way:)

Example

Weekly Sales of Home Town
Pharmacy:

S M T W R F S
$2,548, $1,225, $1,732, $1,871, $975, $2,218, $1,339.

Find the average of xi − x̄ .

We have already found the average:
x̄ = 1701.14.
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(Wrong way:)
Here are deviations xi − x̄ :

Day xi (sales) xi − x̄ (deviation)
Sunday 2,548.00 846.86
Monday 1,225.00 -476.14
Tuesday 1,732.00 30.86
Wednesday 1,871.00 169.86
Thursday 975.00 -726.14
Friday 2,218.00 516.86
Saturday 1,339.00 -362.14
Total 11,908.00 0.02
Average 1,701.14 0.00
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(Wrong way:)
I Deviations are like distances, but

with a sign

I Positive deviation ⇒ xi is to the
right of x̄

I Negative deviation ⇒ xi is to the
left of x̄
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(Wrong way:)
The average of those deviations:
846.86− 476.14 + 30.86 + 169.86− 726.14 + 516.86− 362.14

7
= 0.00

This is going to happen with any
data set! Average deviation from the
mean is a useless measure of
dispersion.
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(Right way:)
I However, if we square all

deviations, they will turn all
positive

I We can then average those
squared deviations

I that is called the variance



36

(Right way:)
I However, if we square all

deviations, they will turn all
positive

I We can then average those
squared deviations

I that is called the variance



36

(Right way:)
I However, if we square all

deviations, they will turn all
positive

I We can then average those
squared deviations

I that is called the variance



37

Definition

The variance var(x) of a data set x is
the average of the squared deviations
from the mean x̄ :

var(x) =
1

n

∑
(xi − x̄)2
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To compensate for the squaring, we
take the square root of the variance.

Definition

The standard deviation is

σ(x) =
√
var(x)
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To compensate for the squaring, we
take the square root of the variance.
Definition

The standard deviation is

σ(x) =
√
var(x)
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Example

Find the variance and standard
deviation for the Home Town
Pharmacy daily sales data set.
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Day x (sales) x − x̄ (x − x̄)2

Sunday 2,548.00 846.86 717171.8596
Monday 1,225.00 -476.14 226709.2996
Tuesday 1,732.00 30.86 952.3396
Wednesday 1,871.00 169.86 28852.4196
Thursday 975.00 -726.14 527279.2996
Friday 2,218.00 516.86 267144.2596
Saturday 1,339.00 -362.14 131145.3796
Total 11,908.00 0.02 1899254.8572
Average 1,701.14 0.00 271322.1224571
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I the variance is
var(x) = 271322.1224571

I the standard deviation is

σ(x) =
√

271322.1224571 = 520.89
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I the variance is
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√
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What if we start with a frequency table or a
histogram?
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Example

Find the standard deviation for the
Math 109 quizzes

score 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 25

freq. 1 1 2 2 3 5 9 12 11 13 9 8 7 5 3 2 1 1

cum fr. 1 2 4 6 9 14 23 35 46 59 68 76 83 88 91 93 94 95
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Solution

I We computed the average
µ = 14.64

I For convenience turn the frequency
table into a vertical table
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x f x · f (x − µ) (x − µ)2 (x − µ)2 · f
4 1 4 -10.64 113.2096 113.2096
5 1 5 -9.64 92.9296 92.9296
8 2 16 -6.64 44.0896 88.1792
9 2 18 -5.64 31.8096 63.6192

10 3 30 -4.64 21.5296 64.5888
11 5 55 -3.64 13.2496 66.2480
12 9 108 -2.64 6.9696 62.7264
13 12 156 -1.64 2.6896 32.2752
14 11 154 -0.64 0.4096 4.5056
15 13 195 0.36 0.1296 1.6848
16 9 144 1.36 1.8496 16.6464
17 8 136 2.36 5.5696 44.5568
18 7 126 3.36 11.2896 79.0272
19 5 95 4.36 19.0096 95.0480
20 3 60 5.36 28.7296 86.1888
21 2 42 6.36 40.4496 80.8992
22 1 22 7.36 54.1696 54.1696
25 1 25 10.36 107.3296 107.3296

Tot. 95 1391 1067.6432

Ave. 14.64 11.2383
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So the standard deviation is
σ =
√

11.2383 = 3.35.
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To find the Standard Deviation σ

1. Compute the deviations xi − µ.

2. Square the deviations (xi − µ)2.
3. Average the squared deviations to the variance

var =

∑
(xi − µ)2

n
.

4. Take the square root of the variance

σ =
√
var.
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Question

What does standard deviation mean
in practice?
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In the previous example:
I The average is µ = 14.64
I the standard deviation is σ = 3.35
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How many data points are within one
standard deviation of the average?

µ− σ = 11.29 and µ + σ = 17.99

Between these two values there are a
total of

9 + 12 + 11 + 13 + 9 + 8 = 62

data points (out of 95), i.e., about
two thirds.
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For “nice” data sets, about
2

3
of the

data set is located within one
standard deviation of the average.

I if σ is small, the data points are
crowded close to µ

I if σ is large, the data points are
scattered.
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