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1 Likelihood Ratio Test
Here is another example of the Likelihood Ratio Test.

Example 1.1. Let Y1,Y2,...,Yn be a random sample from a normal distribution with unknown mean µ
and variance σ2.

Show that the Likelihood Ratio Test to test the null hypothesis H0 :σ2 =σ2
0 versus the alternative

hypothesis H0 :σ2>σ2
0 is equivalent to the small sample size test for the variance of a random sample

of normal random variables.

Our goal is to show the the RR region we get from this likelihood ratio test is can be computed
in terms of the χ2-distributed random variable W=∑n

i=1(Yi−Y ).
The unknown vector is Θ=(µ,σ2). The hypothesis test is not simple because it does not specify

µ. The null hypothesis corresponds to the region

Ω0 ={(µ,σ2)|µ∈R and σ2 =σ2
0}.

(You can graph this set on the (µ,σ2) plane to visualize it, it will be a line)
The alternative hypothesis corresponds to the region

Ωa={(µ,σ2)|µ∈R and σ2>σ2
0}.

(You can graph this set to visualize it, it will be a half of a plane, it’s boundary is the half line from Ω0)
So the region of the parameter space of interest is

Ω=Ω0∪Ωa={(µ,σ2)|µ∈R and σ2≥σ2
0}.

Now our goal is determine the maximum value of L(Θ) on Ω, given the observation Y1 =y1,Y2 =
y2,...,Yn=yn, on the sets Ωa and Ω0. So our first step is to compute the likelihood function:

L(Θ)=
(

1√
2πσ2

)n
e−
∑n

i=1
(yi−µ)2

2σ2

Note that we only write σ2, and don’t simplify the square root.

Our goal is to now find where the maximum of this function occurs, so as usual we take its ln.

ln(L(Θ))= n

2 ln
( 1

2πσ2

)
−

n∑
i=1

(yi−µ)2

2σ2 =−n2 ln
(
2πσ2

)
− 1

2σ2

n∑
i=1

(yi−µ)2



We now wish find where the max of this function occurs. From calculus, we know this value occurs
when the derivative is zero, or at the boundary of the domain. The second case will be important for
us, because we are considering maximums restricted to certain subsets of the entire parameter space.

Because we have a function of two parameters, µ and σ2, we take the derivative of each parameter.

d

dµ
ln(L(Θ))=− 1

σ2

n∑
i=1

(yi−µ)

d

dσ2 ln(L(Θ))=− n

2σ2 + 1
2(σ2)2

n∑
i=1

(yi−µ)2

The derivative w.r.t. µ is 0 at
− 1
σ2

n∑
i=1

(yi−µ)=0

or
µ= 1

n

n∑
i=1
yi=y

Since there are no restrictions on µ in Ω, this point is contained in Ω.

We now find the maximum where the maximum occurs in the σ2 coordinate.
Solving

d

dσ2 ln(L(Θ))=− n

2σ2 + 1
2(σ2)2

n∑
i=1

(yi−µ)2 =0

for σ2 we find that to be at a maximum of L(Θ) we get:

σ̂2 = 1
n

n∑
i=1

(yi−µ)2

But this point might not be in Ω, so now we check the sign of the derivative. If σ2 is large then the
first term of − n

2σ2 + 1
2(σ2)2

∑n
i=1(yi−µ)2 will be bigger, so the derivative is negative, on the other hand

if σ2 is small the second term is bigger and the derivative is positive.

So combining this with the maximum in the µ occurs at µ̂ we have that the maximum of L(Θ)
occurs at:

Θ̂=(µ̂,σ̂2)
where

µ̂=y
and

σ̂2 =
{
σ2

0, if 1
n

∑n
i=1(yi−y)2<σ2

0
1
n

∑n
i=1(yi−y)2 if 1

n

∑n
i=1(yi−y)2≥σ2

0

We substituted µ=µ̂=y into the σ2 maximum.
We now evaluate the Likelihood function at this point:

L(Θ̂)=
(

1√
2πσ̂2

)n
e−
∑n

i=1
(yi−µ̂)2

2σ̂2 =
(

1√
2πσ̂2

)n
exp

(
− 1

2σ̂2

n∑
i=1

(yi−µ̂)2
)
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(I’ve just written the same thing two different ways.) Note that the term in the exponent is different
depending on the value of σ2

