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The Neyman-Pearson Lemma will give us the best test when we assume a certain type of hypothesis
test. We will give a definition that specifies certain a type of hypothesis. Then we give a way to specify
that a test is the best. Then we will be able to state the lemma.

1 Neyman-Pearson Lemma
Definition 1.1. A hypothesis is called a simple hypothesis if it uniquely specifies the distribution
of the sample random variables. A hypothesis that is not simple is called composite.

In this class, we often chose the null hypothesis to a be a simple hypothesis. Indeed, if we specify
everything about the random sample except its mean, θ, and then choose H0 : θ= θ0, for a specified
value of θ0, then when H0 is assumed the entire distribution of the sample random variables is now
known.

On the other hand, we usually choose the alternative hypothesis to be a composite hypothesis.
Indeed, if Ha : θ < θ0, then if you’re told that Ha is true, you still don’t know what θ is, only
that it is some number less that θ0, so we don’t actually know the pdf of the sample random vari-
ables.

One important thing to note, is that our null hypothesis is not always a simple hypothesis. For
example, if the random sample comes from a normal distribution with unknown µ and σ2, and we
choose H0 :θ=θ0, then this is not a simple hypothesis because it did not specify σ2 and therefore did
not specify everything about the pdf of the random sample.

When designing a hypothesis test for the simple hypothesis H0 :θ=θ0 against the simple hypothesis
Ha :θ=θa, we start by choosing an acceptable α, this is simply a matter of how confident you want
to be. Recall α=power(θ0) by their definitions. We then want to chose the hypothesis with that largest
power at θa. Designing the hypothesis test will amount to choosing a test statistic, then the distribution
of the test statistic gives a RR for the given α. We give the test with the largest power a name:

Definition 1.2. When testing the simple hypothesis H0 :θ=θ0 against the simple hypothesis Ha :θ=θa,
the test with the largest power(θa) is called the most powerful test.

The Neyman-Pearson Lemma gives us a way to find the most powerful test when H0 and Ha are
both simple hypothesises.

From the pervious discussion, you should question the usefulness of a test that requires each hypothesis
to be simple, as our Ha is rarely simple, and sometimes our H0 is not simple. After stating the lemma



and an example, we will discuss how the lemma can still be used when Ha is not simple. The case when
H0 is not simple will be handled in the next section.

Lemma 1.3 (The Neyman-Pearson Lemma). Let Y1,...,Yn be a random sample with likelihood function
L(θ). The most powerful test of the simple hypothesis H0 :θ=θ0 against the simple hypothesis Ha :θ=θa
at level α has a rejection region of the form:

L(θ0)
L(θa)

<k

where k is chosen so that the probability of a type I error is α.

The main statement should be someone believable, but how to apply the lemma might not. The lemma
says that given you data, compute the likelihood function at θ0 and θa. Intuitively, you would like to say the
θ with the larger likelihood function is the correct one. This would correspond to k=1 in the above lemma.
But we don’t simply want to choose k=1 because we know there is some chance that randomly the wrong
θ looks for likely. So instead of choosing k=1 we choose k such that under H0 probability of L(θ0)

L(θa)<k is α.
Let’s look at an example:

Example 1.4. Let Y1,...,Y4 be a random sample with pdf:

fY |θ(y|θ)= 1
2θ3y

2e−y/θ

for y>0, and 0 otherwise, where θ>0 is an unknown parameter.
Find the Rejection Region for the most powerful test for H0 :θ=3 against Ha :θ=6.

Solution:
First note that the Yi are gamma random variables with α=3 and β=θ.
Since the Null Hypothesis and the Alternative Hypothesis are both simple we can apply the

Neyman-Pearson Lemma.
We begin by computing the likelihood function, which we then evaluated θ = 3 and 6. We

multiply the pdf’s of Y1 through Y4

L(y1,y2,y3,y4|θ)=
4∏
i=1
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Then by the Neyman-Pearson Lemma we consider the ratio:
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where we used that we are given θ0 =3 and θa=6.
Then we simplify:

L(3)
L(6) = 612

312e
−(y1+y2+y3+y4)(1

3−
1
6)

We will now apply the Neyman-Pearson Lemma to the above expression. This requires studying
its distribution under H0. We’ll need to use that, under H0, Y1+Y2+Y3+Y4 is a gamma random
variable with α=3∗4=12 and β=θ0 =3. So now we solve for Y1+Y2+Y3+Y4, in

612

312e
−(y1+y2+y3+y4)(1

3−
1
6)<k
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We multiply both sides by 312

612

e−(y1+y2+y3+y4)(1
3−

1
6)<

(
k

312

612

)
.

Then we take the ln of both sides.

−(y1+y2+y3+y4)
(1

3−
1
6

)
< ln

(
k

312

612

)

Now we multiply by −
(

1
3−

1
6

)−1
=−6, because this number is negative, we switch the direction

of the inequality.

(y1+y2+y3+y4)>−6∗ln
(
k

312

612

)
. (1.1)

Then we use:
P(Y1+Y2+Y3+Y4>54.62254)= .05

Where I compute 54.62254 using the R command qgamma(.95,shape=12,scale = 3).
So our test statistic is Y1+Y2+Y3+Y4 and RR is

Y1+Y2+Y3+Y4>54.62254.

This is the answer.

Some remarks: We don’t actually care about the exact value of k. The only things we use about
(1.1) is that Y1+Y2+Y3+Y4 is a usable test statistic and the direction of the inequality.

