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2.9 Linear Approximations and Differentials

1 f@)=2*—-2>+3 = f'(z) =32>— 21,50 f(—2) = —9and f'(—2) = 16. Thus,
L(z) = f(=2) + f(-2)(z — (—2)) = —9 + 16(x + 2) = 16z + 23.

2. f(z) =sinz = f'(z) =cosz,s0 f(%) = % and /(%) = /3. Thus,
L) = f(5) + F(5)(@—5) =1 +3VB (2 - §) = 3VBo+} - £vim

3 f@)=vz = f(z)=327""?=1/(2y/z),s0 f(4) =2and f'(4) = 1. Thus,
La)=f@)+f@)(z—4)=24+i=z—-4)=2+3z—-1=3z+1

2x
( 2 — 5)3/2°

so f(3) =1and

4 f(z)=2/v2® —5=2(2%-5""2 = f(z)=2(-31)(®-5)"%@2z)=

£'(8) = —%. Thus, L(z) = f(3) + f/B)(e —3) =1 - %(e —3) = —3= + 12,

5. f@)=vi-z = f(2)=

2\/1T ,s0 f(0) =1and f'(0) = —3.

Therefore,

VI—z=f(z) = f(0)+ f(0)(c—0) =1+ (—3)z—0)=1—}=.
Sov0.9=+vT—-01~1-%(0.1)=0.95

and 1/0.99 = /T —0.01 ~ 1 — £(0.01) = 0.995.

6.9(z) = ¥T+az=>1+2)" = g(=)=211+2)"?%50g(0)=1and 2
¢'(0) = %. Therefore, /T + z = g(z) =~ g(0) + ¢’(0)(x — 0) = 1 + 3z. 5 o, 1)4
So ¥/0.95 = $/1+ (—0.05) ~ 1 + 1(—0.05) = 0.983, ~3.25 / 3
and V/1.1= YT+0.I~1+%(0.1) =103 Vg J

-15

L @)= YT = (@)= 20+ 20)¥4(2) = (1 +25) ¥, s0 2
£(0) = Land £/(0) = 3. Thus, £(2) ~ £(0) + f'(0)(@ — 0) = 1+ b e
Weneed v/1+ 2z — 0.1 < 1+ 1z < /T + 2z + 0.1, which is true when L g
—0.368 < = < 0.677.

8. flz)=(1+=)"* = f'(z)=-3(1+2z)"*s0f(0)=1and

L
f'(0) = —=3. Thus, f(z) =~ f(0) + f'(0)(z — 0) = 1 — 3z. We need \
(1+2)™3—0.1 <1—3z < (1+2)"2+0.1, which is true when F-ol F+01

—0.116 < = < 0.144.
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SECTION 2.8 RELATEDRATES O 193

We are given that — & =3mi/hand — dy = 2 mi/h. By the Law of Cosines,

dt dt
y y z
22 =12 +y? —2zycosds® =a® + 9% — 22y =
45°
d dx 1 d dz .
2z—z:2m—l+2y£ﬂ—\/§m—y—\/Qy—l.AfterISmmutes [=1h], x

dt dt dt dt dt

N

2= @+ EF-VADE) > 2= YBTEa

N
I

— 2 e
wehavex = Jandy = § =

5

2 13— 6\/_
N3] = =13 —6+/2 ~ 2.125 mi/l
3)3] e mi/h.

dz 2

B i [2(3)3+2(3)2 - v2(

e
o
[\]

I
=
N

Let the distance between the runner and the friend be . Then by the Law of Cosines,

¢
€% = 200% 4-100% — 2 - 200 - 100 - cos § = 50,000 — 40,000 cos § (). Differentiating A\

200—
implicitly with respect to ¢, we obtain 2¢ Z—f = —40,000(— sin ) % Now if D is the
d
distance run when the angle is 0 radians, then by the formula for the lerrlgth of an arc
on a circle, s = r9 we have D = 1000, so 0 = —1—D = ﬁ hL L To substitute into the expression for

