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Section 3.2.4: Iterated Two-Outcome
Experiments

(In the book this is called “Two-
Outcome Experiment; Repeat it!”)
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Let’s consider random experiments
with only two possible outcomes.

I flipping a coin, H or T
I baseball player at bat, hit (H) or

no hit (N)
Generically, success (S) and failure
(F).
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Flipping a fair coin is a two-outcome
experiment where both outcomes are
equally likely.

But not all
two-outcome random experiments
have equally likely outcomes.
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For example, Ted Williams had a
batting average of .344, so the
random experiment “Ted Williams at
bat” with outcomes hit or no hit has
probability space:

outcome H N
probability 0.344 0.656
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Definition

When a random experiment is
repeated several times (iterated), we
get a Compound Random
Experiment.
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Example

Flip a fair coin 5 times.

One outcome
is HHTHT.
a) How many outcomes are there in

the sample space?
b) What is the probability of each

outcome?
c) What is the probability of getting

2 heads and 3 tails?
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Solution

a) By the product principle
I the experiment can be broken

down into 5 independent steps
I each step has 2 possible outcomes

So there are 25 = 32 outcomes in this
sample space.



7

Solution

a) By the product principle
I the experiment can be broken

down into 5 independent steps
I each step has 2 possible outcomes

So there are 25 = 32 outcomes in this
sample space.



8

Solution

b) Remark: The basic random
experiment (flip once) has equally
likely outcomes, so the compound
random experiment (flip 5 times)
does too.

The coin is fair, so each outcome has

probability
1

32
.
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Solution

b) Remark: The basic random
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c) To find the probability of the event
E: “2 heads and 3 tails” we use

pr(E ) =
k

n

=
number of outcomes in E

number of all possible outcomes

Each outcome is written as a
sequence of five H’s and T’s:

HTTHT

Need to count!
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Count outcomes with exactly 2 H’s
and 3 T’s.

Count all the ways to
choose 2 positions out of 5 for the
H’s (and then the other three are
T’s). So there are

5C2 = 10

outcomes with 2 heads and 3 tails.
Thus

pr(E ) =
10

32
= 0.3125
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Harder: Compound random
experiments where the repeated
experiment does not have equally
likely outcomes.

These can be broken down into a
sequence of steps.
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Example

Joe takes a 10 question
multiple-choice quiz. He randomly
picks one of the 5 choices in each
question.

Look at his sequence of
successes (S) and failures (F)....
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Example

a) How many different outcomes are
there in the sample space?

b) What is the probability of each
outcome?

c) What is the probability of getting
1 correct and 9 wrong answers?
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Solution

a) We write each outcome as a 10
letter sequence of S’s and F’s:

FFSSFFFSFF

To count these all, we have to pick
one of 2 alternatives in each of 10
independent steps. By the product
principle there are

2 × · · · × 2︸ ︷︷ ︸
10 times

= 210 = 1, 024

outcomes in the sample space.
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b) We may be tempted to say that
the probability of each outcome is

1

1, 024
,

but this is wrong because the

outcomes are not equally likely.
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For each question there are five
choices, only one of which is correct.
So, in each question

I the probability of success is 0.2
I the probability of failure is 0.8

We need something like the product
principle for probabilities in order to
deal with this.
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Product Principle for
Probabilities

I Suppose a random
experiment can be broken
down into a sequence of
steps, each one being a
random experiment on its
own.
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I Assume moreover, that the
probability assignments of
the different steps are
independent of each other.

I Then the probability of an
outcome in the whole
random experiment is the
product of the
probabilities of the
individual steps.
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By the product principle:

pr(SSSSFFSSFS)

= 0.2 × 0.2 × 0.2 × 0.2 × 0.8
× 0.8 × 0.2 × 0.2 × 0.8 × 0.2

= (0.2)7 × (0.8)3

= 0.0000065536
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whereas

pr(FSSSFSSFSF)

= 0.8 × 0.2 × 0.2 × 0.2 × 0.8
× 0.2 × 0.2 × 0.8 × 0.2 × 0.8

= (0.2)6 × (0.8)4

= 0.0000262144.
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So the probability of a particular
outcome depends on how many S’s
and how many F’s it has.

If it has k
S’s then it must have (10 − k) F’s
and by the product principle the
probability is

(0.2)k × (0.8)(10−k)

(General formula coming soon)
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c) Any individual outcome with 1 S
and 9 F’s has probability

(0.2)1 × (0.8)9 = 0.0268435456

Selecting such an outcome amounts
to selecting one place for the S, and
placing F’s everywhere else.
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Therefore there are

10C1 = 10

such outcomes,

and the probability of
the event

E: “1 correct and 9 wrong answers”

pr(E) = 0.268435456

or almost 27%.
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The formula used in the last example
is a special case of the general
formula for the probability of a
2-outcome event repeated n times:
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pr(E) = nCk×(pr(S))k×(pr(F))n−k,

where E is the event “k successes
and n − k failures”.

Here
I pr(S) is probability of a success
I pr(F) is probability of a failure
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where E is the event “k successes
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I pr(S) is probability of a success
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Example

A doctored coin with pr(H) = 0.6 is
flipped six times. What is the
probability of obtaining 2H and 4T?
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Solution

We have

pr(T) = 1 − pr(H) = 0.4

Since n = 6 and k = 2, it follows
n − k = 4.
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Solution

Thus for the event E: “2H and 4T”
we obtain:

pr(E) = 6C2 × (0.6)2 × (0.4)4

= 15 × 0.36 × 0.0256
= 0.13824

or almost 14%.
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Next time: Section 3.2.4 continued:
Sum/complement principles for
probabilities


