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1 Hypothesis Testing
We now take a different approach to statistical analysis. Instead of trying to estimate a parameter, we
will begin with a hypothesis to test. Often times these 2 ideas are related. For example, if we have
an unknown parameter, θ, we can hypothesize that θ lies in a certain interval [a,b]. Then we run a
series of experiments and record the results, to see if they support our hypothesis. We will see that
mathematically this is similar to checking if our estimator for θ lies in the interval.

When we make an observation that supports our hypothesis, there will be two ways this could
happen. The first is our hypothesis is correct and the second is our hypothesis is false but the noise
and inherent randomness of the measurement happened to cause a recording near our hypothesis. We
would like to choose a test that minimizes the second possibility.

We now begin to make this more precise by stating the definition of a statistical test:

Definition 1.1. A statistical test consists of the following 4 elements:

• A Null Hypothesis - H0 - This is corresponds to the uninteresting case, where our Hypothesis
is false

• An Alternative Hypothesis - Ha -This is corresponds to the interesting case, where our Hy-
pothesis is true

• A Test Statistic - Just like in the last section a statistic is a function of our measurement data.

• Rejection Region - RR - If our test statistic lands in the region, we reject the Null Hypothesis,
in favor of our Alternative Hypothesis

Let’s look at an example:

Example 1.2. You suppose that a coin is unfair, that is the probability of being heads on a flip is not
1/2. In order to test this hypothesis you design the following experiment:
You flip the coin 100 times and let Xi =1 if the ith flip is a heads and 0 otherwise. Let p be the probability
that X1 =1.
Let H0, the null hypothesis, be that p= .5, the coin is fair.
Let Ha, the alternative hypothesis, be that p 6= .5, the coin is not fair.
Let ∑100

i=1Xi be the test statistic.
Let |∑100

i=1Xi−50|>10 be the Rejection Region (RR).



In the above example the rejection region was chosen somewhat arbitrarily, later we’ll learn how
to use the distribution of the test statistic to choose a rejection region with the desired proper-
ties. But we need to account for the fact that even when Ha is true, we don’t expect to see
exactly 50 heads, but it is very unlikely to see much more or less than 50 heads. Therefore, if
we observe a very large or small number of heads, we can confidently reject the null hypothe-
sis.

RR can be “one” or “two”-sided. In the two-sided case (as above), Ha will be of the form θ 6=θ0.
In the one-sided case Ha will be of the form θ>θ0 or of the form θ<θ0.

Associated to a RR, we have the possibility of misclassification, rejecting H0 when it is true, or
failing to reject H0 when it is false. We call these types of errors type I and II.

Definition 1.3. A type I error is made if H0 is rejected when H0 is true. The probability of a type
I error is denoted α. The value of α is called the level of the test.
A type II error is made if H0 is accepted when Ha is true. The probability of a type II error is denoted β.

The names are admittedly not very creative, but are quite standard. We mostly focus on type I
errors, because when you reject H0, you are concluding the interesting thing happened. Note that we
speak of accepting or rejecting H0, not Ha.

The probabilities of these errors is computed from the distribution of the test statistic under the
various situations.

Example 1.4. In the above example, compute the probability of a Type I error in the above example.

Solution: Since we are computing a Type I error, we are for a moment assuming the null hypothesis
is true, that p=1/2. In this case, the test statistic, ∑100

i=1Xi, is a Binomial random variable with
n= 100 and p= 1/2. We want to compute the probability H0 is rejected, in other words, the
probability the test statistic lands in the rejection region. So

α=
∑

k>60

(
100
k

)
.5k(1−.5)100−k+

∑
k<40

(
100
k

)
.5k(1−.5)100−k.

Note that we can’t compute the probability of a Type II error without making additional assumptions,
in Ha, p takes on a range of values. For computational purposes we can assume p takes on a specific
value that satisfies Ha. More generally, there exist Theorems controlling the worst case scenario.

Example 1.5. Assuming p= .3 in the above example, compute the probability of a Type II error.

Solution: This is similar to above but now assume p= .3 and compute the probability that our
statistic lies in the complement of the previous set. The test statistic, ∑100

i=1Xi, is now a Binomial
random variable with n=100 and p= .3. We want to compute the probability we fail to reject H0,
in other words, the probability the test statistic lands outside the rejection region. So

α=
∑

40≤k≤60

(
100
k

)
.3k(1−.3)100−k.
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One more example:

Example 1.6. We wish to test the null hypothesis, H0, that the proportion p of problems in a homework
set with errors is equal to .05 versus the alternative Ha, that the proportion is larger than .05. We use
the following test: randomly choose 2 problems and count the number with errors, if both are error free,
we reject H0. If one or more contains an error, we randomly choose a third problem, if the third problem
is error free, we reject H0. In all other cases we accept H0 (later we’ll see that it is better to say fail
to reject H0).

What is the probability of a type I error?
What is the probability of a type II error, as a function of p?

Assume that number of problems is large.

Solution: Since the number of problems is large, we can model the probability that each randomly
chosen problem is wrong to be p, independently.

For this problem a type I error, is when p= .05 (%5 percent of the problems have an error), but
we reject H0. We reject H0 when either: both of the first two problems don’t have an error or the
third problem doesn’t have an error. Since these two events are mutually exclusive (at most one
of them can occur) we compute the probability of each event separately and add the probabilities
together. The probability of this event (using that p= .05) is:

α=
(

2
0

)
.952+(1−

(
2
0

)
.952).95

The first term is the probability both pages don’t have an error, the second is probability of at least
one error (computed as 1 minus probability of no errors) times the probability of an no errors on
the third problem. This is a relatively high number because this is not a very extensive test.

For this problem a type II error, is when p>0 but we accept H0 (or really fail to reject H0).
This happens if p>.05, but either the first two problems have an error and the third problem has
an error. We can compute this probability similarly to in the previous part.

β=
(

1−
(

2
0

)
(1−p)2

)
p

Admittedly, this last example was not a very good statistical test, but it is nevertheless a statistical
test, as it has an H0, Ha, a test statistic and a rejection region. In the next sections we investigate how
to get and use better tests.
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