100 dt — 100 dt ~ 100

%, we must know sin @ at the time when £ = 200, which we find from (x): 2002 = 50,000 — 40,000 cosf <

cosf =1 = sinf= (i) ‘/_ . Substituting, we get 2(200) — = 40,000 ‘/_( ) =

dtjdt =~ ‘/_ ~ 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the direction in which

the runner is running,

The hour hand of a clock goes around once every 12 hours or, in radians per hour,

2% = Z rad/h. The minute hand goes around once an hour, or at the rate of 27 rad/h.
So the angle 6 between them (measuring clockwise from the minute hand to the hour
hand) is changing at the rate of df/dt = & — 2w = —1}3—” rad/h. Now, to relate 6 to ¢,
we use the Law of Cosines: (> = 42 + 8% — 2.4 -8 cos = 80 — 64 cos 0 (*).

Differentiating implicitly with respect to ¢, we get 2¢ % = —64(—sin6) % At 1:00, the angle between the two hands is

one-twelfth of the circle, that is, ﬁg = & radians. We use (x) to find £ at 1:00: £ = /80 —64cos 5 = /80 — 32 V3.

7r< 117r) de _ 64(3)(-%) _ 88w e

Substituting, we get 2¢ _@ = 64 sin s\ 8

dt 2./80—32v3  3/80—323

So at 1:00, the distance between the tips of the hands is decreasing at a rate of 18.6 mm/h = 0.005 mm/s. -
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SECTION 2.9 LINEAR APPROXIMATIONS AND DIFFERENTIALS I 195

f(il)) = a—f—lT(L‘)‘l = (1 I 2(5')_4 = AR L5
F(@) = —4(1 + 22)75(2) = (1%;)5 s0 £(0) = 1 and f'(0) = —8.

Thus, f(z) =~ f(0) + f/(0)(z — 0) =1+ (=8)(z — 0) = 1 — 8.

We need m —01<1-8z< (171233)7 + 0.1, which is true 3008

when — 0.045 < z < 0.055.

f(x) =tanz = f’(z)=sec®z,so f(0) =0and f'(0) = 1. 1 L
Thus, f(z) =~ f(0) + f'(0)(z — 0) =0+ 1(z — 0) = =.

We need tanz — 0.1 < & < tanx + 0.1, which is true when

—0.63 < z < 0.63. F+o01

(a) The differential dy is defined in terms of dz by the equation dy = f’(z) dz. Fory = f(z) = (¢* —3) 72,

[ (z) = —2(z® — 8) 2 (2z) = —(wf—f?))s, sody = —@2;4;%3—)3 da.
" / 1 4\—1/2 3 2t3 2t3
(b) Fory = f(t) = VI =24 f'(t) = (1 — t*)~/3(—4t = e R U Tt
h: 142w L, (1+3w)@) —(1+2uw)@E) -1 __ -1
@ Fory = f(u) = o= f'(w) = (1+ 3u)? B T TEE

(b) Fory = f(6) = 6 sin 26, f'(0) = 62(cos 260)(2) + (sin 26)(26), so dy = 20(0 cos 20 + sin 26) df.

1 sec? \/t sec? v/t
a) Fory = f(t) = tan /2, f'(t) = sec? Vi - =t~ /2 = ,s0dy = dt.
6)) y=f(t) an\/_f() SeC\/_z 2\/1_5 so ay i
12
(b) Fory = f(v) = 1502
F() = L+ (=20) (1 —=v*)(2v) _ —2[A+0)+(1-0)] _ —20(2) _ _—4v
(14 v?)? (14 v2)? 14222 (1+v2)%’
—4v
Sody—mdv.
_ . 1+sint 1+sint
Fory = f(t) = v — cost, f'(t) = 3(t — cost) /(1 t) = ———x,s0dy = —————dt.
(a) Fory = f(t) cost, f'(t) = 5(t — cost)™/*(1 4 sint) 2\/t__cﬁsoy 5 —cosl
. Ll s el 1 . xcosx—sinz __ xzcosx —sing
(b)Fory—f(:v)—wsmzv,f(m)—mcosw Ssine=——0f—— ,sody———m2 dz.

@y=tanz = dy=sec’zdx

(b) When z = 7/4 and dz = —0.1, dy = [sec(r/4)]*(~0.1) = (v2)* (=0.1) = —0.2.
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(@) y=cosmz = dy= —sinnz -nwdx=—nsinwxdz
(b)x =3 andde =—0.02 = dy=—n sinZ(—0.02) =« (v/3/2)(0.02) = 0.017 /3 = 0.054.

