6 Limits

Finite Limits

The subject of calculus revolves around the idea of a limit Mathematicians have precisely de-
fined the term “limit,” but we will not be so formal in this course. However, it is important
that you have an accurate understanding of the concept. In order to do this, you must first un-
derstand the idea of arbitrarily close. An illustration, albeit rather contrived, should help with this.

Suppose you work for a strange company and it is your job to draw squares. Fortunately, you
have a machine that draws squares of any size; all you have to do is tell the machine the length of
the side desired. QOn Monday, your boss comes to you and says that he needs a square with an area
of 25 square inches. Now you know that A = 52 (area = side X side), so you go to set your machine
for a side length of 5 inches. Unfortunately, you find that there is a malfunction in your machine,
and the only side length that it isn’t handling correctly is a length of 5 inches. You report this to
your boss.

“Can’t you just use a different length?”

“No, sir. To have a square with an area of exactly 25 in?, I must use a side length of exactly 5
inches.” (Your expertise in the matter is why you get paid the big bucks.)

“Well, maybe I could get by with a square that is little bit bigger...but I want an area less than
26 in%. Can you do that?”

“ Yes, sir. If I make the length of the side 5.05 inches, then I could give you a square with area,
25.5025 in2.”

“Well, that would be OK, I guess, but maybe smaller would be better. Can you get me a square
with area less than, say, 25.2 in??”

“Yes. I could make the length of a side 5.01 inches. That would give you an area of 25.1001
in2.”

“Well, I'm satisfied with that, but I'm not sure how my manager will react. Could you make a
square with area less than 25.0001 in??”

“Certainly. Any side with length less than 5.00001 inches will work.”

“Great! Great! You are a marvell Oh, but wait...the CEO is coming today to check out this
project. Just how close can you get to a square of area 25 in?? What shall I tell her? What is the
very best you can do?”

“Sir, you can tell the chief that although I cannot make a square with area exactly 25 in?, I can
make a square that has an area as close to 25 in? as she wishes. The difference in area between my
square and a square of area 25 in? can be just as small as she wants. All I need to do is make sure
that the length of the side is sufficiently small.”

There are two concepts to be gleaned from the previous illustration. One is the idea of being
arbitrarily close. The other is the idea of a limat.

In the process of making the side of the square closer and closer to 5, you make the area closer
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and closer to 25. However, having the area simply get closer and closer to 25 isn’t enough for

arbitrarily close.!® Arbitrary closeness requires that no matter how small (or arbitrary) a positive
difference you choose, you can obtain that difference and less. A limit is the entity to which you
can become arbitrarily close. In this case, the unattainable area of 25 in? is the limit.

Let’s apply these concepts to functions.

We say the limit of f(z) as z approaches the number a is L if f(x) gets arbitrarily close to L as
= gets closer and closer to a. When this is so, we write li_r)n f(z)=L.
T—a

In this definitior, L is a real number, and a may or may not be in the domain of f.

Example 6.1. 31011%(230 + 4) = 10. Here, f(z) =2z +4,a=3and L = 10.

We are claiming that 10 is the limit of (2z + 4) as = gets close to the number 3 because 10
is the number to which (2 + 4) becomes arbitrarily close as z gets close to 3. No matter how
small you want the difference between (2z +4) and 10 to be, you can achieve that difference by
making z sufficiently close to 3. For instance, if you want the difference between (22 +4) and 10 to
be less than .01, you only have to make sure that your z is within .005 of the number 3. Check it out.

There were a lot of words in Example 6.1 about differences and closeness. Let’s look at the
example again. If z values get closer and closer to 3 what values does (2z + 4) take on? The
following table shows some values. Notice that z values could be less than 3 or greater than 3 as
they get closer to 3.

£<3 9r+4| >3 2w+4

2 8 4 12
2.5 9 3.5 11
2.9 9.8 3.1 10.2

2.99 9.98 3.01 10.02
2.99999 9.99998 | 3.00001 10.00002

Can you see from the table that 2z + 4 can get arbitrarily close to 10...you need only get

sufficiently close to 37

In Example 6.1 it is true that f(3) = 2(3)+4 = 10. It cannot be overstated that this is irrelevant
to the limit. When we write: },-1—% f(z) = L, we do not consider the actual value of the function at
= = a. We are making a statement that says that the y values of the function are getting arbitrarily
close to the number L as the z values approach a. We are saying nothing about f(a).

13The numbers in.the pattern 25.21, 25.201, 25.2001, 25.20001, etc. are getting closer and closer to the number 25. But
they are not getting arbitrarily close. They are all maintaining a difference of of at least 0.2. In point of fact, this sequence of
numbers is getting arbitrarily close to 25.2.
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2r+4, <3

2c+4, <3

Example 6.2. g(z) = h(z) =15, =23
2 4+4, >3

244, >3

g(3) does not exist. h(3) = 5. However hmg(x) = 10 and hmh(w) = 10 because the limit as
z — 3 is not concerned about the existence or value of the functlon at x = 3.

You can see, then, that finding a limit as z — a is not a matter of finding f(a). This is empha-
sized again in the following, more complicated example.

