

QUIZ 6

NAME Linda Zhu 3/24/20

SEC____

DUE TUES MARCH 24 AT 6 P.M.

Check the right answer, but show ALL WORK. No credit unless work is shown.

This means to justify your answer with a sketch or the calculus, etc. You may use your notes and book, but not the Internet. Your work MUST BE YOUR OWN. I'm able to discern collaborations.

but not the Internet. Your work MUST BE YOUR OWN. I'm able to discern conductant	1 sodie Coefficient		
Question 1 Degree	odd of Tr		
Which of the following is <u>not</u> true?	Even 1 1		
a. Any even-degree polynomial has at least one absolute extreme on the reals.	4) 4)		
b. Any odd-degree polynomial has an absolute extreme on the reals.			
c. The absolute extreme of a function can occur at an endpoint. The			
d. A local minimum can also be an absolute minimum. True			

_	1			_
0	ues	tio	n	Z

a

If a function is continuous on a closed interval [a, b], then...

a. Any local extreme will also be an absolute extreme. False

b t will have both an absolute maximum and an absolute minimum on [a, b].

C. It cannot have the same absolute maximum value and absolute minimum value.

 \bigcirc d. The absolute extremes must occur at x = a and x = b. Take

alsolyte als max

a closed interval must have a max or min, endpts on the other

both max & mn Value is same

$$\log x = e^{?} = x$$
 $\log_2 8 = 3$
 $2^3 = 8$

Question 3

The absolute minimum of $f(x) = \ln(x+2)$ on $[-1, \infty)$ is:

The absolute minimum of
$$f(x) = \frac{1}{x+2} - 1$$

(a) $f(x) = \frac{1}{x+2} = 0$

(b) $f'(x) = \frac{1}{x+2} = 0$

Not in the interval

Question 4

The absolute maximum of $f(x) = x^3 - 6x^2 + 9x - 8$ on [0, 5] occurs at:

$$\begin{cases}
f'(x) = 3x^2 - 12x + 9 & 3 \\
3(x^2 - 4x + 3) & -3 - 3
\end{cases}$$

$$0 = 3(x - 3)(x - 1)$$

$$\bigcirc c.x=0$$
 $\bigcirc 73 \times -3 = 0 \times -1 = 0$

3

5

$$0 \text{ d.} x = 3$$
 $x = 1 \text{ cnt.} \#s$

$$f(3) = 3^{3} - 6(3)^{2} + 9(3) - 8 \qquad f(1) = 1^{3} - 6(1)^{2} + 9(1) - 8$$

$$27 - 54 + 27 - 8 \qquad 1 - 6 + 9 - 8$$

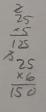
$$54 - 62 \qquad 10 - 14$$

$$f(3) = -8$$
 $f(1) = -4$

$$f(0) = 0^{3} - 6(6)^{2} + 9(0) - 8 \qquad f(5) = 5^{3} - 6(5)^{2} + 9(5) - 8$$

$$125 - 150 + 45 - 8$$

$$170 - 158$$



Question 5

$$y = \frac{x+1}{x-1}$$
 on [2, 6]

Which function has no extremes on the stated domain?
$$y = \frac{x+1}{x-1} \text{ on } [2,6]$$

$$y = \frac{x+1}{x-1} \text{ on } [2,6]$$

$$y = \frac{x+1}{x-1} \text{ on } [2,6]$$

$$f(x) = \begin{cases} x+3, & \text{for } x < 0 \\ 5, & \text{for } x \ge 0 \end{cases}$$

$$g(c, y = -x^4)$$
 on the reals

$$\bigcirc$$
 d. $y = e^{x}$ on the reals

$$f'(x)=0=0$$
 so extrema @ $x=0$

cnt# at 0
$$\chi=0$$

cannot happen no chical #'s

So slope never equals 0 & no actrema

$$y' = \frac{-2}{(x-1)^2} = 0$$
 (a)

$$-270$$
 $\sqrt{(x-1)^2} = \sqrt{0}$

$$f(2) = \frac{2+1}{2-1} = \frac{3}{1} = 3$$
 extremas

$$C(1) = \frac{7}{2-1} = \frac{7}{1-3} = \frac{6}{1-3}$$

$$f(6) = \frac{6+1}{6-1} = \frac{7}{8}$$