T

ST _1 2)=1/2 .- .
1 1
®) o =Tanddz=—01 = dy=—==5(-0.1) = 5(-0.1) = ~0.05
e+l @D -, -2
(a)y~$_1 = dy= @=1) dm—(m_l)zdm
(b)z=2andde =005 = dy= ﬁ(o.os) — —2(0.05) = —0.1.

y=f(z)=2®>—4dz, x=3, Az =05 =

Ay = f(3.5) — f(3) = —-1.75— (—-3) = 1.25
dy = f'(z)de = (2x —4)dz = (6 — 4)(0.5) =1

y=f@)=2—2% =0, Az =-03 = ¥

Ay = f(—0.3) — f(0) = —0.273 — 0 = —0.273

y=x—2x3

03 ge=ax
dy = f'() de = (1 — 32%) da = (1 — 0)(—0.3) = —0.3 D

|.i.
&
e
|
(=]
w
[=]
,

y=f(l@)=vz—-2,2=3, Az =08 =
Ay =f(3.8) — f(3) = V18 -1~ 0.34

) dep — — L 08)=
dy = f'(z)dz = 2mdm— 2(1)(0.8)—0.4

y=23 =1, Ae =05 =
Ay = (1.5)* —13 =3.375 — 1 = 2.375.

dy = 32” dz = 3(1)%(0.5) = 1.5
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SECTION 2.9 LINEAR APPROXIMATIONS AND DIFFERENTIALS [ 197

. To estimate (1.999)*, we’ll find the linearization of f(z) = z* at a = 2. Since f'(z) = 423, f(2) = 16, and
f'(2) = 32, we have L(z) = 16 + 32(z — 2). Thus, z* ~ 16 4 32(x — 2) when « is near 2, so

(1.999)* ~ 16 + 32(1.999 — 2) = 16 — 0.032 = 15.968.

y=f(z)=1/z = dy=—1/a*dz. Whenz = 4 and dz = 0.002, dy = —+5(0.002) = —g555, SO
16 8000

T N f(4) Fdy = 1 — gy = 1292 = 0.249875.

Ly=f(x)= ¥z = dy=1a7%de. Whenz = 1000 and do = 1, dy = }(1000)~*/3(1) = 555, s0

300°
/1001 = £(1001) ~ £(1000) + dy = 10 + 525 = 10.003 ~ 10.003.
Ly=f()=vZ = dy=3a""?dz. Whenx = 100and dz = 0.5, dy = $(100)"/?(3) = 45, s0

V1005 = £(100.5) ~ f(100) + dy = 10 4 & = 10.025.

.y = f(z) =tanz = dy =sec®xdz. When z = 0° [i.e., 0 radians] and dz = 2° [i.e., g5 radians],
90

dy = (sec? 0)(&) = 1%(&) = &5, so tan2° = f(2°) = f(0°) +dy = 0+ g5 = g5 ~ 0.0349.
.y = f(z) =cosz = dy= —sinzdr. When z = 30° [r/6] and dz = —1° [-7/180],
dy = (—sinZ) (—1&) = —3 (—185) = 365> 50 c0s29° = f(29°) ~ f(30°) +dy = 13+ & ~0.875.
.y =f(z) =secx = f'(z)=secz tanz,so f(0) =1and f'(0) = 1-0 = 0. The linear approximation of f at 0 is
£(0) 4 #(0)(z — 0) = 1 + 0(z) = 1. Since 0.08 is close to 0, approximating sec 0.08 with 1 is reasonable.
Ly=f@)=vZ = f(z)=1/(2y),s0 f(4) =2and f'(4) = . The linear approximation of f at 4 is
F@) + f (4)(z —4) = 2+ L(z — 4). Now f(4.02) = V402 ~ 2+ (0.02) = 2+ 0.005 = 2.005, so the approximation is
reasonable.
. (a) If z is the edge length, then V = 2® = dV = 32% da. When & = 30 and dz = 0.1, dV = 3(30)(0.1) = 270, s0 the

maximum possible error in computing the volume of the cube is about 270 cm?®. The relative error is calculated by dividing

the change in V, AV, by V. We approximate AV with dV.

