1. (Armstrong \& Davis, section 3.2 problem 13) The Country Day Company determines that the daily cost of producing lawn tractor tires can be modeled by $C(x)=100+40 x-0.001 x^{2}, 0 \leq$ $x \leq 300$ where x represents the number of tires produced each day and $C(x)$ is the total cost, in dollars, of producing the tires.
a. Determine $C^{\prime}(x)$, the marginal cost function.
b. Evaluate and interpret $C^{\prime}(200)$.
2. (Armstrong \& Davis, section 3.2 problem 21) A telemarketer determines that the monthly profit from selling magazine subscriptions can be modeled by $P(x)=5 x+x^{1 / 2}, 0 \leq x \leq 100$ where x is the number of magazine subscriptions sold per month and $P(x)$ is the profit in dollars.
a. Determine $P^{\prime}(x)$, the marginal profit function.
b. Evaluate and interpret $P^{\prime}(55)$.
3. (Tan, section 3.4 problem 13) The weekly demand for the Pulsar 25 color console television is $p=600-0.05 x(0 \leq x \leq 12,000)$ where p denotes the wholesale unit price in dollars and x denotes the quantity demanded. The weekly total cost function associated with manufacturing the Pulsar 25 is given by $C(x)=0.000002 x^{3}-0.03 x^{2}+400 x+80,000$ where $C(x)$ denotes the total cost incurred in producing x sets.
a. Find the revenue function R and the profit function P.
b. Find the marginal cost function C^{\prime}, the marginal revenue function R^{\prime}, and the marginal profit function P^{\prime}.
c. Compute $C^{\prime}(2000), R^{\prime}(2000)$, and $P^{\prime}(2000)$ and interpret your results.
4. (Armstrong \& Davis, section 3.2 problem 27) The NewJoy Company hires a consulting firm to audit their books and consequently revise their price and cost functions to $p(x)=23$ and $C(x)=\frac{x^{2}}{95}+\frac{7}{2} x+5500$.
a. Algebraically derive the profit function P and simplify it.
b. Evaluate $P(500)$ and interpret.
c. Evaluate $P^{\prime}(500)$ and interpret.
5. (Armstrong \& Davis, section 3.2 problem 29) The Vroncom Company determines that the pricedemand function for their handheld computer device is $p(x)=-\frac{x}{30}+300$. They know that their fixed costs are $\$ 150,000$ and variable cost is 30 dollars per device.
a. Determine the revenue function and the cost function.
b. Determine the profit function. Find the smallest and largest production levels x so that the company realizes a profit.
c. Evaluate $P^{\prime}(1000)$ and interpret.