' 22z +1
Example 6.3. lim v+l =0.
z—1 T — 1

Certainly this limit was not found by evaluating the function at z = 1. The function is not
defined at z = 1.
Think about this one: First note that 22 — 2z +1 = (z — 1)(xz —1). When z # 1 we can divide

above and below to get:
22— 2z +1

=z - 1.
z—1 v
By the deﬁnltlon of limit we are not interested in what happens when z is 1 but rather in what the
2z +1

value of ———xl-*_— is as z approaches 1. And as = approaches 1 the number z — 1 approaches 0.

x [—

22241
Hence lim 2 — 21 _ lim(z — 1) =0.

z—1 z—1 z—1

Example 6.4.
1 ifz<b

fay={" TT=%
-2 ifz>5

Here i;n}) f(x) does not exist. If z — 5 using z values decreasing to 5, f(z) — —2. Butif z — 5
using & values increasing to 5, f(z) — 1. So there is no one number L such that f(z) approaches
L as z approaches 5. The fact that f(5) makes sense in this example (we defined f(5) = 1) is
irrelevant. There is no limit as z approaches 5.

Example 6.5.
1 if z is rational

f(z) =

—2 if x is irrational

Here lil’I(l) f(x) does not exist. As z approaches 0, there are always some z values that are rational
T~ .

and some that are irrational. Therefore, there are always f(z) values of 1 and of —2. There is no

number L to which the y values become arbitrarily close.
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Example 6.6.

1 if z is an integer
flz) = o _ -
—2 if z is not an integer
In this case, lin% f(z) does exist and is equal to —2. As the z values get very close to 1, there are

T
no integers, so all of the f(x) values are —2. Thus f(z) approaches —2 as = approaches zero. The

fact that f(0) = 1 isirrelevant. Actually, for this function Here 1i£>n f(z) = —2for all values of cin R.
T—C

In Example 6.4 we discussed z approaching 5 from two directions. There is a notation for this.
For Example 6.4 we would write: hm L f(z) =1 and hm . f (x) = —2. The first is called the left
hand limst (LHL) and the second is called the right hand lzmzt (RHL). For hm f (z) to exist, it must
be true that LHL=RHL. Make note that the small — and + superscripts do not indicate that x is
positive or negative. They indicate that x is less than 5 or z is greater than 5 respectively.

A very reasonable question at this point is, “So, how do we find limits?” We do NOT find limits
by repeatedly substituting in x values closer and closer to see what pattern of y values comes out.
The chart for Example 6.1 was an illustration to help with understanding. It isn’t how one solves
limit problems.

In slower moving calculus courses there would be time for a detailed discussion of limits of sums,
differences, products and quotients. Here, we’ll go straight to the facts, which result from strict
application of mathematical definitions and proof processes. These are some Limit Laws for Finite
Limits that you can use to evaluate limits.

Theorem. If all limits mentioned on each of the following lines exist then
1. limc = ¢ for any constant c.

T—ra

limz =a

T—ra

lim (f(z) + g(2)) = lim f(z) + limg(z)

lim /() — 9(@)) = lim f(a) ~ limg(a)

lim (f(z)g(z)) = lim f(z) - limg(z)

Svo e

lim f(x)
f(:l:) __ z—a . .
6. il_gr(llg(x) h_r)ng(x) provided il_r)r(lzg(:c) # 0.

By combining parts 1 and 5 of the theorem above we can see that for any constant ¢ we have
il_I)IlllC flz) =c- (;1_% f(z)) provided ;1_1)]((11 f(z) exists.

By combining parts 1, 2, 3, 4 and .5 we get the very useful result that hmp( ) = p(a) for any
polynomial p(x).
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Example 6.7. Evaluate the limit: Iir% (z° — 32* — 2?2 + 7).
z—

lim (z° —3z* — 2%+ 7) =25 - 3(2)* = (2)2 + 7 =32 — 48 — 4+ 7 = —13.

z—2

There are some other Limit Laws for Finite Limits that require special attention to conditions,
particularly to conditions of domain and the existence of some intermediate limits. But, you may
use these laws as long as some care is taken to make sure that their usage makes sense.

lim flz)

a. limb’ @ = po—a
z—ra

b. lim[f(x)"] = [lim f(=)]"

You'll find we use fhese facts about limits often.

1

1
Example 6.8. Evaluate the limit: lim [ 4—=2
z—4 \ x—4

We cannot use Limit Law 6 because the limit in the denominator would be zero. So, we alge-

braically rewrite our function by combining the fractions in the numerator and simplifying:

$-1 z-4 1 1
. AN e ) (LY L
i\ zoe ) = I a1 _}f—rﬁ<4z> 16

-1

Example 6.9. Evaluate the limit: lim ——
=1/ 4+ 3

We cannot use Limit Law 6 because the denommator would be zero. So we algebraically rewrite
the function, using the conjugate to get rid of the radical.