N AV _dV _ 3z%dx dx 0.1
Relative error = ‘—/ ~ "—/ = -{1,’—3__ =3 ? = 3(5) = 0.01.

Percentage error = relative error x 100% = 0.01 x 100% = 1%.
(b) S =62> = dS =12xds. When = 30 and dz = 0.1, dS = 12(30)(0.1) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm®.

: A8 dS 12zdx _,dz _ _(01) _ -
Relative error = S ¥ 5= 62 =2 a —2(30>—0.006.

Percentage error = relative error x 100% = 0.006 x 100% = 0.6%.
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(b) From the graph, we see that f’(z) is positive and decreasing. This means that the slopes of the tangent lines are positive,
but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large. "
42. () g'x) = vaZ+5 = ¢'(2) =+v9=3. g(1.95) ~ g(2) + ¢(2)(1.95 — 2) = —4 + 3(—0.05) = —4.15.
9(2.05) =~ g(2) + ¢'(2)(2.05 — 2) = —4 + 3(0.05) = —3.85.

(b) The formula g’(z) = v/z2 + 5 shows that g’(x) is positive and increasing. This means that the slopes of the tangent lines
are positive and the tangents are getting steeper. So the tangent lines lie below the graph of g. Hence, the estimates in

part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (i), (ii), and (iii):

P(z) = A+ Bz + Ca? f(z) =cosz
P'(z) = B+2Cx f'(z) = —sina
P'(z) =2C f"(z) = —cosx

So, taking a = 0, our three conditions become
P(0) = f(0): A=cos0=1
P'(0) = f'(0): B=—sin0=0
P’(0) = f"(0): 2C=—-cos0=-1 = C=-1

The desired quadratic function is P(z) =1 — %mz, so the quadratic approximation is cosz ~ 1 — %a;z.
1.4
L The figure shows a graph of the cosine function together with its linear
y =cosx

approximation L(z) = 1 and quadratic approximation P(z) = 1 — 2°

=3.5 3.5
‘// \/ near 0. You can see that the quadratic approximation is much better than the
P

) linear one.

\

—1.4

2. Accuracy to within 0.1 means that |cos T

(1-22%)] <01 & —0l<cosz—(1-2%2)<01 &
0.1>(1—%$2)—cosm>—0.1 & cosz+0.1>1—32°>cosz—0.1 & cosz—0.1<1—22® <cosz+0.1.

12 y=cosx+0l1

P A From the figure we see that this is true between A and B. Zooming in or

using an intersect feature, we find that the z-coordinates of B and A are

about +£1.26. Thus, the approximation cosz ~ 1 — %.’v2 is accurate to

~1.6 \y 1.6 within 0.1 when —1.26 < = < 1.26.
—0.1
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3. If P(z) = A+ B(z — a) + C(z — a)?, then P'(z) = B + 2C(z — a) and P"(z) = 2C. Applying the conditions (i), (ii),

and (iii), we get
P(a) = f(a): A= f(a)
P'(a) =f'(a): B=f'(a)
P'’(a) = f"(a): 2C=f"(a) = C=131f"(a)

Thus, P(z) = A+ B(z — a) + C(z — a)? can be written in the form P(z) = f(a) + f'(a)(z — a) + 3 £ (a)(z — a)*.

. From Example 2.9.1, we have f(1) = 2, f'(1) = 1, and f'(z) = 3(z + 3)7/2. 4 L

f
So f'(z) = -1z +3)7*?* = f'(1)=-3%. /P

From Problem 3, the quadratic approximation P(z) is Ii
Ve F3= f()+fWD(e—-1)+if'Q)(z—1)°=2+3(—1)— g@=—1)% _4[‘pf 10
The figure shows the function f(z) = v/z + 3 together with its linear -1 ’

approximation L(z) = 1 + I and its quadratic approximation P(z). You can see that P(x) is a better approximation than

L(z) and this is borne out by the numerical values in the following chart.

from L(z) actual value from P(x)

v3.98 1.9950 1.99499373... | 1.99499375
v4.05 2.0125 2.01246118... | 2.01246094
V4.2 2.0500 2.04939015. .. | 2.04937500

. Ty (x) = co + c1(x — a) + c2(@ — a)® + cs(z — a)® + - - - + cn(@ — a)™. If we put z = a in this equation,

then all terms after the first are 0 and we get T, (a) = co. Now we differentiate T}, (z) and obtain
T/ (z) = e1 + 2ca(z — a) + 3cs(z — a)? + 4ea(w — a)® + - - - + nen(z — @)™ L. Substituting @ = a gives Ty, (a) = c1.