We used the value θ0 = 3 to compute the rejection region, it gave us the distribution of
Y1+Y2+Y3+Y4 underH0. We didn’t really use the exact value of θa=6, in fact the only place it comes
up is when we multiplied both sides by −

(
1
3−

1
6

)−1
. Because 6>3 this number is negative. In fact for

any θa>3 we would have the exact same same rejection region. On the other hand if our alternate
hypothesis was with a θa<3=θ0 then this term would be positive and we wouldn’t flip the inequality.

The final remark of the last example (that we didn’t use very strongly the value of θa) shows us
the the Neyman-Pearson lemma can be useful for some composite tests and motives the next definition:

Definition 1.5. When testing the simple hypothesis H0 : θ = θ0 against the composite alternative
hypothesis Ha, if a test has the largest power(θ) for all θ in Ha then it is called the uniformly most
powerful test.

In the last example, the remark at the end shows that the hypothesis test with RR

Y1+Y2+Y3+Y4>54.62254

is the uniformly most powerful test of H0 :θ=3 against Ha :θ>3 at the α= .05 level.

Note that a uniformly most powerful test might not exist. In fact we should only expect it for
one-sided alternative hypothesis tests.

In general, to find the uniformly most powerful test (when it exist), you begin by picking an arbitrary
θa in Ha. For this particular choice you apply the Neyman-Pearson lemma to compute the RR. If you
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only use properties about θa that hold for all θa in the entire Ha, then you have found the uniformly
most test. If this is impossible, then there is no uniformly most powerful test.

Let’s do another example of finding the uniformly most powerful test.

Example 1.6. Let X1,X2,...,Xn be a random sample of Poisson random variables with unknown mean
λ>0. Find the Rejection Region for the uniformly most powerful test of H0 :λ=λ0 against the alternative
hypothesis Ha :λ<λ0 at level α. Where λ0 is some fixed number.

Solution: Before we start recall that X1+X2+...+Xn is also a Poisson random variable, but with
mean nλ, and that the pmf of X1 is

pXi(x)=e−λλ
x

x!
for all non-negative integers x.

From the Neyman-Pearson Lemma we compute Likelihood function

L(λ)=
n∏
i=1
e−λ

λxi

xi!
=e−nλλ

∑n

i=1xi∏n
i=1xi!

then we take the ratio between L(λ0) and L(λa) for some λa<λ0:

L(λ0)
L(λa)

=
e−nλ0 λ

∑n

i=1xi
0∏n

i=1xi!

e−nλa λ
∑n

i=1xi
a∏n

i=1xi!

= e−nλ0λ
∑n

i=1xi
0

e−nλaλ
∑n

i=1xi
a

=e−n(λ0−λa)
(
λ0

λa

)∑n

i=1xi

Then the RR will be when this quantity is less than some constant k.

e−n(λ0−λa)
(
λ0

λa

)∑n

i=1xi

<k

We now solve for ∑n
i=1xi, because we know the distribution of the random variable ∑n

i=1Xi, so we
can use it to determine RR.

Multiplying both sides by (the positive number) en(λ0−λa) and then taking the ln gives:(
n∑
i=1
xi

)
ln
(
λ0

λa

)
< ln(en(λ0−λa)k)

Then we multiply by ln
(
λ0
λa

)−1
, because λa<λ0 this number is positive so we have

(
n∑
i=1
xi

)
< ln(en(λ0−λa)k)ln

(
λ0

λa

)−1

=k′

Where we now call the term on the right k′, because we just care about the direction of the inequality.
So RR is (

n∑
i=1
xi

)
<k′

Where k′ is such that
P(X≤k′)=α
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where X is a Poisson random variable with mean nλ0 (note we’re using H0 to determine RR, as
usual).

Since we only used properties of θa that hold for every value in Ha (namely θa≤θ0) this is the
uniformly most powerful test.

Recall when doing estimation, we usually either considered examples like that last one, where we
estimated the mean, or we did examples where the support of the pdf was unknown. Let’s look at an
example of the second type in this context:

Example 1.7. Let Y1,Y2,...,Yn be a random sample from a uniform distribution over the interval (0,θ).
Find the most powerful α-level test for testing H0 :θ=θ0 against Ha :θ=θa, where θa<θ0.
Is this the uniformly most powerful test for H0 :θ=θ0 against Ha :θ<θ0?

Solution:
Recall the likelihood function is

L(θ)= 1
θn

if θ>y(n)

and 0 otherwise. Where y(n) =max{y1,y2,...,yn}
We first note y(n) cannot be bigger than θ0 (or θ0 cannot be smaller than y(n), depending on your

perspective). If θa<y(n)<θ0, then we do not reject H0, because it would be impossible for θa to be
upper edge of the support of the pdf. So the interesting region to consider is y(n)<θa, where we have:

L(θ0)
L(θa)

=
1
θn0
1
θna

= θna
θn0

For y(n)<θa. Note that here we used θa<θ0.
We set this less than some constant k and get

θna
θn0

Iy(n)<θa<k

Where Iy(n)<θa =1 if y(n)<θa and zero otherwise.
The function θna

θn0
Iy(n)<θa only takes on two values, if y(n) is small it is zero and then as y(n) increases,

at some point it jumps up to θna
θn0

.
The above inequality tells us to then reject θ0 when Y(n) is small.
We’ve seen that the pdf of Y(n) is

fY(n)(u)=ny
n−1

θn
Iy<θ

So under H0 we replace θ with θ0 and then we want a such that

P(Y(n)<a)=α
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or ∫ a

0
n
yn−1

θn0
dy=α

Computing the integral gives:
an

θn0
=α

Solving for a:
a=(αθn0 )1/n

So the rejection region is
Y(n)<α

1/nθ0

Since RR and its derivation never used the actual value of θa, only that it is less than θ0 this
is the uniformly most powerful test for H0 :θ=θ0 against Ha :θ<θ0.
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