_z—1  lm ( -1  Vz+3 +2> 1im(:t:—l)(\/a:—i— +2)
VZIE3—2 \/F+2 71 (x+3)—4

:1:——)1 T + z—1

lim(x-l)(vx—i_ +2) _ im(vz+3+2) =vIT3+2=4

-1 (x — 1)

_ r+3 x<2
Example 6.107 Find al:l_l’)%f(x), il_)r%f(a:) and il_l’)r(l)f(:l:) for: f(z) =<2z -1 2<2<3.
z+2 x>3
hm f(z)=3+2=5and hm f(#) =2(3) —1=5. Since RHL = LHL, we have hmf(x) = 5.
11m f(a:) (2)2—-1=3, and 11m . f(z) =2+3 =5. Since RHL # LHL, hmf( ) doesn’t exist.

hm f () =0+3=3. Wedo not have to use one-sided limits when z — O because all values of
T very close to 0 are in the interval z < 2.
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3z —6
r—2 2 —4x+4

Example 6.11. Find: lim

lim 3z -6

25222 — 4z +4 a2 (z — 2)(z - 2)

. Limit Law 6 doesn’t apply so we try a rewrite:

3(z —2) 1

= lim ——
z—2 L — 2

Here we are stuck. This function cannot be simplified further. We still cannot apply Limit Law 6.

There is no real number L to which the function values come arbitrarily close. This limit does not

exist 14,

Infinite Limits

Let’s look back: at Example 6.11. We concluded that there was no real number L to which the
function values become arbitrarily close. So, by our understanding of “limit,” this limit does not

exist. But, let’s see what is happening with the function values as z — 2 for this function.

T <2 ﬁ z>2 ﬁ
1 -1 3 1
1.5 -2 2.5 2
1.9 -10 2.1 10
1.99 -100 2.01 100
1.99999 -100,000 2.00001 100,000
1.9999999 -10,000,000 | 2.0000001 10,000,000

Look at the values for > 2. As the z values get closer and closer to 2, the denominator (z — 2)
gets closer and closer to zero. So the function itself, the reciprocal of (z —2), gets larger and larger.
How large will 5£—2 get? Will the function value ever get to be a trillion (12 zeros after the 1)?
Yes. From the pattern, you can see that f(z) will be a trillion when z = 2.000000000001. Is there
a maximum value that a:_ii will attain? No. Do you see that for any large number you can pick,

the function :z:—ii can exceed that number if you choose an z value sufficiently close to 27

We say that 1i_1;n f(z) = oo if f(z) becomes unboundedly large as = approaches a.
r—ra

1
Our function f(z) = pr— becomes unboundedly large as z approaches 2 from the right, so we

can make the corresponding one-sided limit statement: lir£1+ 5
2T T —
Now look at the table values for z < 2. A similar thing is happening, except that these function

= 0.

values are negative. As x — 2 from the left, the function values are unbounded in the negative

direction. We write: lim = —00.
22— — 2 1
Since lim is not the same as lim , we would say that lim —— does not exist.
=2t — 2 x—=2-T — 2 =22 — 2

Most calculus text books define limits to be real numbers, as we did in the first part of this . -

section. Infinity and minus-infinity are not real numbers, so limits like those in Example 6.11 would

14 There is no FINITE limit for this function. Read the subsection immediately following, entitled “Infinite Limits”.
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be said to not exist. However, most books then admit that it is convenient to use the limit notation

to describe the behavior of functions whose values become unbounded (+ or —) as = approaches |

does not exist is insufficient.

some value a. We shall do this too. To merely state that liné
T2 X —

One should use the one-sided limit notation to relate the unbounded behavior of the function as

z — 2 from each side. More examples will follow, so this should become clear.

The Limit Laws for Finite Limits in the first half of this section do not apply to infinite limits.

, |
So, how do we know we have an infinite limit? Consider lim “——< 1(2) where f and g are functions. If

T—a g(a:)
ﬁ_r)n f(z)=c#0and li_r)n g(z) = 0 then we have a situation where the denominator of the fraction
r—ra g T—ra

is getting very small as z approaches a, but the numerator is not. The value of the function then is
becoming unbounded as z approaches a. It is necessary to check the signs of both the numerator
and the denominator to see if the unboundness of the quotient is positive or negative.

2
Example 6.12. Evaluate lim rt
z——-3 T -+ 3
Answer: 11m3(x +2)=—1and hm3(:v +3) = 0. Since the denominator is getting close to zero
T—— T—r—

but the numerator is not, the value of the function is becoming unbounded as x approaches —3.
As z approaches 3 from the left z < —3, so the values of (z + 3) are negative.
As z approaches 3 from the right & > —3, so the values of (z + 3) are positive.
As z approaches 3 from eithezsr direction, (z + 2) afgroaches —1, which is negative.
T+ x

. . z
So, we conclude: lim =00 and lim = —00, S0 hm
z——-3- 2+ 3 z——3+ 2+ 3 —-3

does not exist.

1
Example 6.13. Evaluate: lim — 2
z—0 L

Answer: 1111(1) 1 =1, and hm 2% = 0. Since the denominator is getting close to zero but the
numerator is not, the value of the function is becoming unbounded as x approaches 0.

As z approaches 0 from either direction, the values of 22 are positive. B

As z apporaches 0 from either direction, the numerator is 1, which is positive.

. 1 1 .
So, we conclude: lim — =00 and lim ——2— = 00, 50 lim —5 = 00.
z—=0— T z—0+t T z—=0 2

Example 6.14. For f(z) = E%’ find ml_ifl_lzf(x) and il_)né f(z).