"=2 and so

Differentiating again, we have T%/ (x) = 2c2 + 2 - 3cs(@ — a) + 3 - dea(x — a®) + -+ + (n — D)nea(z — a)
T (a) = 2¢,. Continuing in this manner, we get 7' (z) = 2+ 3c3 + 2 3-dea(z —a) + -+ + (n—2)(n — D)nea (@ — a)" 2

and T}’ (a) = 2 - 3c3. By now we see the pattern. If we continue to differentiate and substitute 2 = a, we obtain

(i) (a) = 2- 3 - 4cq and in general, for any integer k between 1 and n, T,Sk)(a) =2-3:4-5-----ker=klex =
(k) (k)
ck = T"T(a). Because we want T, and f to have the same derivatives at a, we require that ¢ = ! k'(a) for
k=1,200:,m:
/ "(a) 2 () ot il :
. Tn(z) = f(a) + f(a)(z —a) + T(”n —a)*+-- 4+ -n—'(m — a)™. To compute the coefficients in this equation we

need to calculate the derivatives of f at 0:

f(z) =cosz f(0) =cos0=1
f(z) = —sinz f'(0) =—sin0=0
f'(z) = —cosx f'(0)=-1

f"(z) =sinz F(0) =0
f®(z) = cosz f®0) =1
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We see that the derivatives repeat in a cycle of length 4, so £ (0) = 0, £ (0) = —1, f(”(0) = 0, and F® (0) = 1.

From the original expression for T (), with n = 8 and a = 0, we have

1" II/ 8)
Ty(@) = 70) + £ O~ 0)+ L@ 0y 4+ L0 g 4. O _gpe

Y
2 4 6 8
=140- m+—1q: 0 gt L D — :1:+0:B+ :c_l——+$ S ap.
4! 6! 6! 8!
22 gt 28 g8
and the desired approximation is cosz ~ 1 — o - IR + 3 The Taylor polynomials 75, T4, and Tg consist of the
z2 22 gt
initial terms of T3 up through degree 2, 4, and 6, respectively. Therefore, T>(z) = 1 — 2' ,Tu(z) =1— o + L and
z? m4 z°
Te(z) =1— i + T We graph T», Ty, Ts, T3, and f:
(Tﬂ T 1.4 7;4 Ti Notice that T5(x) is a good approximation to cos =
| /
"‘,X | near 0, Ty (z) is a good approximation on a larger
i‘\ | interval, Tg(x) is a better approximation, and
y=Co8sX '1& / y=cosx .
8 \ . Ts(z) is better still. Each successive Taylor
‘ polynomial is a good approximation on a larger
interval than the previous one.
\ y \ J
Ts T, -1.4 T, T,
2 Review
TRUE-FALSE QUIZ

1. False. See the note after Theorem 2.2.4.
2. True. This is the Sum Rule.
3. False.  See the warning before the Product Rule.

4, True. This is the Chain Rule.

5. True. % f(z) = —j;[f(fc)]l/z - %[f(m)]—l/2 F(z) = fl(f?ﬂ)

6 False, o f(vF) = J'(V5) - J /2 = f;(\f‘[) which is not é%

7. False. f(z) =|2*+z|=2"+aforz>00rz < —land |2+ 2| = —(2® +2)for—1 <z < 0.
So f'(z) =2z +1forz >00rz < —land f'(z) = —(2z + 1) for -1 < 2 < 0. But |2z 4+ 1| =2z + 1
forz > —% and |2z + 1| = -2z — 1 forz < —%.
(© 2016 Cengage Learning. All Rights Reserved. May not be , copied, or dup d, or posted to a publicly accessible website, in whole or in part.



