Quiz 2
(1.) Evaluate the integral:

$$
\int \frac{2^{x}}{2^{x}+1} d x
$$

(2.) Find the absolute $\operatorname{minimum}_{x}$ of the function $g(x)=\frac{e^{x}}{x}, x>0$.
(3.) Differentiate the function:

$$
g(x)=\ln \left(x \sqrt{x^{2}-1}\right)
$$

Answers
(1.) Q: Evaluate: $\int \frac{2^{x}}{2^{x}+1} d x$

A: Let $v=2^{x}+1$
then $d v=(\ln 2) \cdot 2^{x} d x$
So $\frac{d u}{\ln 2}=2^{x} d x$
Substituting, we get

$$
\begin{aligned}
\int \frac{2^{x}}{2^{x}+1} d x & =\int \frac{1}{v} \cdot \frac{d v}{\ln 2} \\
& =\frac{1}{\ln 2} \ln u+C \\
& =\frac{1}{\ln 2} \ln \left(2^{x}+1\right)+C
\end{aligned}
$$

(2.) Q : Find absolve minimum of $g(x)=\frac{e^{x}}{x}, x>0$.

A: Well need to examine the critical points of $g(x)$ and also $\lim _{x \rightarrow 0^{+}} g(x)$ and $\lim _{x \rightarrow \infty} g(x)$.
(i) Critical points occur when $g^{\prime}(x)=0$ or $g^{\prime}(x)$ is not defined.

$$
g^{\prime}(x)=\frac{x e^{x}-e^{x}(1)}{x^{2}}=e^{x}\left(1-\frac{1}{x}\right)
$$

Now, for $x>0$, $e^{x}>0$, so $g^{\prime}(x)=0$ only when $1-\frac{1}{x}=0$, which happens when $x=1$. So $x=1$ is a critical value. And because $g^{\prime}(x)$ is defined for all $x>0, x=1$ is the only critical value.
We now look at the sign of $g^{\prime}(x)$ near

$$
\begin{aligned}
x=1: & \frac{++++++1++++++}{---t_{1}+t+++++} \\
& \frac{1+\frac{1}{x}}{x} \\
& x^{-}=1
\end{aligned}
$$

This tells vs there's a local min of $g(x)$ at $x=1$.
(ii) Checking limits:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x} & =\frac{\lim _{x \rightarrow 0^{+}} e^{x}}{\lim _{x \rightarrow 0^{+}} x} \\
& =\frac{1}{\lim _{x \rightarrow 0^{+}} x}=\infty
\end{aligned}
$$

And

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\infty \text { because } e^{x} \text { is an }
$$

exponential function with base $e \approx$ $2.7>1$, and such functions grow faster than any polynomial, which x is.

So we have

$$
\lim _{x \rightarrow 0^{+}} \dot{g}(x)=\lim _{x \rightarrow \infty} g(x)=\infty
$$

Hence minimum at $x=1$ is a global minimum on $\{x \mid x>0\}$.
(3) Q: Differentiate $g(x)=\ln \left(x \sqrt{x^{2}-1}\right)$

$$
\text { A: } \begin{aligned}
g^{\prime}(x) & =\frac{1}{x \sqrt{x^{2}-1}} \cdot \frac{d}{d x}[\underbrace{x}_{f} \underbrace{\sqrt{x^{2}-1}}_{h}] \\
& =\frac{1}{x \sqrt{x^{2}-1}} \cdot \underbrace{\frac{1}{2}\left(x^{2}-1\right)^{-\frac{1}{2}} \cdot 2 x+\underbrace{\sqrt{x^{2}-1}(1)}_{h} \underbrace{(1)}_{f 1}}_{h^{\prime}} \underset{ }{ }=\frac{x}{x^{2}-1}+\frac{1}{x} \\
& =\frac{x^{2}+x^{2}-1}{x\left(x^{2}-1\right)} \\
& =\frac{2 x^{2}-1}{x\left(x^{2}-1\right)}
\end{aligned}
$$