3¢+6 _ 3(x+2) 3
2-3z-10 (z+2)(x—-5 z-5
. . 3 3
m1—1+rr—l2f(x) o :Jcl—1>n—12 -5 N _?
ling 3 = 3 and lin% (x — 5) = 0, so the value of the function is becoming unbounded as z

— T—>

Answer: f(z) =

when z # —2 and z # 5.

approaches 5.
As z approaches 5 from the left, (z — 5) is negative
As x approaches 5 from the right, (z — 5) is positive.
The numerator, 3, is always positive.
So, we conclude lim f(z) = —oco and lim f(z) = oo, so lim f(z) does not exist.
T—5- z—5+ 5
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Section 6 - Exercises (answers follow)

Find the indicated limit.

1. lim 6 2. lim(3z® + 5z + 2) 3. lim(2s% — 1)(25% + 4)
T—>—2 z—1 s—0
2z — 3 . z2-16 4+ x—6
T i i
7. lim \/E —2 8. lim [—1/(:1: t 3)] t+ 1/4 9. limzx
2 1 — 4 z—1 T z—2
_ B2 _ 22
10. lim e2*1 11, Lm® 3 1o, fim B —2
z—3 ‘ z—3r — 3 h—0
13, m YPTO=3 gm0 15 lim —22%
h—0 h y—=0 y3 — 12y + 3 =2 /7 + 62
2 _
A S
x+1
16. f(z) = Find lim f(z)
z——1

2 -3 ifz>-1

34+zx ifz<?2
17. f(z) = Find lim f(x)
3z+1 ifx>2 z—2
34+ fzx<?2
18. f(z) = Find lim f(z)
3x—1 ifz>2 z—2
. z2-16 ' . 2-6 . 246
R~ R 20 M 236 2l 36
1+ 2 1 1 t—
99. lim ~ % 93. lim (= + o4, lim 9
z—1- 1 — 22 z—0- \z z2—2 t59 \/t—3
2 4—9 2 _ 1 2 _
o5 lim YU t4=2 o5 pm 10 97, lim 2 1239
u—>0 4 z=4 /2 +5—-3 z—5 2z —10
1 1 2
11 2 4z 43
28. lim &3 59. lim % T3%+2 30. lim ——2T
2312 —9 zo—1 24+ —6 6~ T —06
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31. Consider the graph of f(x) = Inz (page 37).
(a) What is lim Inz? (b) What about lim Inz?
z—0+ z—0-

32. Find: lir% l—m—i Hint: Rewrite the function as a piecewise defined function (see page 13).
=0 T
2 2

33. The statement: z = x + 3 is false, but the statement: lim

= lim (z + 3) is true.
T — T3 T — z—3

Explain.

34. Express the situation described at the beginning of this section (the story about the square

drawing machine) as a one-sided limit.
Section 6 - Answers
1.6 2. 10 3. -4 4.3 5.7 6. 5 7. A= 8.0 9. 2

10. €5 1.1 12.2¢  13.F 14.-3 150  16. -2

17. lim f(z) =5and lim f(z) =7, so lim f(z) does not exist 18. 5 19. 8
T2~ T2+ T—2
. l . ]. - — i = i i 22'
20. 15 21 Jim f(z) oo and zll>ré1+ f(z) = o0, so ;1_)11% f(z) does not exist 00

23. -1 24.6 2.0 2648 27.3% 28—  20.0  30. 00

31. (a) —oo  (b) This limit makes no sense. There are no values of z less than zero in the
domain, so z can’t approach from the left.

32. lim E—l = —1 and lim I—:—E—l =1, so lim m does not exist.
z—0- T z—0+ T z—=0 X

33. The first statement is not true if z = 3. The second statement is a limit where z — 3, so
" we know that z is not 3.

34. lim s =25

s—5+
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7 The Slope of the Tangent to a Graph

We'll start with an example. The graph of y = 22 + 1 is a parabola whose lowest point is (0,1).
The point (3,10) is on the graph. For any number A, the point (3 + h, (3+ h)?+1) is also on
the graph. When A # 0 this is a different point from (3,10) because its z-coordinate is different.
Assuming h # 0 we ask:

Question 1. What is the slope of the line' joining (3,10) to (3 + h, (34 R)2 +1)?

Answer.
[(83+Ah)*+1]-10 9+6h+h2+1-10
B3+h)-3 h
_ h*+6h
h
=h+6

Question 2. Towards what does this slope tend as h approaches 0, and how should we interpret

the answer?
Answer. h+6 — 6 as h — 0. Interpretation of this lies at the core of calculus:

First interpretation (wrong!): When h = 0 the point (3+h, (3+h)2+1) is the point (3,10)
so the slope of the line joining (3,10) to (3,10) is 6. This is nonsense. There are lots of lines
through (3,10), not just one. Indeed, for any number m the line y — 10 = m(z — 3) has slope m
and passes through (3,10); and the vertical line = 3 also passes through (3, 10).

Second interpretation (right!): The line through (3, 10) with slope 6 is the line

y—10=6(z - 3)

and this must be a very special line in relation to the graph of y = x2 + 1. We call it the tangent
to the graph at (3,10). See “Tangent Line Illustration” below.

