Quiz 2

(1.) Evaluate the integral: $\int \frac{2^{n}}{2^{n+1}} dx$

(2.) Find the absolute minimum of the function $q(x) = \frac{e^x}{x}$, x > 0.

3. D'ifferentiate the function: $g(x) = \ln\left(x \sqrt{x^2 - 1}\right).$

Answers

(1) Q: Evaluate:
$$\int \frac{2^{x}}{2^{x}+1} dx$$

A: Let $v = 2^{x}+1$
then $dv = (ln 2) \cdot 2^{x} dx$
So $\frac{dv}{ln 2} = 2^{x} dx$.

Substituting, we get

$$\int \frac{2^{x}}{2^{x}+1} dx = \int \frac{1}{v} \cdot \frac{dv}{\ln 2}$$

$$= \frac{1}{\ln 2} \ln 0 + C$$

= $\frac{1}{\ln 2} \ln (2^{x} + 1) + C$

This tells us there's a local min of
$$g(x)$$

at $x = 1$.
(ii) Checking limits:
 $\lim_{X \to 0^+} \frac{e^x}{x} = \frac{\lim_{X \to 0^+} e^x}{\lim_{X \to 0^+} x} = \frac{1}{\lim_{X \to 0^+} x} = \infty$
And
 $\lim_{X \to 0^+} \frac{e^x}{x} = \infty$ because e^x is an
exponential function with base e^x
 $2.7 > 1$, and such functions grow
faster than any polynomial, which x
is.
So we have
 $\lim_{X \to 0^+} g(x) = \lim_{X \to 0^+} g(x) = \infty$
Hence minimum at $x = 1$ is a
global minimum on $\xi \times 1 \times 20\xi$.

$$(3) Q: Differentiate $q(x) = ln(x \sqrt{x^2 - 1}).$

$$A: q'(x) = \frac{l}{x \sqrt{x^2 - 1}} \cdot \frac{d}{\partial x} \left[\frac{x}{x} \sqrt{x^2 - 1} \right]$$$$

$$= \frac{1}{x \sqrt{x^2 - 1}} \cdot \left[x \cdot \frac{1}{2} \left(\frac{z}{x - 1} \right)^2 \cdot 2x + \sqrt{x^2 - 1} \left(1 \right) \right]$$

