Section 3.1.5 continued: Counting poker hands

A poker hand consists of 5 cards drawn from a 52-card deck.

A poker hand consists of 5 cards drawn from a 52-card deck.a) How many different poker hands are there?

A poker hand consists of 5 cards drawn from a 52-card deck.

- a) How many different poker hands are there?
- b) How many different poker hands are there, with all the cards from the suit?

A poker hand consists of 5 cards drawn from a 52-card deck.

- a) How many different poker hands are there?
- b) How many different poker hands are there, with all the cards from the suit?
- c) How many different poker hands are there, with not all cards from the **\$** suit?

Order of the cards in a hand does not matter, so we're dealing with combinations.

Order of the cards in a hand does not matter, so we're dealing with combinations. a) We want to choose 5 items out of 52.

Order of the cards in a hand does not matter, so we're dealing with combinations. a) We want to choose 5 items out of 52 There are

$$_{52}C_5 = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

= 2,598,960

different poker hands.

b) For the all- hand, we choose 5 items out of 13.

b) For the all- \clubsuit hand, we choose 5 items out of 13. There are ${}_{13}C_5 = \frac{13 \times 12 \times 11 \times 10 \times 9}{5 \times 4 \times 3 \times 2 \times 1}$ = 1,287

different poker hands with all cards

c) Finally, by the complement principle, there are

2,598,960 - 1,287 = 2,597,673

different poker hands where not all cards are **\$**.

6

Harder!

Example

How many "full house" poker hands are there? (Pair + triple)

1. Value of pair (e.g., 3, 7, J, A)

- 1. Value of pair (e.g., 3, 7, J, A)
- 2. (Different) value of triple

- 1. Value of pair (e.g., 3, 7, J, A)
- 2. (Different) value of triple
- 3. Suits of the 2 pair cards

- 1. Value of pair (e.g., 3, 7, J, A)
- 2. (Different) value of triple
- 3. Suits of the 2 pair cards
- 4. Suits of the 3 triple cards

- 1. Value of pair (e.g., 3, 7, J, A)
- 2. (Different) value of triple
- 3. Suits of the 2 pair cards
- 4. Suits of the 3 triple cards

Independent!

Value of pair (Different) value of triple Suits of the 2 pair cards Suits of the 3 triple cards

Value of pair 13C1 outcomes (Different) value of triple Suits of the 2 pair cards Suits of the 3 triple cards

Value of pair 13C1 outcomes
(Different) value of triple 12C1
Suits of the 2 pair cards
Suits of the 3 triple cards

Value of pair 13C1 outcomes
(Different) value of triple 12C1
Suits of the 2 pair cards 4C2
Suits of the 3 triple cards

Value of pair 13 C1 outcomes
(Different) value of triple 12 C1
Suits of the 2 pair cards 4 C2
Suits of the 3 triple cards 4 C3

Value of pair 13C1 outcomes (Different) value of triple 12C1 Suits of the 2 pair cards 4C2 Suits of the 3 triple cards 4C3

$$_{13}C_1 \times _{12}C_1 \times _4C_2 \times _4C_3 = \cdots$$

So how many full house hands are there?

So how many full house hands are there?

${}_{13}C_1 \times {}_{12}C_1 \times {}_4C_2 \times {}_4C_3 =$ $13 \times 12 \times 6 \times 4 = 3744$

Example How many "pair" hands are there?

10

How to count? 1. Value of pair

How to count? 1. Value of pair 2. Suits of those two cards

- 1. Value of pair
- 2. Suits of those two cards
- 3. Values of the other three cards (must be distinct!)

- 1. Value of pair
- 2. Suits of those two cards
- 3. Values of the other three cards (must be distinct!)
- 4. Suits of the other three cards

- 1. Value of pair
- 2. Suits of those two cards
- 3. Values of the other three cards (must be distinct!)
- 4. Suits of the other three cards Independent!

1. Value of pair

- 2. Suits of those two cards
- 3. Values of the other three cards (must be distinct!)
- 4. Suits of the other three cards

1. Value of pair $_{13}C_1$

- 2. Suits of those two cards
- 3. Values of the other three cards (must be distinct!)
- 4. Suits of the other three cards

Value of pair 13C1 Suits of those two cards 4C2 Values of the other three cards (must be distinct!) Suits of the other three cards

12

Value of pair 13C1 Suits of those two cards 4C2 Values of the other three cards (must be distinct!) 12C3 Suits of the other three cards

1 Malua of moin

- 1. Value of pair $_{13}C_1$
- 2. Suits of those two cards $_4C_2$
- 3. Values of the other three cards (must be distinct!) ${}_{12}C_3$
- 4. Suits of the other three cards $({}_4C_1)^3$

1. Value of pair $_{13}C_1$

- 2. Suits of those two cards $_4C_2$
- 3. Values of the other three cards (must be distinct!) ${}_{12}C_3$
- 4. Suits of the other three cards $({}_{4}C_{1})^{3}$
- $_{13}C_1 \times _4C_2 \times _{12}C_3 \times (_4C_1)^3 = \cdots$

So, the number of "pair" poker hands is:

So, the number of "pair" poker hands is:

$_{13}C_1 \times _4C_2 \times _{12}C_3 \times (_4C_1)^3 =$ $13 \times 6 \times 220 \times 4^3 = 1,098,240$

Next time: Section 2.3: Probability