- C6)

curve
y=z2+1

Note: Picture is not
drawn to scale. The
curve y =2 + 1 is
much steeper than
the one shown here.

(8+h,(3+h)2+1)

tangent
line

Tangent Line Illustration

15The line segment joining two points on a curve is sometimes called a chord.
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Now let’s do the same thing more generally. Consider the function f (z) and, for a moment, let’s
assume the domain of f is (—oo,00). Pick an z value, say = a. Then (a, f(a)) is on the graph of
f. For any h # 0 the slope of the line joining (a, f(a)) to the (different) point (a + h, f(a + h)) is

Jat+h) - f(a) _ fla+h)— f(@)
(a+h)—a h

Question 3. What happens to this number as h — 0%

Answer. EITHER: Jin £(2 %) — 7(0)
h—0 h

f'(a). The line passing through the point (a, f(a)) with slope f'(a) is defined to be the tangent
line to the graph at that point.
fla+h) - f(a)

OR: lllin%) 3 is. undefined, so there is mno number towards which
%

flat h}z mEAG) tends as A — 0, in which case we do not have a tangent line to the graph at
the point (a, f(a)).
Example 7.1. Find the equation of the tangent line to the curve f (z) = 22 + 7z + 1 at the point
(2,19).

Answer: To find the equation of a tangent line we need a point and a slope. The point given is
(2,19) and the slope is f'(2). We need to find f'(2):

is equal to some number'®, in which case we call that limit

f@)=2>+7x+1
fC+R) —f@) =[2+h)?+T7(2+h)+1] - [22+7-2+1]
=44+4h+n2+14+Th+1-4—14—1

=h?+11h
f@+h)-f(2) —h+11
h
f2+h)—f(2)

So f(2) = lim = lim(h + 11) = 11.
h—0 h h—0
The equation of the tangent line, then is y — 19 = 11(z — 2).

We now look at three examples where f'(0) does not exist. In the first two examples, there is no
tangent line to the graph at (0, f(0). In the third example, there i5 a line tangent to the graph at
(0, £(0)), but it is vertical. A sketch of the graphs of these three functions (below) can help you to
see the difference.

-2 ifx<0
Example 7.2. Find f/(0) for f(z) = n
1 ifxz>0
Answer: Here, a = 0.
For h > 0, FO+h-f(O0) _1-1 =0. So, lim fO+h) - 7(0) _ lim 0=0
FO+ ) - (0 R0
0+h)— f(O -2-1 -3 . 0+ hn)— f(0 . —3
For h <0, h =T T oo im h = =

16Remember 0o and —oo are not numbers.
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For f'(0) to exist, the one-sided limits would have to be finite and equal. This is not the case.

Also, it doesn’t make sense for a slope to be oo, so certainly f'(0) does not exist.

Example 7.3. Find f/(0) for f(z) = ¥/=.
Answer: Here, a = 0.
FO+R) —f0) SO+h-v0 Vh 1
h N h T h YR2

1 1 1
lim — = and lim = 0o. So, we can say that lim ——= = co. However, it makes no
h—0- Jp2 h—0+ /P2 h—0 /h2
sense for a line to have a slope of oo, so we say that f/(0) does not exist.

S —x ifzx<0
z Example 7.4. Find f/(0) for f(z) = |z| =
T ifz>0
Answer: Here, a = 0. _
Forhso0 JQEM=FO _O+H=0_h_,q  SOEW=FO_ o
h h h h—0+ h—0+
b h < 0, fOEW=FO) | ZO0+m=0 kT 5O R) = £(O)
h h h h—0— h
lim —1=-1.
h—0-

f(0+h) - f(0)

We see that the one-sided limits are not the same so lim

= f/(0) does not exist.

h—0 h
A f 3 A
1 2+ 2+
1e 1-/ 1+
T ] L) 1 - ] T _Il 1 T T -—I‘l 1
&2 | + 1
Example 7.2 Example 7.3 ' Example 7.4
No tangent line at (0,1) Vertical tangent line at (0,0) No tangent line at (0,0)

fla+h) - f(a)
h

We say that f/(a) exists only if }llinr(l) exists and is finite.
. —
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Section 7 - Exercises (answers follow)
For exercises 1-3 use the methods of this section. Do not use any short-cut methods that you

may have learned previously.

1. Find the slope of the tangent line to the graph of each function at the given z value.

(a) flz)=6;2=2

(b) f(z) =7—5x; =12
() f@)=%2=3

(d) f(z)=22*>+ 2% z=5
(&) f@) = —giz=2
(£) f(z) =z z =4

2. Find the equation of fhe tangent line at the given x values.
(a) f(z) = g7y T =2
(b) f(z) =22 —3z;z=—1
© f@=c+lio=3

1
3. flz)="
(a) Find the slope of the line tangent to f at the point (1,1).

(b) Look at the graph of f on page 20. At what other point on the graph would you expect
the slope of the tangent line to be —1?7 Check your answer using the appropriate limit.

(c) Find the slope of the line tangent to f at the point (4, %)
(d) Find the slope of the line tangent to f at the point (3,2).

