SHOW ALL YOUR WORK ON A SEPARATE PIECE OF PAPER.

You should be able to do this with no aids by now, notes or otherwise. The amount of looking things up you need to do is a good indication of how prepared you are for the test.

1. Fill in the information:

y = sin x	dom:	range:	period:	amplitude:	roots on $[0, 2\pi]$:
y = cos x	dom:	range:	period:	amplitude:	roots on [0, 2π]:
y = tan x	dom:	range:	period:	amplitude:	roots on $[-\pi, \pi]$:

2. Fill in the information for each angle given:

	Complement	Supplement	Positive coterminal	Negative coterminal
64°				
$\frac{\pi}{12}^{r}$				

3. Fill in the information for each angle given:

	Conversion to π or Quadrant	Reference angle (in given angle's units)	
–208°			
$\frac{11\pi}{6}^{r}$			
-			

4. The point (2, -3) lies on the terminal side of angle θ . Find the six trigonometric values of θ .

$$\sin \theta = \cos \theta =$$

$$\cos \theta =$$

$$\tan \theta =$$

$$\cot \theta =$$

Find the coordinates of the point on the *unit circle* that lies on the same terminal side of θ .

5. Evaluate each of these:		
$sec(\pi) =$	$sin(5\pi) =$	
$tan(\pi/3) =$	$\cot (\pi/3) =$	
$\cos\left(-\pi/2\right) =$	csc (0) =	
6. The sine function and the tangent	t function are odd func	tions. The cosine function is an even function.
So, $\sin(-4\pi) = $	$\cos(-\pi/3) = $	$-tan (5\pi/6) = $
7. What is the equation of a sine fur of 3 (that is, a range of [–1, 3], and	•	itude of 4, a minimum value of −1 and a maximum value
8. Sketch two cycles of the graph of	y = 5cos (2 θ + π). Ther	e is no vertical shift. It will help to first find:
Amp Period	Horizontal shift	Endpoints of one cycle