\qquad sec no.

Please copy the problems NEATLY and do the integrations. You may use your notes and the book and any guidance you got from posted videos. Work must be your own. But you can find plenty of worked examples in Bittinger Secs 4.1 and 4.5, and our text, Secs 30 and 31.

1. Simple integration, initial value: consider the family of curves that are the solution to $\int(\sqrt{x}+2) d x=F(x)+C$, where $F^{\prime}=G$; find the curve that goes through $\left(1,-\frac{1}{3}\right)$.
2. u-substitution $\int\left(x^{3}-3 x^{2}+9 x\right)^{4}\left(x^{2}-2 x+3\right) d x$
3. u-substitution $\int \frac{\ln x}{x} d x=\int \ln x \cdot\left(\frac{1}{x}\right) d x \quad$ Hint: Let $u=\ln x$, so $d u / d x=$
4. u-substitution $\int 4 e^{9-2 x} d x$
5. u-substitution $\int x e^{x^{2}} d x$
6. The marginal cost of producing the x th item is $5+2 x+1 / x$. The total cost to produce one item is $\$ 500$. Find the total cost function $C(x)$. Then find how much it would cost to produce 10 items. (Use your calculator, since there is a log value involved.)