() You have calculated f/(1), f'(~1), f'(4) and f'(3), the slopes of f at four different points.
Did you find the algebra to be repetitive? We can do this in general: Show that for z
value a, the slope of the tangent line, f/(a), is —a%.

(f) Check your answers for parts (a) through (d) in the formula for f'(a) given in part (e).

1 1

(g) Observe that f'(a) = 3 is always negative. Look again at the graph of f(z) = —. Are
x

there any places on the graph where you would expect the tangent line to have a positive

slope?
Section 7 - Answers
1.(a)0 (b)—5 (c)—12 (d)95 (e) -1 (f)}
2. (a)y+2=—-6(z—2) (b)y—4=-5=z+1) (y—L=5=z-3

3. (a)—-1 (b)(=1,-1) (¢)—7% (d)—4 (g) No. All tangent lines will slant downward,
consistent with a line of negative slope. Any line with positive slope would rise upwards,
crossing the graph of f, not touching it tangentially.
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8 Derivatives

The Derivative Function
If you have not done Exercise 3 in Section 7, now would be a good time.

In that exercise you learned that you can find an expression for the slope of the tangent line
to a function without specifically identifying the point on the function. That is, you could find an
expression for f/'(a) in terms of a, and then use this expression to find the slope of the tangent line
for any specific value of a. We plug un a specific value of a and we get out the slope of the tangent
line at (a, f(a)). This sounds very much like the behavior of a function. In our discussion so far, a
was treated as a constant. It was arbitrary, but constant. Now we will write this limit in function
notation, using z as the independent variable. This function has a special name, “derivative.”

Definition 8.1. The derivative of f, denoted f', is the function defined as:
i fE@+h) = f(z)

h—0 h

f'lx) =

The domain of f' is the set of all numbers x in the domain of f for which this limit exists.
Vocabulary:

1. The process of finding the derivative of f is called differentiating f. “To differentiate” is to
find the derivative function.

2. In Section 12 we will meet the “derivative of the derivative” which is usually called the
“second derivative.” So, the derivative introduced here in this section is sometimes called the
first derivative.

3. If a is in the domain of f and f'(a) exists, we say that f is differentiable at a.

4. If I is an open interval lying in the domain of f and if f'(z) exists for all z in I , we say that
f is differentiable on I. |

1
Example 8.1. For f(z) = o find f'(z) and the equation of the line tangent to f at the point

(-2-}).

1
Answer: From Exercise 3 in Section 7, we get f'(z) = —3
1
The slope of the tangent line is f/(—2) = —(—2)—2 =7 So, the equation of the tangent line is

y+1i=-1(z+2).

Example 8.2. For f(z) = /z, find f'(z), the domain of f'(z), and the slope of the line tangent
to f at the point (4, 2).
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The domain of f is [0,00) but f/(x) does not exist for z = 0, so the domain of f’ is only (0, c0).

1 1
The slope of the tangent line at (4,2) is f/(4) = —= = -.

2v/4 4
The Derivative is an Instantaneous Rate of Change

Section 7 was about geometry — the slope of the line tangent to a graph at a specific point. Here
we interpret the same mathematics quite differently. Look again at the number

flath)—fla) _ fla+h)— f(a)

(a+h)—a h

for some fixed x value a and some number h # 0. The numerator measures the amount of change
(positive or negative or zero), in the value (the y-coordinate) of the function as you move from
z = atoz = (a+h). The denominator is the number (a+h) — a and so measures the change in the
z-coordinate as you move from a to a+h (a positive change if & > 0, negative if h < 0). The above

quotient comes from the specific function points (a, f(a)) and (a + h, f(a + h)). It does not take
fla+h) - f(a)
h

into account how f behaves at function points between a and a + h. We say that
is the average rate of changeof f between z = a and z = (a + h).
Now consider

f/(a) = lim f(a+ h) - f(a)

h—0 h
It is the limit of this average rate of change as (a+ h) gets closer and closer to a. We say that this

number f'(a) is the instantaneous rate of change of f at a. This is an important idea because we
are often as interested in the rate at which a function is changing (say, cost or revenue or profit)
as we are in the function itself.

The difference between average rate of change and instantaneous rate of change can be thought
of this way: Suppose a train is traveling on a track, in one direction. At 3:00 p.m. the train is

10 miles from the station. At 6:00 p.m. the train is 100 miles from the station. The number
100 — 10
———— = 30 tells us that the average speed (rate of change of distance compared to time) is 30
mph This does not téll us anything about the speed of the train at any specific point during those

three hours.
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In contrast, the instantaneous rate of change at a point would give us the speed on the speedome-

ter at a specific instant in time during the three hour trip. That is the value that we would-get
from the derivative.

YOU NEED TO REMEMBER THAT THE DERIVATIVE MEASURES THE INSTANTA-
NEOUS RATE OF CHANGE. THIS IS A KEY CONCEPT OF CALCULUS.

Recall (from Section 7) that the derivative measures the slope of the tangent line to the graph
of f at the point (a, f(a)). A large positive derivative suggests a steeply climbing graph, i.e. a fast
positive rate of change. A slightly negative derivative suggests a gently falling graph, i.e. a slow
negative rate of change!”. This will be made precise in Section 17.

As z varies, the values of f'(z) tell the whole “rate of change” story of the function f.