− 1
2σ̂2

n∑
i=1

(yi−y)2 =
{
− 1

2σ2
0

∑n
i=1(yi−y)

2, if 1
n

∑n
i=1(yi−y)2<σ2

0

−n
2 if 1

n

∑n
i=1(yi−y)2≥σ2

0

We want to consider the ratio
maxΘ∈Ω0L(Θ)
maxΘ∈ΩL(Θ)

If σ̂2 =σ2
0 then the maximum over Ω0 and Ω occur at the same point, and this ratio is 1. So we’ll

now assume σ̂2 = 1
n

∑n
i=1(yi−y)2, and thus the maximum of L on Ω is:

L(Θ̂)=
(

1√
2πσ̂2

)n
e−n/2 =

(
1

2π 1
n

∑n
i=1(yi−y)2

)n/2
e−n/2

So the likelihood ratio is:

maxΘ∈Ω0L(Θ)
maxΘ∈ΩL(Θ) =

(
1

2πσ2
0

)n/2
e
− 1

2σ2
0

∑n

i=1(yi−y)2

(
1

2π 1
n

∑n

i=1(yi−y)2

)n/2
e−n/2

=
( 1
n

∑n
i=1(yi−y)2

2πσ2
0

)n/2
e
n
2−

1
2
∑n

i=1
(yi−y)2

σ2
0

The region rejection will then be determined by when this quantity is <k for some small k. How
small k needs to be is determined by the choice of α. In order go from a level α to a value for k, we need
to know the distribution of the ratio. At this stage, we do not it’s distribution, so we will manipulate it
until we have a random variable that we know. Just as in the last section, this will create a complicated
function of k. Fortunately, we don’t have to follow it to closely, the most important thing will be the
direction of the inequality.

When H0 holds ∑n
i=1

(yi−y)2

σ2
0

is a χ2 random variable with (n−1) df. So we should try to isolate
it. Unfortunately, we can’t solve for it very explicitly, but the the likelihood ratio is a function of this
quantity. Namely, the function

g(x)=
(
x

2πn

)n/2
e
n
2−

1
2x

evaluated at x=∑n
i=1

(yi−y)2

σ2
0

is this likelihood ratio.
So we want to characterize the region g(x)<k, so we’ll determine when the function g(x) is decreasing:

g′(x)=
( 1

2πn

)n/2n
2x

n/2−1e
n
2−

1
2x−

( 1
2πn

)n/2
xn/2

1
2e

n
2−

1
2x

so we see this function is decreasing when x>n. Recall that we have assumed 1
n

∑n
i=1(yi−y)2≥ σ2

0
(Otherwise we would automatically fail to reject H0). So the likelihood ratio is a decreasing function
of ∑n

i=1
(yi−y)2

σ2
0

.

This means we reject H0 when ∑n
i=1

(yi−y)2

σ2
0

is large. The RR is therefore

RR=
n∑
i=1

(yi−y)2

σ2
0

>a
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where a is such that
P(W>a)=α

where W is a χ2 random variable with (n−1) df.
So we have derived the small-sample size test for the varaince of normal random variables. This

is the end of problem.

The last two examples used very strong properties of the distribution of the random sample Y1,...,Yn
and did some clever manipulations to find the rejection region. Generally we cannot hope to be able
to do this, fortunately in the large sample size regime, we have the following theorem:

Theorem 1.2. Let Y1,Y2,...,Yn be a random sample with likelihood function L(Θ), where the unknown
parameter Θ=(θ1,θ2,...,θr) has r coordinates. Let H0 :Θ∈Ω0 be a set that specifies d0 of the r coordinates
of Θ. Let Ha :Θ∈Ωa and Ω=Ω0∪Ωa. Let d of the r coordinates of Ω be specified. Let λ we the likelihood
ratio:

λ= maxΘ∈Ω0L(Θ)
maxΘ∈ΩL(Θ) ,

then for large n, under H0, the random variable −2ln(λ) has an approximately χ2 distribution with
(d0−d) df.

For example, in the last examples we considered Θ=(µ,σ2), so r=2. Under H0, either µ or σ2 is
specified, so the other parameter is free and r0 =1. Under Ha neither parameter is specified so d=0.
Typically d=0, because the parameters fixed by Ω could just not be included in Θ.

