For this and any evaluation, show all your work.

1. Put the subsets $\mathbb{Q}, \mathrm{W}, \mathbb{Z}, \mathbb{N}$ of \mathbb{R} in order of size, using subset notation \subset.

The biggest subset is the set of irrationals, \mathbb{Q}^{\prime}. It has not common elements with the other subsets. Hence, $\mathbb{Q} \cup \mathbb{Q}^{\prime}=$

Give two examples of an irrational number, but not π or e.
2. We learned three forms of numbers: decimal, fraction, and percent. Give the other two forms of the numbers below (I did the first two):

Decimal	Fraction	Percent
5	$5 / 1$	500%
0.007	$7 / 1000$	0.7%
0.32	-	-
-	$-19 / 100$	-
-	-	-
		-

3. Write the fractions in lowest terms:
$\frac{4}{18}$
$\frac{12}{39}$
$\frac{17}{51}$
$\frac{60}{28}$
4. Two numbers with no common factors are called \qquad . This is the one I accidentally called 'twin primes' in the $8: 30$ class! Give an example of a pair of twin primes.
5. Simplify each complex fraction: $\frac{\frac{2}{5}}{\frac{5}{16}} \quad \frac{9}{3 / 4}$

Write as two fractions separated by the operation shown. If it can't be separated, say so:

$$
\frac{x+6}{5} \quad \frac{a-b}{c} \quad \frac{a}{c+d} \quad \frac{a-b}{c+d}
$$

6. Do the indicated fraction operation. Reduce to lowest terms if possible.

$$
\begin{array}{ll}
\frac{5}{9}+\frac{8}{15}= & 7 \frac{4}{5}+1 \frac{2}{3}= \\
\frac{5}{9} \cdot \frac{8}{15}= & 7 \frac{4}{5} \cdot 1 \frac{2}{3}= \\
\frac{4}{3}= \\
\frac{4}{7}=2 \div \frac{2}{3}=
\end{array}
$$