1
Example 8.3. Consider the graph of f(z) = — on the interval % 5 <zT<3.
z

(5) - ® _83-3_ 5
I
If you look at the graph of f on page 20 you can see that —1 is a reasonable value for the slope

of the line that would go through the points (3,3) and (3,3). This tells you nothing about the

The average rate of change of f over this interval is:

behavior of the graph between these two points.

The instantaneous rate of change, the derivative, tells you how the graph is changing at any
point in the interval § < z < 3. We know from Exercise 3 in Section 7 that f/(z) = 3 We see
that f’(—%—) = -4, f’(%) = ——%, 1) =-1, f’(%) = —%, and f/(2) = —%. The graph is consistent
with these derivative values and the idea of a sharply falling graph becoming a more gently falling

graph as we increase in x value.

Example 8.4. Rats are infesting City Hall. The Zap-a-Rat company analyzes the situation and
claims that they can rid the building of rats within 30 hours. The company shows the mayor the
following function: R(t) = —t?+20t+290 where R is the number of rats remaining ¢ hours after the
extermination begins. The mayor is impressed by the equation and hires the company. Assuming
that Zap-a-Rat’s analysis and equation are correct,...

How many rats are currently in City Hall?

Answer: R(0) = 290 rats

What is the average rate of change in the quatity of rats from the end of the 5 hour to the

end of the 20" hour of the tre tmen 7
AR R(20)— R(5) _ 290 —365 _ —T5
Answer: ——

At 20 5 5 15
At what rate is the rat population declining at the end of the 25 hour?

Answer: R/(t) = —2t+ 20 (verification of this is left as an exercise) R'(25) = —2(25) +20 = —30
rats/hour. '

= —5 rats/hour.

During the extermination process, was the number of rats ever increasing?

17Reminder: we always read from left to right and that’s how words like “climbing” and “falling” should be understood.
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Answer: Yes. R'(t) > 0 during the first 10 hours. If the change in the number of rats at any

time is positive, it means that the number of rats is increasing at that time.

Will the rats in fact be gone in 30 hours?

Answer: Yes. R(30) = —(30)2 + 20(3) + 290 = —10. In fact, the number of rats is zero when
R(t) =0, which is when ¢ = 10 + /1560 ~ 29.75 hours.

Example 8.5. The cost, in dollars, to produce a product is given as a function of the quantity, ¢
of the product produced: C(g) = 50,000 + 5¢ + .01¢>.

What is the average change in cost if the quantity of product is increased from 100 items to 200
items?

AC  C(200)— C(100) 51,400 — 50,600 800 .
wer: = = =— = 1 .
Answer . 500 — 100 500 — 100 100 8 dollars/unit

At what rate is the cost increasing when 120 units are being produced?
Answer: C'(q) =5+ .02¢ (again, an exercise). C'(120) = 5 + .02(120) = $7.40 per unit.

In Section 3 we introduced the term marginal. It refered to the slope of a linear function. We
expand this concept to include the instantaneous rate of change of a function. In Example 8.5 the
marginal cost is the function C'(q) = 5+ .02¢. This is consistent also with the interpretation of
derivative as slope, as done in Section 7.

Rectilinear (Straight-Line) Motion

The derivative is used in physics for an object that moves in a straight line. Conventionally
we think of the path of the object as a horizontal line for side-to-side motion (such as a running
person) or a vertical line for up and down motion (such as a rocket shooting skyward and /or falling
back to Earth).

The function s(t) gives the position of the object, relative to a fixed point, at time ¢. We could
model our train illustration above: the track is a horizontal line calibrated so that one unit is one
mile; the fixed reference point is the station; time is measured in hours past noon. We would then
have s(3) = 10 and s(6) = 100. We could further suppose that at 1:00 p.m. the train is approaching
the station, and is 20 miles from it. This would give us s(1) = —20. What would s(—2) = —50
mean? [Answer: It means that at 10:00 a.m. the train is approaching the station and is 50 miles
away).

We use the term velocity to mean the rate of change of position corilpared to time. The average

s(t2) — s(t1)

2 — 1
by the derivative function s'(¢) = v(¢t). Like any average or instantaneous rate of change, velocity

velocity over time period ¢ < t < {5 is and the instantaneous velocity at time t is given

can be negative. On a horizontal line, average velocity would be negative if the ending position
were to the left of the starting position. On a vertical line, average velocity would be negative if the
ending position were lower than the starting position. The instantaneous velocity would be negative

if the movement is to the left (or down) and would be positive if the movement is to the right (or up).

While velocity can be negative, speed is always positive. Speed is the absolute value of velocity.
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Speed = [v(t)|. In ordinary life we’re more inclined to talk of speed’® than of velocity (“I drove at

55 mph”) but velocity is easier to deal with in math and physics because it isn’t an absolute value.
Also, it contains directional information which is useful.

Example 8.6. At a carnival shooting range, a target duck moves horizontally for 8 seconds. Its
position at time ¢, measured in centimeters from the center of the target path, is given by the
equation s(t) = t3 — 3t — 100.