If the ratio λ<k then −2ln(λ)>−2ln(k)=k∗, so if the test statistic −2ln(λ) is large we reject H0.
Let’s look at an example:

Example 1.3. A company wants to know if its product is used equally or not in different cities. To
see this, they conduct a random sample in each of the three cities and ask if their product is used or
not. They collect the following data:

City 1 City 2 City 3
Sample size: 100 100 200

Number who use product: 14 27 47
Use the likelihood ration at level α= .05 to determine if the null hypothesis that the same percentage

of the population in each city uses the product.

Solution:
Let pi for i=1,2,3 be the proportion of people in each city that use the product. Then we are

testing the null hypothesis H0 :p1 =p2 =p3 against the alternative hypothesis Ha :pi 6=pj for i 6=j.
So the set Ω0 is {(p1,p2,p3)|0 ≤ p1 = p2 = p3 ≤ 1}, so there is 1 fixed parameter and 2 free

parameters. The set Ωa is {(p1,p2,p3)|0≤ pi ≤ 1 and pi 6= pj for i 6= j.}. So then Ω = Ω0∪Ωa is
{(p1,p2,p3)|0≤pi≤1} so there are no fixed parameters, all 3 are free parameters.

The estimator for pi that was used is a Binomial random variable with n equal to the sample
size in the city (either 100 or 200) and unknown pi.Let yi be the total number of people in city i
who use the product. Then the Likelihood function is

L(p1,p2,p3)=
(

100
y1

)
py1

1 (1−p1)100−y1

(
100
y2

)
py2

2 (1−p2)100−y2

(
200
y3

)
py3

3 (1−p3)200−y3.
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This is just the product of the pdfs of 3 binomial random variables, with sample size 100, 100, and
200.

We’ll derive the rejection region for this test and then substitute the data we observed to see
if we should reject H0 or not.

When H0 holds then p1 =p2 =p3. Now we find the the maximum of L on this set:

L(p1,p2,p3)=L(p)=
(

100
y1

)
py1(1−p)100−y1

(
100
y2

)
py2(1−p)100−y2

(
200
y3

)
py3(1−p)200−y3

=
(

100
y1

)(
100
y2

)(
200
y3

)
py1+y2+y3(1−p)400−y1−y2−y3

so
d

dp
L(p)=

(
100
y1

)(
100
y2

)(
200
y3

)(
(y1+y2+y3)py1+y2+y3−1(1−p)400−y1−y2−y3

−py1+y2+y3(400−y1−y2−y3)(1−p)400−y1−y2−y3−1
)

which equals zero at p= y1+y2+y3
400 .

On the other hand on the entire Ω
d

dp1
L(p1,p2,p3)=

(
100
y1

)(
100
y2

)(
200
y3

)(
y1p

y1−1(1−p)100−y1−(100−y1)py1(1−p)100−y1−1
)

×py2
2 (1−p2)100−y2py3

3 (1−p3)200−y3

which is 0 when p1 = y1
100.

Computing the derivatives in the other coordinates one sees that with function is maximized
at p1 = y1

100,p2 = y2
100,p3 = y3

200.
Now we take the ratio of the likelihood functions evaluated at these two points:

λ= maxΘ∈Ω0L(Θ)
maxΘ∈ΩL(Θ)

=

(
y1+y2+y3

400

)y1+y2+y3(1−
(
y1+y2+y3

400

)
)400−y1−y2−y3(

y1
100

)y1(1−
(
y1
100

)
)100−y1

(
y2
100

)y2(1−
(
y2
100

)
)100−y2

(
y3
200

)y3(1−
(
y3
200

)
)200−y3

The binomial coefficients cancel, so they’re not written. Under H0, we have no idea the distribution
of the above random variable (when yi is replaced by Yi), and it’s also not clear how to manipulate
it into something we know the distribution of. Fortunately we have a theorem that tells us −2ln(λ)
is a χ2 random variable with 2−0 df.

From the table we have
P(W>5.99)= .05

where W is a χ2 r.v. with 2 df.
So we just need to compute the above fraction at with the data give and then check if −2ln(λ)

is sufficiently large.
For our observation we have λ= .056 so −2ln(λ)=5.78, since this is less than 5.99, we do not

reject H0 at the α= .05 level.
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