(a) What is the position of the duck when it begins its motion? What is its position when it ends
its motion?
Answers: s(0) = —100. The duck is 100 cms. to the left of center.
5(8) = 388 The duck is 388 cms. to the right of center.
(b) What is the average velocity of the duck over its entire time of motion?
s(8) —s(0) 388 ——100
§-0 8
(c) What is the velocity of the duck at t =07 t =27 at ¢ = 87
Answers: v(t) = §'(t) = 3t> — 3. (This time you can just take my word for it; there are

Answer: = 61 cm/sec.

already sufficient exercises for you). v(0) = —3. The duck is moving to the left at a speed of 3
cm/sec  v(2) = 3(2)2—3 = 9 cm/sec. The duck is moving to the right at a speed of 9 cm/sec.
v(8) = 3(8)® — 3 = 45 cm/sec. The duck is moving to the right at the speed of 45 cm/sec.

(d) At what times is the duck moving to the left? right?
Answer: v(t) = 3t — 3 = 3(¢? — 1) is negative when ¢ < 1 and positive when t > 1. So, the
duck moves to the left for the first second and then moves to the right the rest of the time.

Example 8.7. A ball is shot straight up from the ground with a velocity of 48 ft./sec. Its position
above the ground at time t seconds after being launched is given by the equation s(t) = —16t% +48t.

(a) When will the ball hit the ground again?
Answer: The ball will be on the ground when s(t) = 0. s(t) = —16t2 + 48t = —16t(t — 3).
So, s(t) = 0 at ¢t = 0 (the initial launch) and ¢ = 3 (when it hits the ground again).

(b) What is the average velocity of the ball for the duration of its trip?

5(3) —s(0) _
30 " 0 ft./sec.

(c) How long was the ball moving upward?
Answer: The ball is moving upward when v(t) = s'(t) > 0. s/(t) = —32t 4 48 (trust me...no
exercise). —32¢+ 48 =0 when ¢t = —g— So the ball rises for 1.5 seconds.

Answer:

(d) How far does the ball travel all together?
Answer: The distance traveled up is s(3) — s(0) = [-16(2)2 + 48(2)] — 0 = 36 ft. The distance
traveled down is the same as the distance traveled up, so the total distance traveled is 72 ft.

181t was correct to use the term “speed” in the original illustration of the train because the train was always traveling in the
same positive direction so the velocity was always positive.
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Section 8 - Exercises (answers follow)

For all exercises below, compute the derivative of the given function using the method discussed in
this section. Do not use short cut formulas you may have learned elsewhere.

1. For each function f, find f/(z)

(a) f(z) =4z

(b) f(z) =622 — 4z

(c) R(t) = —#% + 20t + 290

(d) C(g) = 50,000 + 5¢ + .01¢2

2. For each function f, find f'(z) and then find f/ (0) and f'(1)

(a) fle) =2°-2
(b) f(z) =2
(©) fl@)=vz

3. Find the equation of the tangent line to each curve when z has the given value.

(a) f(z) =22 —62% z=3

(b) f(z) =2/z; 2 =2

(©) flz)=1lyz; 2 =5

4. Suppose the demand (quantity sold) for a certain item is given by q(p) = —3p? +2p+1, where

D represents the price of the item in dollars.

(a) What is the average rate of change in demand when the price is increased from $7 to $10?
(b) Find the rate of charige of demand with respect to price.

(c) Find the rate of change of demand when the price is $10.

5. An object moves along the z-axis. Its position, in inches relative to the origin, at time ¢
seconds is given by s(¢) = 6t2 — 4¢. Notice that you have found the derivative for this function
in problem 1b above.

(a) What is the velocity function?

(b) When is the object moving in the positive direction? negative direction?  *

(c) What is the speed of the object at t = 07 at ¢ — 47

(d) What is the total distance traveled (back and forth) by the object between ¢ = 0 and
t =47

6. Speed is the absolute value of velocity. Is average speed the absolute value of average velocity?
Explain. Hint: Look at Example 8.7.
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7. Given f(z) = 23 ~5. Show that the line tangent to the graph of f at the point (2, 3) is parallel
to the line tangent to the graph of f at the point (-2, —13).

Section 8 - Answers

1.

(a) f'(z) =

(b) fl(z) =12z -4

(c) R'(t)=—2t+20

(d) C'(q) =5+ .02q

(a) f'(z) =3z f'(0) =0, /(1) =3

() fl(z)= zz ; £/(0) is not defined; f/(1) = —8
(c) fi(z) = Qﬁ; f'(0) is not defined; f'(1) = 3
(a) y+ 153 = —156(z — 3)

(b) y—1=—3(z—2)

(c) y—11v5 = 2\/—(.’12—5)

(a) —53 items/dollar

(b) ¢'(p) = —6p+2

(c) —58 items/dollar

)
)

(a) v(t) =12t —4
(b) positive direction when ¢ > %; negative direction when ¢ < %
(c) 4 inches/sec 44 inches/sec. .

(d) 813 inches (% inches to the left and then 802 inches to the right)

. No. The average speed would only be the absolute value of the average velocity if the velocity

was always positive or always negative over the time interval. In the case of Example 8.7, the
average velocity is zero. That would only be the average speed if the ball didn’t move.

. Hint: Show that the tangent lines both have the same slope.
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